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Abstract: The paper suggests conditions for presence of quadratic Lyapunov functions for nonlinear
observer based feedback systems with an ’input nonlinearity’ in the feedback path. Provided that the
system using state feedback satisfies the circle criterion (i.e., when all states can be measured), we show
that stability of the extended system with output feedback control from a (full state) Luenberger-type
observer may be concluded using the circle criterion. As another result, we state a separation principle
for a class of feedback systems with an input nonlinearity. When only local stability results can be stated,
our method provides an estimate of the region of attraction.

1. INTRODUCTION

The separation principle plays a key role in the design of output
feedback controllers, which instead of a full-state feedback use
signals reconstructed by an observer from available measure-
ments (Simon, 1956; Wonham, 1968). Essentially, it states that
to achieve stability of the overall system one can design the con-
troller and the observer separately—i.e., a controller is devel-
oped to stabilize the plant as if all states were measured, while
an observer is solely designed to reconstruct the state vector
from available measurements. The separation principle is said
to hold if the system resulting from interconnection of the state
feedback controller and the observer is stable for all admissible
combinations. The main class of dynamical systems that sat-
isfy the separation principle consists of linear systems—e.g.,
(Simon, 1956; Wonham, 1968). In general, however, the sep-
aration principle is not valid for nonlinear systems—e.g., Ex-
ample 1 in (Arcak and Kokotovic, 2001, p.1926). A few exten-
sions of the separation principle to classes of nonlinear systems
can be found in (Atassi and Khalil, 1999), (Arcak and Koko-
tovic, 2001), (Johansson and Robertsson, 2002), (Arcak, 2002).

In a series of papers, Arcak and Kokotović studied observer-
based nonlinear feedback systems using the circle criterion
for observer design and for robustness analysis. For certain
classes of nonlinear systems—e.g., output feedback stabiliza-
tion of systems related to the Moore-Greitzer compressor
model (1986)—observer-based feedback turns out to be diffi-
cult. One instability-prone example of observer-based feedback
control is the following dynamical system (Arcak, 2002)

d

dt

[
x1

x2

]
=

[
0 1
0 1

][
x1

x2

]
+

[
0
1

](
u− x5

2

)
(1)

y = x1 (2)

1 The work was partly supported by the Swedish Research Council under the

grants: 2005-4182, 2006-5243.

Whereas the finite-escape time problems of observer-based out-
put feedback can be traced to violation of the Lipschitz con-
dition, dynamic output feedback stabilization can be accom-
plished. As shown by Shiriaev et al. (2003), robust stabilization
can be accomplished without resorting to explicit observers.
Consider a dynamical output feedback controller of the form

d

dt
z = λ3x1 + λ4z

u = λ1x1 + λ2z+(c1x1 + c3z)5 (3)

where λi, c j are real constants to be defined. With such a
controller, the dynamics of the closed-loop system are

d

dt

[
x1

x2

z

]
=

[
0 1 0
λ1 1 λ2

λ3 0 λ4

][
x1

x2

z

]
+

[
0
1
0

]
w

w = (c1x1 + c3z)5 − x5
2 (4)

A key observation is that the nonlinearity w of Eq. (4) and the
linear virtual output of the closed-loop system (4)

v = c1x1 − x2 + c3z

satisfies a passivity relationship for any x1, x2, z

v ·w = (c1x1 − x2 + c3z)[(c1x1 + c3z)5 − x5
2] ≥ 0 (5)

Thus, the problem to design a controller that renders the origin
of the system (1) asymptotically stable can be solved (Shiriaev
et al. 2003). Whereas such dynamic output feedback control of
Eq. (4) can be given an observer interpretation, the separation
principle is obviously irrelevant. From a control design point of
view, however, the decomposition of dynamic output feedback
into problems of state-feedback control and observer design is
attractive. Thus, the problem how to re-use a calculated state-
feedback control in cases without full access to state measure-
ment prompts further research for the separation principle for
classes of nonlinear system without restriction to Lipschitz-
bounded nonlinearities. In this paper, we consider dynamic
output feedback in the context of the circle criterion with at-
tention to absolute stability and quadratic constraints as tools
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for analysis and design. To this purpose, consider a nonlinear
system

d

dt
x = Ax + Bu, u = −ψ(z,t), z = Input

y = Cx (6)

where a state vector x ∈ R
n, a control action u ∈ R

m, and A, B
are constant matrices of appropriate dimensions. Suppose that
a feedback controller is defined as

u = −ψ(z,t), z = z(x) (7)

where the function ψ satisfies the quadratic constraint

0 ≥ ψT (z,t)
(

ψ(z,t)−κx
)

(8)

=

[
x(t)

ψ(z,t)

]T




0 −

1

2
κT

−
1

2
κ Im




[

x(t)
ψ(z,t)

]
(9)

for all time t and x ∈ R
n, where κ ∈ R

m×n.

Molander and Willems (1980) made a characterization of the
conditions for stability with a high gain margin of feedback
systems of the structure

ẋ = Ax + Bu; z = Lx; u = −ψ(z,t) (10)

with ψ(·, ·) enclosed in a sector [K1,K2]. The following proce-
dure was suggested to find a state-feedback vector L such that
the closed-loop system will tolerate any ψ(·, ·) enclosed in a
sector [K1,∞) follows from

• Pick a matrix Q = QT
> 0 such that (A,Q) is observable;

• Solve the Riccati equation

PA + ATP−K1PBBT P+ Q = 0 (11)

for P > 0. Take L = BT P and formulate the Lyapunov
function V (x) = xT Px to be used for the proof of robust
stability.

The algorithm provides a robustness result which fulfills an
FPR condition—i.e., the stability condition will be that of an
SPR condition on L(sI − A + K1BL)−1B, the state-feedback
design procedure being based on a circle-criterion proof and
involving a solution of a Riccati equation.

In (Johansson and Robertsson 2002), the Molander-Willems
procedure was extended to observer-based feedback. Moreover,
it was shown that the nominal pole assignment for control
and for the observer dynamics can be made independently, a
property identified with that of the separation principle.

In this paper, we will show that the separation principle holds
for a class of nonlinear feedback systems described by the Lur’e
problem with input nonlinarities and dynamic output feedback
using observer-augmented design.

2. PROBLEM FORMULATION

Prior to formulation of the problem treated in the paper, let us
consider the motivating example

[
ẋ1

ẋ2

]
=

[
0 1
−3 1

][
x1

x2

]
+

[
0
−1

]
u = Ax + Bu

y = [1 0]x = Cx

u = sat(z · (2 + sin2(t))), z = x2

(12)

with a time-varying multiplicative disturbance on the input of
the control signal which is saturated at level one and further-
more depends on the unmeasured state x2.

The nonlinearity u satisfies the inequality

ux2 ≤ 3x2
2, ∀x2. (13)

At the same time, the sector of linear stability for the linear part
of (12) for some ũ = κx2 so that

κ ∈
(

1, +∞
)

Therefore, one can hope for robust stability of the closed loop
system (12) only if the second constraint

ux2 > x2
2 (14)

with κ > 1, is valid. This and the saturation in the nonlinearity
of (12) imply that the state x2, where (14) holds, is between ±1.
Combining (13) and (14), we get the quadratic constraint (QC)

0 ≤ (3x2 −u)(u− x2) =

[
x1

x2

u

]T




(
0 0
0 −3

) (
0
2

)

(0 2) −1




[

x1

x2

u

]
(15)

that remains valid provided |x2| < 1. Later, this QC is to be
used to solve an associated Riccati equation and to identify the
Lyapunov function for any system which satisfies the QC (15)
and the linear dynamics of (12).

Note, however, that the linear subsystem (12) is unstable and
has an input saturation. Hence we can only hope to show local
stability results for this example.

Consider a Lyapunov function candidate

V =

[
x1

x2

]T

P

[
x1

x2

]
, P = PT

> 0 (16)

Along the solutions of (12) we have

dV

dt
=

[
x1

x2

]T(
AT P + PA

)[x1

x2

]
+ 2

[
x1

x2

]T

PBu

≤

[
x1

x2

]T(
AT P + PA

)[x1

x2

]
+ 2

[
x1

x2

]T

PBu

+

[
x1

x2

u

]T




(
0 0
0 −3

) (
0
2

)

(0 2) −1




[

x1

x2

u

]
(17)

where we have used the sector condition (15). Rewriting (17)
as

dV

dt
= −(u−hT [x1, x2]

T )2 (18)

= −u2 + 2

[
x1

x2

]T

hu−

[
x1

x2

]T

hhT

[
x1

x2

]

we get the following equations for P, h

[
x1

x2

]T(
AT P+ PA +

[
0 0
0 −3

]
+ hhT

)[
x1

x2

]
= 0

2

[
x1

x2

]T (
PB +

[
0
2

])
u = 2

[
x1

x2

]T

hu

⇒ P =

[
3 0
0 1

]
, h = PB +

[
0
2

]
(19)

To estimate the area of attraction, we could use the fact that
the set V (x1,x2) < c is invariant w.r.t. the closed-loop system
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dynamics (12). To find the critical value c, we have that the
sector condition is satisfied for |x2| ≤ 1, so that

cmax =

[
0
1

]T [
3 0
0 1

][
0
1

]
= 1 (20)

Therefore, the estimated area of attraction is
[

x1

x2

]T [
3 0
0 1

][
x1

x2

]
= 3x2

1 + x2
2 ≤ 1 (21)

Unfortunately the suggested feedback controller in (12) is not
directly applicable because the variable x2 used in the controller
is not accessible through measurements, and only the first
component x1 is measured. Therefore, some modification for
the controller of Eq. (12) is needed together with some method
for estimating the area of attraction for the closed-loop system.
This motivates the problem statement given in the next section.

2.1 Problem Formulation

This paper deals with robust output-feedback stabilization of a
nonlinear system of the form

ẋ = Ax + Bu, y = Cx, z = Lx (22)

u =−ψ(z,t) (23)

where x ∈ R
n is the state, y ∈ R

k is the vector of measured
variables, z ∈R

l is the vector of linear combinations of the state
used in the feedback controller, u ∈R

m is the control signal; the
matrices A, B, C, L have appropriate dimensions; ψ(·, ·) is the
nonlinearity in the closed-loop system. It is assumed that

[A1] The nonlinearity (23) satisfies the QC

(κ2z−u)T (u−κ1z) ≥ 0, ∀z, u, (24)

where κ1, κ2 are constant m× l matrices;
[A2] The system (22), (23) satisfies the circle criterion based

on the QC (24) that ensures asymptotic stability of (22),
(23).

When y only is available to measurement, one can reconstruct
the variable z by the Luenberger observer

d
dt x̂ = Ax̂+ Bu + K (y−Cx̂) , ẑ = Lx̂ (25)

and use the estimate for the feedback control

u = −ψ (ẑ,t) (26)

Interconnection of Eqs. (25) and (26) will provide an output
feedback controller for system (22), and stability becomes a
challenge. One can expect that stability of the overall system
(22), (25)–(26) may be dependent on the choice of the observer
gain K.

The main contribution of this paper is that for any observer
gain K, s.t. (A−KC) is Hurwitz, the closed-loop system (22),
(25)–(26) is absolutely stable, i.e.

• for any observer gain K, which makes (A−KC) asymptot-
ically stable, a new sector condition (i.e., a new quadratic
constraint, different from the given one in Eq. (24)) can be
found for the closed-loop system (22), (25)–(26);

• it is verified that for this new quadratic constraint all the
conditions of the Circle criterion applied to the closed-
loop system (22), (25)–(26) still hold.

As a direct consequence of this result,

• one can infer that for any gain K, that makes (A −
KC) Hurwitz, the closed-loop system (22), (25)–(26) is

asymptotically stable.—i.e., the feedback controller (23)
and the observer gain K could be chosen separately;

• for any gain K, that makes (A −KC) Hurwitz, one can
explicitly find a Lyapunov function for the closed-loop
system (22), (25)–(26) as a solution of the associated
Riccati equation;

• one can verify robust stability of (22), (25)–(26). Here
the robustness is quantified in terms of the validity of the
frequency condition for the newly found QC.

The paper is organized as follows. Section 3 contains the
preliminaries where the formulation of the circle criterion and
a brief description of essential steps involved in its proof are
outlined. The main result of the paper is given in Sec. 4. In
Sec. 4.1 the example from Sec. 2 is considered for output
feedback control. In Sec. 6, conclusions are drawn.

3. PRELIMINARIES

To show the asymptotic stability of the system (22), (23) based
on the circle criterion, consider a Lyapunov function candidate

V (x) = xT Px, P = PT
> 0. (27)

Using relation (24), one gets

dV

dt
= 2xT P dx

dt
= 2xT P

(
Ax + Bu

)

≤ 2xT P
(

Ax + Bu
)

+ 2
(

κ2z−u
)T (

u−κ1z
)

=̂ −

[
x
u

]T [
Q11 Q12

QT
12 Q22

][
x
u

]
= −

[
x
u

]T

Q

[
x
u

]
(28)

where −Q11 = AT P+ PA−LTκT
2 κ1L−LT κT

1 κ2L

−Q12 = PB + LT(κT
1 + κT

2 ), −Q22 = −2Im

Question: Under what conditions is there a P = PT > 0 such
that Q in (28) is positive definite? The answer is given by:

Theorem 1. (Frequency Theorem (Yakubovich, 1963)). Let the
pair (A,B) be stabilizable, then there is a P = PT such that Q of
Eq. (28) fulfills Q > 0 if and only if there is ε > 0 such that for
any vectors x̃ ∈ C n, ũ ∈ C m related by

jω x̃ = Ax̃ + Bũ, ∀ω ∈ R
1 (29)

the following inequality holds

Re
{

(κ2Lx̃− ũ)∗ (ũ−κ1Lx̃)
}

< −ε
(
|x̃|2 + |ũ|2

)
. (30)

If det( jω −A) 6= 0 ∀ω ∈ R
1, the inequality (30) is equivalent

to new QC valid for all ω ∈ R
1

Re
{(

κ2L( jωIn −A)−1B− Im

)∗
· (31)

(
Im −κ1L( jωIn −A)−1B

)}
< 0

Suppose that there exists a (virtual) feedback

ū = −Rz (32)

that satisfies the QC (24), and such that the matrix (A−BRL) is
Hurwitz. Then the time derivative of V with the feedback (32)
reduces to the Lyapunov inequality

dV

dt
= xT

(
(A−BRL)T P + P(A−BRL)

)
x < 0 (33)
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As (A−BRL) is Hurwitz, it implies that the matrix P is positive
definite. Note that existence of the feedback (32) satisfying the
QC is an assumption for the proof and should not be confused
with the real closed-loop feedback with the nonlinearity ψ(·).
Note that completing the squares after adding the quadratic
form, which is not negative due to the imposed quadratic con-
straint, to the derivative of a quadratic Lyapunov function is the
classical idea, known as the simplest form of application of the
S-procedure. Summing up the arguments, one can formulate:

Theorem 2. (Circle Criterion (Yakubovich, 1963)). Consider
the system of Eqs. (22), (23), where the nonlinearity satisfies
the quadratic constraint (24). Suppose that there exists a linear
feedback (32) such that it satisfies the quadratic constraint (24)
and makes the matrix (A−BRL) Hurwitz. If the frequency
condition (30), (29) holds, then the nonlinear interconnected
system (22), (23) is globally exponentially stable.

Remark 1. The given formulation of the circle criterion does
not pretend to be general and we refer to the original pa-
pers (Yakubovich, 1963; Zames, 1966) and textbooks such as
(Khalil, 2002) and references therein for different extensions.
The frequency condition and the circle criterion are shown
here to highlight the ideas behind the development in the next
section. Note also the result of (Molander and Willems, 1980),
where the circle criterion was used for synthesis of state feed-
back controllers with specified gain and phase margins.

4. STABILITY OF THE OBSERVER-BASED SYSTEM

Consider the case when the variable z of the system (22) is not
available, while only the output variable y is measured. To form
the dynamic output feedback controller, form an observer and
let its state substitute the true system state in the state-feedback
control. Let an observer be given by (25), and the feedback
controller be chosen by Eq. (26).

By assumption the nonlinearity u = −ψ(z,t), see (23), satisfies
the QC (24), that is

(κ2z−u)T (u−κ1z) ≥ 0, ∀z, u, (34)

where z and u are not necessarily solutions of the closed-loop
system, but rather could be seen as any vectors of appropriate
dimensions.

From this observation follows that for any choice of the ob-
server gain K, the solutions of the closed-loop system (22),
(25)–(26) with u = −ψ(ẑ,t) satisfy the following new QC

(κ2ẑ−u)T (u−κ1ẑ) ≥ 0, ∀ ẑ, u, (35)

The next question arises: Given an observer gain K, under what
conditions could the circle criterion be applied to the extended
nonlinear system (22), (25), (26) based on the QC (35)?

The answer is given in the next statement:

Theorem 3. Suppose all assumptions of Theorem 2 hold. Then
for any gain K that makes the matrix (A−KC) Hurwitz, the
closed-loop system (22), (25), (26) satisfy all conditions of the
circle criterion applied to the quadratic constraint (35)—i.e.,
with such choice of the observer gain the closed-loop system
(22), (25), (26) is robustly globally exponentially stable.

Proof. The system equation (22) augmented with the observer
(25) looks as follows

d

dt

[
x
x̂

]
=

[
A 0

KC A−KC

]

︸ ︷︷ ︸
Aaug

[
x
x̂

]
+

[
B
B

]

︸︷︷︸
Baug

u (36)

Choose a Lyapunov function candidate as

W = XT
PX , where X=̂

[
xT x̂T

]T
(37)

Its time derivative along the closed-loop system solution is

d

dt
W ≤ 2XT

P

(
AaugX + Baugu

)
+ 2

(
κ2ẑ−u

)T (
u−κ1ẑ

)

=̂ −

[
X
u

]T

Q

[
X
u

]
, Q > 0 (38)

where Q is defined in Table 1, Eq. (39). From the frequency
theorem , it can be concluded that there exists a matrix P = PT

such that Q > 0 if and only if ∀ X̃ ∈ C n, ∀ ũ ∈ C m related by

jωX̃ = AaugX̃ + Baugũ, ∀ω ∈ R
1 (40)

the inequality valid

Re
{([

0m×n, κ2L
]

X̃ − ũ
)∗(

ũ−
[
0m×n, κ1L

]
X̃

)}
< 0 (41)

To simplify the left hand side of (42), one can use the identities
of the next statement

Lemma 1. The following equalities hold

[
0, In

]
X̃ =

[
0, In

](
jωIn −Aaug

)−1

Baugũ (42)

=
[
0, In

]
( jωIn −A)−1Bũ

Proof of Lemma 1 comes from standard matrix computations
and is omitted. Based on this fact one can rewrite the inequality
(42) like the inequality (31). Therefore, from the frequency
theorem one concludes that there exists a matrix P = PT such
that d

dt W evaluated along any solution of the system (22), (25),
(26) is negative definite.

To check that P > 0, consider the linear subsystem (22), (25)
with the feedback controller

ū = −Rẑ (43)

As assumed, this feedback satisfies the QC (24), and at the same
time the system (22) is stabilized by (32). It follows from the
separation principle for linear time-invariant systems that the
closed-loop system (22), (25) and (44) is asymptotically stable.

The time derivative of W with the feedback (44) is of the form

d
dt

W = 2XT
P

(
AaugX + Baugu

)
(44)

= 2XT
P

(
Aaug −Baug

[
0n×n

RL

])
X < 0

The last relation is again a Lyapunov inequality, and the asymp-
totic stability of the matrix

Aaug −Baug

[
0n×n

RL

]

implies that P is positive definite.

Let us comment the result:
1). The main step—i.e., checking the frequency condition—
becomes trivial due to asymptotic unbiasedness of the estimate
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Q =





AT
augP +PAaug −

[
0n×n 0n×n

0n×n −LT κT
2 κ1L−LT κT

1 κ2L

]
PBaug +

[
0m×n,L

T (κT
1 +κT

2 )

]

BT
augP +

[
0m×n,(κ1 +κ2)L

]T

−2Im




(39)

Table 1. Expression for Q in Eq. (38)

X̂ , which is a basic property of the Luenberger observer. It
implies a solvability of the corresponding Riccati equation for
the system augmented by the observer. Positiveness of the
solution of Riccati equation, in turn, follows from the validity
of the separation principle for linear systems.
2). The Lyapunov functions V and W , constructed from the
solutions P and P of the corresponding Riccati equations, have
no clear connection. The constructive procedure for design of a
gain K and an appropriate Lyapunov function W , based on V ,
could be found in (Johansson and Robertsson, 2002).

4.1 Example (cont’d)—Output Feedback

Consider observer-based feedback control for the system (12)

[
ẋ1

ẋ2

]
=

[
0 1
−3 1

][
x1

x2

]
+

[
0
−1

]
u = Ax + Bu (45)

with
[

˙̂x1
˙̂x2

]
=

[
0 1
−3 1

][
x̂1

x̂2

]
+

[
0
−1

]
u +

[
K1

K2

]
(y−Cz)

= (A−KC)z+ Bu + Ky

y = [1 0]x = Cx

u = sat(v · (2 + sin2(t))), v = x̂2

(46)

where we have a similar local sector condition as before, now
w.r.t. u and x̂2

[
x̂1

x̂2

u

]T




(
0 0
0 −3

) (
0
2

)

(0 2) −1




[

x̂1

x̂2

u

]
≥ 0 (47)

Consider the Lyapunov function candidate

W = XT
PX , P = P

T
> 0

with X = [x1, x2, x̂1, x̂2]
T . The related Riccati equation is

AT
augP +PAaug +




02×2 02×2

02×2

(
0 0

0 3

)


 (48)

+



PBaug +





0

0

0

2











PBaug +





0

0

0

2









T

= 04×4

where

Aaug =

[
A 0

KC A−KC

]
, Baug =

[
B
B

]

and the solution

P =




21.0774 −3.4024 −17.6894 1.8689

−3.4024 2.6455 3.7056 −1.4151

−17.6894 3.7056 17.3014 −2.1720

1.8689 −1.4151 −2.1720 1.1847



 , λ (P) =




0.3182

1.1503

2.7983

37.9422





To estimate the region of attraction for X0 = 04×1 we need to
find the critical value cmax for the invariant set of a maximal
ellipsoid

W = XT
PX ≤ cmax (49)

which will lie between the two surfaces x̂2 = ±1. Obviously,
such an ellipsoid exists. As in the state feedback case, we have:

−0.9 −0.7 −0.5 −0.3 −0.1 0.1 0.3 0.5 0.7 0.9

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Fig. 1. Estimated region of attraction (RoA) in the x1 − x2

plane. Yellow ellipsoid: Estimated RoA ( 3x2
1 + x2

2 < 1)
for state feedback case. Red ellipsoids: Estimated RoA
(projected) for the observer based control with different
initial conditions {x̂1(0), x̂2(0)}.

x̂0
2 = 1, cmax = [x0

1, x0
2, x̂0

1, 1]P [x0
1, x0

2, x̂0
1, 1]T (50)

with




x0
1

x0
2

x̂0
1

1



 =
1

2y4





y1

y2

y3

y4



 ,





y1

y2

y3

y4



 = P
−1





0
0
0
1



 (51)

Note that in inequality (50) we can set the initial conditions
of the observer x̂1 and x̂2 ourselves. If the QC is not satisfied
globally, but only for x ∈ Ω, an open set containing the origin
in its interior, say Ω = {|x2|< 1}), then estimates of the regions
of attraction can be calculated from xT Px < c with the biggest c
such that Ω contains this set. Finally, the stability domain can be
increased using high-gain observers (Atassi and Khalil, 1999).

Example 2—Separation Principle and Global Stability

Consider observer-based feedback control of a system with the
double integrator dynamics (Johansson and Robertsson, 2002)

ẋ =

[
0 0
1 0

]
x +

[
1
0

]
u (52)

˙̂x =

[
0 0
1 0

]
x̂ +

[
1
0

]
u + K(y−Cx̂), K =

[
1
1

]
, X =

[
x

x̂− x

]
(53)

y = Cx = [0 2]x (54)

u =−sgn(Lx̂), L = [1.7321 1.000] , P =

[
1.732 1.000
1.000 1.732

]
(55)

where W (X) = XT
PX—cf. Eq. (37)—and L = BT P have been

calculated based on a feedback transformation with

A0 =

[
A−BL −BL

0 A−KC

]
, B0 =

[
B
0

]
(56)

PB0 = P

[
B
0

]
=

[
LT

LT

]
, PA0 + AT

0 P = −Q, (57)
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Fig. 2. Lyapunov function trajectories from switching output
feedback control of double integrator dynamics.

with the weighting matrices

P =





1.732 1.000 1.732 1.000

1.000 1.732 1.000 1.7321

1.732 1.000 17.266 −5.800

1.000 1.732 −5.800 11.979



 , Q =





4.000 1.732 5.000 8.928

1.732 2.000 3.464 2.000

5.000 3.464 17.60 14.417

8.928 2.000 14.417 26.716





This example demonstrates the separation principle with
global asymptotic stability in the context of observer-supported
high-gain feedback (Fig. 2).

5. DISCUSSION

We have provided a constructive procedure for observers for
Lur’e interconnections, exploiting that there are solutions to the
Yakubovich-Kalman-Popov equation in the form of nonmini-
mal positive real systems. Thus, the very restrictive SPR condi-
tions relevant to observer-based feedback control systems can
be significantly relaxed. Important applications of such systems
can be found in nonlinear stability theory, observer design and
design of feedback stabilization—e.g., by means of the Popov
criterion. A method for construction of Lur’e-Lyapunov func-
tions for systems with observer-based feedback control is given.
By construction, the nonlinear dynamic output feedback control
accomplished exhibits SPR properties, yet non-minimal, with
asymptotic stability and passivity properties guaranteed for the
closed-loop system. The circle criterion considered here, could
be seen as a particular example of the so-called Quadratic Cri-
terion for absolute stability developed by Yakubovich and oth-
ers, see (Yakubovich, 1967; Yakubovich, 2000). As expected, a
different form of quadratic constraint, such as the Popov crite-
rion, may also result in the validity of the separation principle.
The main obstacle in the direct extension of Theorem 3 for the
general case of quadratic constraint is checking condition for
the so-called minimal stability of the augmented system, see
(Yakubovich, 2000; Shiriaev, 2000).

Apart from its relevance to observer-based feedback control,
we expect that the new method will have application to hybrid
system and to high-gain feedback systems controlled by logic-
based switching devices.

6. CONCLUSIONS

This paper describes a class of nonlinear control systems, for
which the separation principle is valid. It is assumed that the
system stability is determined from the circle criterion, while
the non-linearity in the system is related to a non-stationary
state feedback controller. If the state vector of the system,
used as input to the feedback controller, is not available, then

following the standard procedure, one can extend the system
by a full-order observer, using the observer state as controller
input. This leads to the question of stability of the overall
system, even if it is known that the observer state converges
to the true one. One can expect that stability may depend on the
observer gain chosen. The main contribution of the paper states
that this is not the case. For any choice of the observer gain
that provides convergence of the observer state to the true one,
the extended system is globally asymptotically stable, and an
explicit form of a quadratic Lyapunov function for the extended
system is derived.
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