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Abstract: A functional adaptive control for nonlinear stochastic systems with Multi-Input
Multi-Output is suggested. The systems are modelled using a multilayer perceptron networks.
Parameters of the model are estimated by the Gaussian sum method which allows to determine
conditional probability density functions of the network weights. Control design is based on
bicriterial dual approach that use two separate criterions to introduce one of opposing aspects
between estimation and control; caution and probing. The proposed approach is compared with
two adaptive non-dual controllers. The quality of the proposed functional adaptive controller is
illustrated in a numerical example.

1. INTRODUCTION

In the last decade, functional adaptive control system
design of nonlinear systems has received a great deal of at-
tention [Fabri and Kadirkamanathan, 2001, Murray-Smith
and Sbarbaro, 2002, Šimandl et al., 2005b, Herzallah and
Lowe, 2006]. The title ’Functional adaptive control’ refers
to the fact that the type of model uncertainty dealt with
functional uncertainty, where the nonlinear functions same
as parameters of the system are unknown.

Modelling of the nonlinear unknown functions of the
system can be approached via functional approximators
like diverse types of neural networks (radial basis function
(RBF) or multilayer perceptron (MLP) [Haykin, 1999]).
Gaussian process (GP) technique is used as alternative
tool as well [Murray-Smith and Sbarbaro, 2002].

Typically, aim of the methods of the functional adaptive
control should be both simultaneously optimizing control
performance and reducing uncertainty. In differing from
methods using well known equivalence principle, this final
control system generates action signal that represents com-
promise between control and identification of the system.
In addition, it is possible to avoid time consuming pro-
cess of off-line identification of the model. Typically, such
methods are either adaptive critic [Herzallah and Lowe,
2006]) or dual control methods [Filatov and Unbehauen,
2004].

It should be pointed out that the above mentioned re-
sults of functional adaptive control are limited to single-
input single-output (SISO) systems. However, many con-
trol systems are multivariable [Narendra and Mukhopad-
hyay, 1994, Fu and Chai, 2007, te Braake et al., 1998]. The
control problems for multi-input multi-output (MIMO)
systems are more difficult and very different from those
for SISO systems. The result for SISO systems cannot
be simply extended to MIMO systems in general. Hence,
problems of representation, identification or control of
the system with MIMO is significantly more challenging

than in case of the SISO systems. Even in case of linear
system with known parameters a task of design control
is difficult, especially due to existing coupling between
individual inputs and outputs. The control problem is
more complicated in case of stochastic nonlinear system
with containing uncertainties about nonlinear functions of
the systems. It is a task of the functional adaptive control
of the MIMO systems. However, this area of functional
adaptive control have been addressed only minor attention
so far.

[Narendra and Mukhopadhyay, 1994] represents a first
attempt to deal with the theoretical aspects of both
the representation and control of nonlinear multivariable
dynamical systems, as well as the development of a design
methodology for their control using neural networks. But
an intensive off-line training of the neural network is
needed. In [Sbarbaro et al., 2004] a comparison neural
networks and gaussian process model is performed. The
certainty equivalence principle is used in control design
and so there is no reduction of future uncertainties of the
model. Further, the GP techniques requires off-line process
of identification. In [Fu and Chai, 2007], the technique of
multiple models is used for MIMO control design, but only
system with no disturbances is considered. The functional
adaptive control for the multivariable stochastic systems
discrete in time has not been studied yet.

Hence, main goal of the paper is to design functional
adaptive control for non-linear stochastic MIMO systems
by using an idea of bicriterial dual control, and thus, to
provide an extension of authors previous work for SISO
nonlinear stochastic systems [Šimandl et al., 2005b].

The paper is organized as follows: In Section 2 the problem
of dual stochastic adaptive control for non-linear MIMO
systems is formulated. Section 3 concentrates on MIMO
system identification by neural networks. The derivation
of the bicriterial dual controller is shown in Section 4.
In Section 5 the proposed approach is demonstrated in
a numerical example.
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2. PROBLEM STATEMENT

The dynamical system to be controlled is nonlinear
stochastic discrete time-invariant system with m inputs
and n outputs given by

yk = f(xk−1) + G(xk−1)uk−1 + ek, (1)

where uk = [u
(1)
k , . . . , u

(m)
k ]T are inputs of the system,

yk = [y
(1)
k , . . . , y

(n)
k ]T describes outputs of the system,

f(xk−1) = [f (1)(xk−1), . . . , f
(n)(xk−1)]

T is the n dimen-
sion vector of nonlinear unknown functions, further

G(xk−1) =







g(11)(xk−1) . . . g(1m)(xk−1)
...

. . .
...

g(n1)(xk−1) . . . g(nm)(xk−1)






(2)

is the matrix of nonlinear unknown functions with dimen-
sions n × m, xk−1 , [yT

k−p, . . . ,y
T
k−1,u

T
k−1−s, . . . ,u

T
k−2]

T

is state of the system and ek = [e
(1)
k , . . . , e

(n)
k ]T contains

sequences of the additive noises. It is required the following

of the chosen reference signals rk = [r
(1)
k , . . . , r

(n)
k ]T and it

is assumed accomplishment of the following conditions:

Assumption 1. Parameters p and s of the system state are
known.

Assumption 2. The system has a globally uniformly asymp-
totically stable zero dynamics and nonlinear functions in
the matrix G(xk−1) are bounded away from zero for all
xk ([Chen and Khalil, 1995]).

Assumption 3. The sequences {ek} are mutually indepen-
dent Gaussian noises with zero mean and covariance ma-

trix ΞΞΞ = diag
(

σ
(i)
e

)

, where σ
(i)
e are known variances of

the e
(i)
k for i = 1, . . . , n.

Assumption 4. The relative order of the system is the
same for all outputs.

The goal of the control is to design the functional adaptive
dual controller for the system (1) in such a way that

the output of the system y
(i)
k for i = 1, 2, . . . , n will

follow appropriate reference signal r
(i)
k chosen by designer,

otherwise to provide the control law by minimization of
properly chosen criterion.

Design of the functional adaptive control will be made
analogical to [Šimandl et al., 2005b]. In terms of solution
design is necessary to deal with suitable representation
of the MIMO system (1) by neural networks and con-
troller design. The controller design will be based on the
bicriterial dual control approach ([Filatov and Unbehauen,
2004]). Attention will be focused on the MLP networks,
because they can approximate nonlinear function at the
same accuracy as RBF networks with significantly less
number of neurons for real time applications. One issue
of system identification by MLP networks is estimation of
network parameters. In this case, the parameter estimation
represents nonlinear optimization problem. It is known
that parameter estimation methods are based either on
minimization of prediction error [Nørgaard et al., 2000]
or on nonlinear filtering methods [de Freitas et al., 2000,
Fabri and Kadirkamanathan, 2001, Šimandl et al., 2005a].
The designer choice of the estimation method affects ac-
curacy of obtained model.

3. MODEL OF THE MIMO SYSTEM BY NEURAL
NETWORKS

Firstly, a suitable model of the system (1) have to be
specified. MIMO systems are mostly characterized by
high dimension of the system state. Hence, multilayer
perceptron (MLP) network is suitable type of neural
network for model of the MIMO system.

An approximation of the nonlinear system (1) can be made
by several ways [Narendra and Mukhopadhyay, 1994]. A
proper compromise between complexity of the model and
synthesis of the dual adaptive controller can be model
pictured in the Figure 1. This alternative uses two neural

networks f̂ (i) and ĝ(i·) where i = 1, . . . , n for every of n

output of the system (1). Every network f̂ (i) has single
output and network ĝ(i·) has m outputs. Total number
of the networks is 2n. Although some difficulties are
connected with this technique, as design of the 2n neural
networks and nonlinear estimation of the parameters, this
model will be prefered further.

x

u

Σ

×

1 2×

1 2×

1 1×

1 1×

2 1×

2 1×

1 2×

1̂f

2f̂

1ˆ •g

2ˆ •g

1 2×

ŷ

Fig. 1. The model structure design for system with two
inputs and two outputs. The blocks introduce in-
dividual neural networks. Signals are described by
corresponding dimensions.

Therefore, the model of the system is described by the
equation

ŷk = f̂(xk−1,w
f
k , cf

k) + Ĝ(xk−1,w
g
k, cg

k)uk−1, (3)

where the ith output of the model is given as

ŷ
(i)
k = f̂ (i) +

m
∑

j=1

ĝ(ij)(·)u
(j)
k−1, for i = 1, . . . ,m (4)

f̂ (i) =f̂ (i)(cfi

k ,xa
k−1,w

fi

k ) = (cfi

k )T φfi(xa
k−1,w

fi

k ), (5)

ĝ(ij) =ĝ(ij)(c
gij

k ,xa
k−1,w

gi

k ) = (c
gij

k )T φgi(xa
k−1,w

gi

k ), (6)

where xa
k−1 = [xT

k−1 , 1]T is the state vector augmented by

constant bias input, c
fi

k , c
gij

k are vectors of the unknown
parameters of the output layer of the network with lengths
nfi, resp. ngij approximated the nonlinear function f (i),

resp. g(ij), w
fi

k and w
gi

k are vectors of the unknown

parameters of the hidden layer of the ith network with
length (n+p+1)nfi, resp. (n+p+1)ngij . Scalar functions
φfi(·) and φgi(·) are sigmoidal activation functions of the
neurons in the hidden layers.

Equations (3)–(6) describe the model of the system (1).
Before an application of an estimation method for the
parameters estimation a suitable estimation model of the
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identified system have to be defined. First, all parameters
of the model (3) will be included to one parameter vector

Θk =
[

(cf1

k )T , (wf1

k )T , (cg11

k )T , . . . , (cg1m

k )T , (wg1

k )T , . . . ,

(cfn

k )T , (wfn

k )T , (cgn1

k )T , . . . , (cgnm

k )T , (wgn

k )T
]T

,

(7)

where length of the vector Θk is marked nΘ.

The parameters of the networks are considered as t-inva-
riant in time

Θk+1 = Θk. (8)

It is assumed that it is possible to approximate system
with sufficient precision by chosen neural network. There-
after, it is possible to obtain the equation of measurement
from (1) by its rewrite as

yk = hk(Θk,xa
k−1,uk−1) + ek, (9)

where

hk(·) = f̂(cf
k ,xa

k−1,w
f
k) + Ĝ(cg

k,xa
k−1,w

g
k)uk−1, (10)

and

w
f
k = [(wf1

k )T , . . . , (wfn

k )T ]T ,

w
g
k = [(wg1

k )T , . . . , (wgn

k )T ]T ,

c
f
k = [(cf1

k )T , . . . , (cfn

k )T ]T ,

c
g
k = [(cg11

k )T , . . . , (cg1m

k )T , . . . , (cgn1

k )T , . . . , (cgnm

k )T ]T .
(11)

Equations (8) and (9) define the estimation model of the
system (1). Unfortunately, dependence of ŷk on the param-
eters of the neural network is nonlinear in Equations (3)–
(6). Therefore, it is possible to exploit nonlinear estimation
method for finding of the unknown parameters. Gaus-
sian sum (GS) approach [MacKay, 1992, Šimandl et al.,
2005a,b] represents a suitable estimation method because
of high quality estimation and feasible computational de-
mands. Unknown parameters Θ̂ described by Equation (8)
are considered as random variables with initial conditions
in the form of Gaussian sums

p(Θ0|I
−1)=

N0|−1
∑

ℓ=1

α
(ℓ)
0|−1N

{

Θ0 : Θ̂
(ℓ)
0|−1,P

(ℓ)
0|−1

}

, (12)

where
∑N0|−1

ℓ=1 α
(ℓ)
0|−1 = 1, α

(ℓ)
0|−1 > 0. Points Θ̂

(ℓ)
0|−1 are

chosen in order to cover space in which the true parameters

are expected. Noises e
(i)
k and initial condition Θ0 are

considered as mutually independent.

Analytic solution of Bayessian relations will be obtained
by linearization of the function hk(·) using the Taylor

expansion at the points Θ̂
(ℓ)
k|k−1 representing predictive

point estimates of the parameters Θk from the time k − 1
for ℓ = 1, . . . , Nk|k−1. For notational convenience the
arguments xk−1 and uk−1 of the function hk(·) are omitted
below. Thus

hk(Θk) ≈ hk(Θ̂
(ℓ)
k|k−1) +∇∇∇

(ℓ)
k [Θk − Θ̂

(ℓ)
k|k−1],

where ∇∇∇k represents the first derivative of the function
hk(·) with respect to parameters of the network modelling
function fk(·) and Gk(·) and has following form

∇∇∇k ,
∂ĥ(Θ)

∂Θ

∣

∣

∣

∣

∣

Θ=Θ̂k

=





















∇∇∇
(1)
k

. . . 0
∇∇∇

(i)
k

0
. . .

∇∇∇
(m)
k





















,

(13)

where

∇∇∇
(i)
k =

[

∇∇∇fi

k , ∇∇∇gi1

k u
(1)
k−1, . . . , ∇∇∇gim

k u
(m)
k−1

]

. (14)

Non-diagonal parts in (12) are equal to zero because of the
independency of corresponding derivations on elements of
(7). This fact results from the equation of the model (3)–
(6) and definition of the vector of the unknown parameters
Θk in (7).

Then, the filtering pdf p(Θk|I
k) is given as follows

p(Θk|I
k) =

Nk|k
∑

ℓ=1

α
(ℓ)
k|kN

{

Θk : Θ̂
(ℓ)
k|k,P

(ℓ)
k|k

}

, (15)

where

Θ̂
(ℓ)
k|k = Θ̂

(ℓ)
k|k−1 + K

(ℓ)
k|k

[

yk − ŷ
(ℓ)
k

]

, (16)

P
(ℓ)
k|k = P

(ℓ)
k|k−1 − K

(ℓ)
k|k∇∇∇

(ℓ)
k P

(ℓ)
k|k−1, (17)

K
(ℓ)
k|k = P

(ℓ)
k|k−1[∇∇∇

(ℓ)
k ]T

[

∇∇∇
(ℓ)
k P

(ℓ)
k|k−1[∇∇∇

(ℓ)
k ]T + ΞΞΞ

]−1

,
(18)

α
(ℓ)
k|k = α

(ℓ)
k|k−1ζ

(ℓ)
k|k/

Nk|k
∑

s=1

α
(s)
k|k−1ζ

(s)
k|k, (19)

ζ
(ℓ)
k|k = N

{

yk : ŷ
(ℓ)
k ,∇∇∇

(i)
k P

(ℓ)
k|k−1[∇∇∇

(ℓ)
k ]T + ΞΞΞ

}

, (20)

ŷ
(ℓ)
k = ĥk(Θ̂

(ℓ)
k|k−1), (21)

for i = 1, 2, . . . , Nk|k−1 and Nk|k = Nk|k−1.

The conditional predictive pdf is given as a mixture of
normal distributions:

p(Θk+1|I
k) =

Nk+1|k
∑

i=ℓ

α
(ℓ)
k+1|kN

{

Θk :Θ̂
(ℓ)
k+1|k,P

(ℓ)
k+1|k

}

, (22)

where

Θ̂
(ℓ)
k+1|k = Θ̂

(j)
k|k, (23)

P
(ℓ)
k+1|k = P

(j)
k|k, (24)

α
(ℓ)
k+1|k = α

(j)
k|k, (25)

for j = 1, 2, . . . , Nk|k.

Relations (15)-(20) and (22)-(24) represent a bank of Nk|k

extended Kalman filters (EKF) working in parallel. The
results could be also interpreted as multi model approach
with Nk|k neural networks modelling the system and
trained by EKF from several different initial points. Using
more EKF’s for parameter estimation makes multiple

linearization of a function ĥk(.) at several points and
ensures better stability of algorithm as well.

The GS estimator provides the filtering and the predictive
pdf of parameters, however the control system based on
bicriterial method requires a point estimate of the parame-
ters and a matrix describing uncertainty of the parameters
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estimate. One possibility is to choose predictive mean
Θ̂k+1 and covariance matrix Pk+1 using predictive pdf
(22):

Θ̂k+1 , E[Θk+1|I
k] =

Nl|k
∑

ℓ=1

α
(ℓ)
k+1|kΘ̂

(ℓ)
k+1|k (26)

Pk+1 =

Nk+1|k
∑

ℓ=1

α
(ℓ)
k+1|k[P

(ℓ)
k+1|k+

+ (Θ̂
(ℓ)
k+1|k − Θ̂k+1)(Θ̂

(ℓ)
k+1|k − Θ̂k+1)

T ] (27)

Now, it is possible to obtain both the estimate and the
covariance matrix of the parameters of the system in
every step of estimation algorithm which are necessary
in computation of a control action uk. Due to chosen
neural network structure, the covariance matrix Pk+1 with
dimensions nΘ×nΘ is possible write in diagonal block form
as

Pk+1=





















P
(1,1)
k+1

. . . 0
P

(i,i)
k+1

0
. . .

P
(n,n)
k+1





















, (28)

where

P
(i,i)
k+1=











P
fifi

k+1 P
figi1

k+1 . . . P
figim

k+1

P
gi1fi

k+1 P
gi1gi1

k+1 . . . P
gi1gim

k+1
...

...
...

...

P
gimfi

k+1 P
gimgi1

k+1 . . . P
gimgim

k+1











(29)

is an individual sub-matrix having dimensions given by
numbers of parameters relevant to the neural networks

f̂ (i), ĝ(ij).

Now, it is available all information necessary for functional
adaptive control design.

4. BICRITERIAL DUAL CONTROL DESIGN

In this section functional adaptive control for MIMO
system (1) will be designed using the idea of bicriterial
dual control (BDC). It can be mentioned that basic idea
of bicriterial approach is based on sequence minimization
of two critera. These criteria represent two opposite goals
of the dual control; identification and control.

First criterion evaluating the control quality is described
as

Jc
k = E

{

(yk+1 − rk+1)
T Qk+1(yk+1 − rk+1)+

+uT
k Sk+1uk)|Ik

}

,
(30)

where Qk+1 is suitable chosen positive semidefinite with
dimensions n × n, Sk+1 is positive definite matrix m × m
and Ik describes available information segment until time
k.

Remark 4.1. The arguments of nonlinear functions f , G,

f̂ and Ĝ will be omitted in the following derivation for
abbreviation of notation.

Criterion Jc
k can be written using substitution (1) in (29)

as
Jc

k = E
{

(f + Guk + ek − rk+1)
T Qk+1×

×(f + Guk + ek − rk+1) + uT
k Sk+1uk|Ik

}

,
(31)

where the functions f , G can be assumed as random
variables. Subsequent multiply and partially application of
mean operator over information segment Ik one can obtain

Jc
k =E{fT Qk+1G}uk + uT

k E{GT Qk+1f}+

+uT
k E{GT Qk+1G}uk − rT

k+1 × E{Qk+1G}uk−

−uT
k E{GT Qk+1}r

T
k+1 + uT

k Sk+1uk + c,

(32)

where c represents all values of terms of Jc
k that are

independent on uk. They can not influence value of the
criteria and need not be considered further.

Now, it is possible to determine control action uc
k as

extreme of criteria Jc
k

uc
k =

∂Jc
k

∂uk

=E{GT Qk+1f}+E{GT Qk+1G}uk−

− E{GT Qk+1}rk+1+Sk+1uk =0.

(33)

In the remaining terms in (32) can be applicated mean
operator by using well known relation E{aT Qk+1a} =
âT Qk+1â + E{[a− â]T Qk+1[a− â]}. Then, control action
uc

k can be written as

uc
k =[Sk+1 + ĜT Qk+1Ĝ + νννGG

k+1]
−1[ĜT Qk+1rk+1−

− ĜT Qk+1f̂ − νννGF
k+1],

(34)

where
νννGG

k+1 = Qk+1∇∇∇
G
k+1P

G
k+1(∇∇∇

G
k+1)

T is matrix m × m,

νννGF
k+1 = Qk+1∇∇∇

G
k+1P

GF
k+1(∇∇∇

F
k+1)

T is vector with length m.
(35)

Matrices PG
k+1 and PGF

k+1 can be obtained by choosing from
the matrix Pk+1 described by Equation (28) and have the
following form

PGF
k+1 =







P
f1g11

k+1 . . . P
f1g1m

k+1
...

. . .
...

P
fmgm1

k+1 . . . P
fmgmm

k+1






,

PG
k+1 =



























P
g11g11

k+1 . . . P
g11g1m

k+1
...

...
... 0

P
g11g12

k+1 . . . P
g1mg1m

k+1

. . .
P

gm1gm1

k+1 . . . P
gm1gmm

k+1

0
...

...
...

P
gmmgm1

k+1 . . . P
gmmgmm

k+1



























(36)

and ∇∇∇G
k+1, resp. ∇∇∇F

k+1 can be obtained from (12)

∇∇∇F
k+1 =

[

∇∇∇f1

k+1, . . . , ∇∇∇fm

k+1

]T

,

∇∇∇G
k+1 =











∇∇∇g11

k+1 . . . ∇∇∇g1m

k+1 0
. . .

0 ∇∇∇gm1

k+1 . . . ∇∇∇gmm

k+1











.
(37)

It can be noted that (33) respects uncertainties in knowl-
edge of the unknown functions and it is equal to cautious
control as one of integral component of dual control.
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Second component of control law should evaluates estima-
tion quality and it is given by

Ja
k = −E

{

(yk+1 − ŷk+1)
T Wk+1(yk+1 − ŷk+1)|Ik

}

,
(38)

where Wk+1 is chosen as positive semidefinite matrix n×n.
By substitution from (1) and (3) on yk+1 and ŷk+1, the
follow relation can be obtained
Ja

k = − E
{

(f + Guk + ek)T Wk+1(f + Guk + ek)−

− (f + Guk + ek)T × Wk+1(f̂ + Ĝuk)−

− (f̂ + Ĝuk)T Wk+1(f + Guk + ek)+

+ (f̂ + Ĝu)T Wk+1(f̂ + Ĝuk)|Ik

}

.

(39)

Following multiplying and omitting of the independent
articles on uk, J̄a

k is a suitable form for optimization

J̄a
k = −E

{

uT
k GT Wk+1f + uT

k GT Wk+1Guk + fT Wk+1×

× Guk − fT Wk+1 × Ĝuk − uT
k GT Wk+1Ĝuk−

− uT
k GT Wk+1f̂− f̂T Wk+1Guk−uT

k ĜT Wk+1f−

− uT
k ĜT Wk+1Guk + f̂T Wk+1Ĝuk+

+ uT
k ĜT Wk+1f + uT

k ĜT Wk+1Ĝuk|Ik

}

.
(40)

The bicriterial control uk is then searched as

uk = argmin
uk∈Ωk

J̄a
k . (41)

Minimization of J̄a
k is performed on region Ωk that is spec-

ified by uc
k and its surrounding symmetrically distributed

around the caution control as Ωk = [uc
k − δδδk,uc

k + δδδk],

whereas δδδk = [δ
(1)
k , . . . , δ

(m)
k ]T . The choice of the parame-

ter δδδk stems from reasoning that it is necessary to enrich
the caution control with probing in proportional to un-
certainty of the unknown functions f , G in the controlled
system (1). A common choice [Filatov and Unbehauen,
2004] for δδδk is

δδδk = ηηηtr(Pk+1), ηηη > 0, (42)

where ηηη is vector with length m, that provides the ampli-
tude of the probing signal and the matrix Pk+1 describes
rate of uncertainty of the parameters estimate conditioned
by Ik and can be obtained using a nonlinear filtering
method of GS (15) - (24).

Relation (40) can be treated and can be rewritten as

uk = uc
k + δδδk sign

[

J̄a
k (uc

k − δkδkδk) − J̄a
k (uc

k + δkδkδk)
]

. (43)

Now, assesment of the term in the bracket remains to solve.
This term can be obtained by substitution (uc

k +δδδk), resp.
(uc

k − δδδk) instead of uk in Equation (39). With using of
elementary adjustments can be obtained

J̄a
k (uc

k − δδδk) − J̄a
k (uc

k + δδδk) = 4δδδT
k E

{

(G − Ĝ)T Wk+1×

× (f − f̂) + (G − Ĝ)T Wk+1(G − Ĝ)uc
k|Ik

}

.
(44)

Now, it is possible to reuse initiated substitution (34).
Together with application of the mean operator and with
using assumption of Qk+1 = Wk+1, Equation (43) has
form

J̄a
k (uc

k − δδδk) − J̄a
k (uc

k + δδδk) = 4δδδT
k (νννGF

k+1 + νννGG
k+1u

c
k). (45)

Final equation of functional adaptive controller for MIMO
system based on bicriterial approach can be obtained as
combination of (42) and (44) and it possible to write

uk = uc
k + δδδksign

[

δδδT
k (νννGF

k+1 + νννGG
k+1u

c
k)

]

. (46)

5. NUMERICAL EXAMPLE

The discrete-time nonlinear stochastic system with two
inputs and two outputs described by following equations
is considered:

y
(1)
k =

0.7y
(1)
k−1y

(1)
k−2

1 + (y
(1)
k−1)

2 + (y
(2)
k−2)

2
+

0.1u
(2)
k−1

1 + 3(y
(1)
k−2)

2 + (y
(2)
k−1)

2
+

+ u
(1)
k−1 + 0.25u

(1)
k−2 + 0.5u

(2)
k−2 + e

(1)
k ,

y
(2)
k =

0.5y
(2)
k−1 sin y

(2)
k−2

1 + (y
(2)
k−1)

2 + (y
(1)
k−2)

2
+ 0.5u

(2)
k−2 + 0.3u

(1)
k−2+

+ u
(2)
k−1

(

0.1u
(2)
k−2 − 1.5

)

+ e
(2)
k ,

where xk−1 = [yk−1,yk−2,uk−2] is the state of the system,
{e(1)}, {e(2)} are mutually independent Gaussian noises

with zero means and variances (σ
(1)
e )2 = (σ

(2)
e )2 = 0.001.

Reference signals are chosen as

r
(1)
k =0.75 sin

2πk

50
+ 0.75 sin

2πk

10
,

r
(2)
k =0.55 sin

2πk

30
+ 0.55 sin

2πk

20
.

(47)

Initial values of the inputs and the outputs are zero. How it
was mentioned in Section 2, each of the nonlinear functions
f (i), g(i·) for i = 1, . . . , n is modelled by individual neural
network. Model of the system is composed from four neural
network. Each of the neural networks is perceptron neural
network with one hidden layer containing 20 neurons. The
unknown parameters of the model are estimated by GS
method with 3 terms of the mixture, P0 = 10I, initialized
parameters are generated from uniform distribution from
interval < −0.1; 0.1 > (more about estimation of the neu-
ral network parameters based on GS method can be found
in [Šimandl et al., 2005a]). Finally, parameters of the BDC
are chosen as follows: Wk+1 = Qk+1 = I, Sk+1 = 0.01I
and ηηηT = [0.00002 0.00004].

Influence of choice of the controller on control performance
for the system (46) is shown in Table 1. The BDC is
compared with two non-dual adaptive controllers as spe-
cial cases of BDC: cautious (Equation (33)) and certainty
equivalence (Equation (33) with νννGF

k+1 = νννGG
k+1 = 0 ∀

k). Criterion for comparison is set as mean of sums of
square errors of the reference and the system output rk,

yk over 100 trials: V̂ = 1
100

∑2
i=1

∑100
j=1

∑200
k=1(y

(i)
kj − r

(i)
kj )2.

It is clear that the best performance was obtained for the
BDC. Attained mean and variance of the criterion have
significantly lower values.

certainty eq. cautious bicriterial

V̂ 92.3 58.8 23.6

cov(V̂ ) 650 112 12

Table 1. Influence of choice of controller on
quality of control system.

Results of the simulation are illustrated in Figures 2 and
3. In Figure 2 the tracking of the chosen reference signals

for the both outputs of the system y
(1)
k and y

(2)
k is shown.

It is clear that quick adaptation of the parameters of the
model and very good control quality occur during short
simulation time about 200 steps. Goal of the control, the
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tracking of the chosen reference signals r
(1)
k and r

(2)
k is

fulfilled. In Figure 3 the typical control signals u
(1)
k and

u
(2)
k are pictured. In bottom part the probing components

of the control signals (the second term of (45)) that con-
tribute to active identification of the system are figured.
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Fig. 2. Typical outputs of the system controlled by bicri-
terial dual controller (solid line) and following chosen
reference signals (dash line).
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Fig. 3. Control signals of the bicriterial controller and
the probing component of the control signals (bottom
part).

6. CONCLUSIONS

The bicriterial dual controller for non-linear stochastic
MIMO systems was designed as an extension of the known
results for SISO nonlinear stochastic systems. The model
of the system is given by the multilayer perceptron net-
work. The nonlinear filter Gaussian sum method was ap-
plied for the on-line parameters estimate of the derived
estimation model. Then the bicriterial approach to dual
control design was used. The proposed adaptive controller
has computational demands comparable with caution con-
trol but with dual control ability.
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