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Abstract: A new control software development method is presented. It uses IEC 61499 function
blocks for control software programming and provides tools for simulation, execution, automatic
model generation and formal verification of the control code during the development. Simulation
and execution are supported by the same tool, the Fuber runtime environment. Formal modeling
is done using extended finite automata (EFA) and an automatic model generation tool. Formal
verification shows the behavior of the closed-loop system. i.e. when control code is executed
against the model of the process. The model can use a non-deterministic execution control
chart (ECC) in the process model block. The control code and the process model are expressed
using the IEC 61499 language in order to avoid maintenance of the process model and control
code in different languages, thus making it easier to use the formal verification in the control
software development.

Keywords: Control Software Development, IEC 61499, Extended Finite Automata, Fuber,
Supremica.

1. INTRODUCTION

Manufacturing and processing systems are typically con-
trolled by a distributed control system. Developing dis-
tributed manufacturing and process control systems is
time-consuming and error-prone because the environment
is typically heterogeneous, i.e. consisting of hardware from
multiple vendors. This often implies that different lan-
guages and development tools are used to develop the
software for control functions. In 2005 the International
Electrotechnical Commission (IEC) approved a new stan-
dard called IEC 61499 (IEC [2005]) to facilitate the de-
velopment of distributed control systems in heterogeneous
environments.

Industrial control systems have generally high require-
ments on reliability and tight timing constraints for the
control functions. Thus the control software is typically
written in special purpose languages defined in the IEC
61131 standard (IEC [1993]) and executed on special
purpose hardware called Programmable Logic Controllers
(PLCs). The IEC 61499 provides the next generation spe-
cial purpose language that extends the existing IEC 61131
standard.

A number of development environments for IEC 61499
have emerged. These include CORFU (Thramboulidis
and Tranoris [2004]), OOONEIDA-FBench and ISaGRAF.
There are also a number of IEC 61499 runtime envi-
ronments in existence, some of those are Fuber, RTSJ-
AXE (Thramboulidis and Zoupas [2005]) and RTAI-AXE
(Doukas and Thramboulidis [2005]). The last two runtime

environments are focusing on the real-time execution of
the IEC 61499 applications.

Current research on the IEC 61499 standard has focused
on architectures and methods for development of the con-
trol applications (Thramboulidis [2002], Vyatkin et al.
[2005], Čengić et al. [2006a]), performance analysis of run-
time environments (Ferrarini and Veber [2004]), usability
and interoperability of the implementations (Sünder et al.
[2006]), execution semantics (Vyatkin et al. [2007]) and
formal verification of the applications.

Substantial work has been done on the formal verification
of the IEC 61499 applications. In Vyatkin [2006] appli-
cations are modeled using net condition/event systems.
Dubinin et al. [2006] presents a method for application
verification based on Prolog language. In Hagge and Wag-
ner [2005] a new modeling language based on Petri Nets
is introduced. In Dubinin and Vyatkin [2006] a formal
semantic model of IEC 61499 function blocks is presented.
In Stanica and Guéguen [2004] the applications are mod-
eled using the timed automata. No details of the runtime
environment are modeled. Without the runtime model
the verification does not represent the execution model
implemented by the runtime and therefore does not give
enough information about block scheduling order since
that order is not specified in the standard. In Čengić et al.
[2006b] the applications are modeled using finite automata
that also capture many details of the runtime environment
behavior, including block scheduling order.

Most of the reviewed methods for formal verification focus
on the modeling and verification of the control code by it
self. But to be more useful the formal verification should
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provide the information about the behavior of the closed-
loop system when the code is executed together with the
process. To obtain that information a model of the process
under control is necessary.

Usually the control code reacts on the events that occur
in the process under control. To react correctly some
assumptions have to be made about the sequence of the
events that occur in the process, i.e. the control code
assumes a certain behavior from the process. But in the
reality the process sometimes departs from the anticipated
behavior, e.g. when something goes wrong. To ensure the
correct behavior of the closed-loop system the model of
the process under control has to be able to express such
unanticipated behavior of the process. One suitable way to
do that is to introduce non-deterministic behavior within
the process model. The non-deterministic behavior then
represents that after a sequence of events the actual state
of the process is not known and the formal verification can
show how the control code will react to that.

Introducing the non-deterministic behavior within the pro-
cess model is possible by using a suitable modeling lan-
guage. The formal verification may then take the formal
model of the control code and the non-deterministic model
of the process and provide the behavior of the closed-loop
system. Since the control code is written using the IEC
61499 language it would be useful to also allow the non-
deterministic process model to be expressed using the IEC
61499 language. Then the formal models for the verifi-
cation of the closed loop behavior may be automatically
generated. This way the necessity to maintain the model
of the process in a separate language from the control code
language is avoided, making it easier for the control code
developer to use formal verification.

This paper presents a development method for the con-
trol software that supports development of the control
code together with the development of a (possibly non-
deterministic) process model, all expressed using the IEC
61499 language. The method provides a software tool for
automatic generation of formal models from the IEC 61499
application that represents the closed-loop between the
control code and the process model. The formal verifica-
tion of the closed-loop system is done using the discrete
event systems tool Supremica (Åkesson et al. [2006]). The
method supports the simulation of the closed-loop system
in addition to the formal verification.

The paper is organized as follows. In Section 2 the basics
of IEC 61499 standard are introduced. In Section 3, the
proposed development method is presented and all the
development steps are described. An example application
is used to demonstrate the use of the proposed method
in Section 4. Finally some conclusions are presented in
Section 5.

2. IEC 61499

This section briefly introduces some of the terminology
used in the paper. The software architecture defined by
the IEC 61499 standard (IEC [2005]) is based on functional
software units called function blocks. The basic function
block type is the main entity. In Fig. 1(a) the anatomy
of a basic function block type is shown. The left side of
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Fig. 1. (a) Anatomy of a basic function block. (b) An
example of an execution control chart (ECC).

the block contains the event and data inputs while the
right side contains the event and data outputs. The basic
function block executes algorithms based on the arriving
events and generates new events that are passed on when
the algorithms finish execution. The algorithms use data
associated with the incoming events to update internal
variables and produce output data. When an algorithm
has terminated an output event is generated triggering
another function block for execution.

The Execution Control Chart (ECC) of a basic function
block determines which algorithm to execute based on
the current input event and values of input, output and
internal data variables, see Fig. 1(b). When a state is
entered each action associated with the state is executed
once and the ECC stays in the state until a condition
for entering another state is fulfilled. The conditions upon
which transitions occur are Boolean expressions involving
input events and input, output and local data variables.
A special case of a transition condition is the transition
labeled with “1”, which means that it is always true and
is taken as soon as all the actions of a state are executed.

The example ECC in Fig. 1(b) states that if it is in STATE0

and input event EI is received, the ECC transfers to state
STATE1 and schedules the algorithm named ALGORITHM

for execution. After ALGORITHM has terminated the output
event EO is generated, and the ECC returns immediately
to state STATE0 since the transition condition is “1” (true).
Basic function blocks are connected together by event and
data connections into function block applications. The
applications can be executed using a runtime environment
that implements the execution model defined by the stan-
dard.

3. THE DEVELOPMENT METHOD

The development method that is proposed is shown in
Fig. 2. It consist of several activities and support tools
that are discussed in this section. The method is based on
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Fig. 2. Activity flow diagram for the development method.

the separation of the process model and the control code,
therefore the first step in the development of the control
application is the design of the interface of the function
block that will be used for communication with the pro-
cess under control. Any function block that implements
the specified interface is called a plant block during the
development process.

When the interface specification is finished the basic
function block that implements a model of the process
can be developed. Using the ECC and the algorithms of a
basic function block the developer can model the behavior
of the process at any level of abstraction needed for the
application. Although a number of model blocks may be
useful for the application only one of the blocks should
be used for each iteration of the development process.
At the same time as the model blocks are developed the
control code blocks can be developed since the process
interface specification is finished. The control code blocks
implement the control logic for the application.

When the control code blocks and one of the model
plant blocks are finished they can be put together in an
application that is used for verification and/or simulation.
The simulation activity is supported by the Fuber runtime
environment and requires only that the application is
finished. The verification activity is supported by the
Supremica tool and requires that the formal models are
generated from the application prior to the use of the
verification tool. The formal models are automatically
generated using a different software tool.

The simulation and verification steps of the development
process show if the desired closed loop behavior is correct
or not. If it is not correct the development process calls for
a new iteration of development of the process interface and

the application blocks. If the closed loop behavior is correct
the development may proceed with exchange of the model
plant block with a plant block that communicates with the
hardware process and the application can be executed. In
the following subsections some of the method’s steps are
discussed in more detail.

3.1 Simulation

The simulation and execution of the function block appli-
cations is supported by a free software IEC 61499 runtime
environment called Fuber. Fuber is able to open IEC 61499
compliant applications and execute them. The applications
have to be supplied in a XML-file that is compatible with
the standard.

The Fuber acts like simulator when the application exe-
cutes using the plant block that implements a model of the
process. This allows the closed loop behavior to be tested
using the same runtime environment that may execute the
finished control code.

In the case when the model plant block is non-deterministic
the simulation result will only show what happens for
a single scenario since the Fuber will always make the
same choice from the available choices for a given event
depending on how the model plant block type has been
declared. To simulate how the application will react for
each available choice a new model plant block has to be
developed. The new deterministic model can be imple-
mented in such a way that each available choice is made
following some pattern. Now the simulation shows how the
application will react to each choice but it does not capture
how the application will react to the different sequences of
the choices.

For some applications it is not feasible to test all the
different sequences of the choices for a given event using
the simulation. In those cases the formal verification may
be the only way to ensure the correct application behavior.
On the other hand for the large examples the formal
verification using non-deterministic process model may
take too much time, or the models may become to big,
then the only way to get some assurance of the correct
application behavior is to identify most common scenarios
and simulate the application behavior for those.

3.2 Model Generation

The modeling of the application execution assumes that
the application is executed in a runtime environment that
implements the execution model based on the sequential
hypothesis as presented in Vyatkin et al. [2007]. The Fuber
runtime environment is compatible with that execution
model based on the presentation of the Fuber modeling in
Čengić et al. [2006b].

The modeling approach used in the automatic model
generation tool for the new development method is based
on the modeling presented in Čengić et al. [2006b] and
extended to support more details of the execution. The
formal verification results may therefore be valid for all
IEC 61499 runtime environments that are compatible
with the execution based on the sequential hypothesis,
including the Fuber.
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A software tool is used to automatically translate function
block application into a set of extended finite automata
(EFA) (Sköldstam et al. [2007]) that can be analyzed using
the Supremica tool. The model generation tool produces a
model that captures both the behavior of the application
and the behavior of the runtime environment while it
executes the application.

The non-deterministic behavior in the model plant blocks
is supported by allowing the ECC of those blocks to be
non-deterministic. The non-deterministic ECC is an ECC
that has transitions with the same Boolean expression
from a single source state but to different destination
states. The non-deterministic ECCs are translated into
non-deterministic EFA models by the model generation
tool.

Currently the model generation tool supports only integer
variables in the application, and since the generated mod-
els are finite the model generation tool imposes an upper
and lower bound on the integer variables. These bounds
are user configurable. Another limitation is that basic
block algorithms may only contain assignment statements,
i.e. variable = expression. All applications that can be
loaded and executed using the Fuber runtime, and also
conform to the limitations above can fully automatically
be converted into EFA models.

3.3 Formal Verification

The formal verification is supported by the Supremica
tool. Supremica is a general purpose tool for synthesis and
verification of discrete event systems. It has a graphical
user interface for the input of models and a range of algo-
rithms implementing supervisory control theory methods
for synthesis of supervisors and verification of the models.

4. EXAMPLE

In this section an example control application is developed
to illustrate the use and the benefits of the proposed
method. The process under control is shown in Fig 3. The
goal is to sort steel balls that are placed in a queue at
the process gate. Each ball is let into the process by the
gate and then it moves to the first lift. The lift brings the
ball to the measuring station. Once the size of the ball is
measured it is pushed out and it moves to the second lift.
Depending on the size, the ball is transported to the first
or second level. Once at the destination level the ball is
pushed out of the lift and it arrives at the position where
it will be picked up by the rotating hand for transport back
to home position in front of the gate. Two types of balls
are handled by the process, the small and the big ones.
The small balls should be moved to the first level and the
big balls to the second level.

To control the process an IEC 61499 function block appli-
cation has been developed using the proposed method, see
Fig. 4. For the example let us assume that this application
is the result of the “Develop control application” method
activity of the first iteration in the development process.
The first versions of the plant block interface, model plant
block implementing the interface, and the control code
blocks have been developed and connected together in the
application.

gate
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sort lift

measure

lvl. 1

lvl. 2

Fig. 3. The ball sorting process used in the example.
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Fig. 4. Function block application for the ball sorting
process.

The plant block interface can be seen in the Fig. 4 as
the interface implemented by the “process” instance of
the “BallSorting” basic function block type. The event
inputs of the block represent all the actuators that can
be set in the process. Since only events are used, the
implementation of the input event is that it sets the
actuator high and resets it to low once the actuators task
is done. The event outputs represent the process sensors’
rising edges.

The model of the process implemented by the basic func-
tion block type “BallSorting” is very simple. Each station
in the process is modeled separately, so when the event
input “InGate” is received the “BallGate” event output is
sent indicating that the ball has entered the gate. When
the “OutGate” event input is received the “BallMeasure-
Lift” is sent out to indicate that the ball has arrived in the
lift that will take it to the measuring station. In general, a
sensor that is activated by the ball’s free movement after
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1 1
Measure Measure
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Fig. 5. The part of the model block’s non-deterministic
ECC showing the transitions when receiving the
“Measure” event.

an actuator has been set, will generate event output as
soon as the actuator is set.

It is the goal of the control application to transport the
ball through the process and sort it according to its size.
The basic blocks implementing the control application are
shown to the left of the “process” block. These blocks
are connected in a closed loop with the “process” block
emphasizing the separation of the control code from the
plant. To keep the example simple only one ball may be
in the process.

The application starts when the “restart.COLD” event
is generated by the Fuber runtime environment and it
initializes the model block. The model sends out the
“INITO” event that is connected to the “InGate” input
event. The “InGate” event lets one ball into the gate and
sends out the “BallGate” event to the “OutGate” input
that in turn closes the gate inlet and opens the gate outlet
so that the ball may enter the process. Once the ball has
rolled into the first lift the “BallMeasureLift” is sent out
to the “measure lift” block of the “MeasureLift” type that
instructs the lift to move up the ball to the measuring
station. The ball continues like this all the way through
the process until it is at the home position.

The correct behavior of the application may now be tested
using formal verification or simulation. The simulation
is done by simply running the application in Fuber and
evaluating its behavior. The result of the simulation shows
the application behavior for a single sequence of the balls
at the gate. The behavior of the application for any
sequence of the balls at the gate can be obtained by
analysing the result of the formal verification.

For formal verification the EFA models of the application
are generated using the model generation tool prior to
verification. Since the model generation tool supports non-
deterministic function block ECCs the “process” block is
implemented so that the event input “Measure” takes the
ECC to two different states, see Fig. 5. In one state the
“SmallBall” event output is sent while in the other the
“BigBall” event output is sent.

The non-deterministic ECC of the process model captures
the possibility of both the small and the big ball being
measured. Since it is not known which type of the ball will
enter the system at any time this allows the verification
to check both possibilities at the same time using a set of
EFA models that are generated only once.

To verify the closed loop behavior of the application some
EFA models of the correct behavior need to be entered into
the Supremica. Each model can specify a different aspect
of the correct behavior. In Fig. 6 one such EFA model
is shown. This model checks that the control application

send_output_BigBall_process

send_output_BallLevel2_processsend_output_BallLevel1_process

send_output_SmallBall_process

Fig. 6. The specification of the correct behavior for the
formal verification of the application.

update_ECC_process_1712

remove_event_process_1222

event_input_Measure_process_736event_input_Measure_process_735

reset_event_Measure_process_1628

send_output_BigBall_process_1685send_output_SmallBall_process_1678

reset_event_Measure_process_1626

Fig. 7. The part of the complete closed loop behavior of
the application. It shows what happens when the ball
is measured, the left branch for the small ball and the
right branch for the big ball.

lifts each small ball to the first level and each big ball to
the second level. The only marked state specifies that the
application must always be able to reach back to the initial
state which means that each ball is sorted correctly.

The verification that is done is called the non-blocking
verification. This verification type checks that the closed-
loop behavior of the system can reach a marked state from
any other state, e.g. the application finishes correctly. If
the system passes this form of verification it will not get
stuck in a single unmarked state during execution, so called
dead-lock, nor will it get stuck into a loop over a subset of
unmarked states, so called live-lock.

The complete closed-loop behavior of the application can
be calculated. A part of the result of such a calculation is
shown in Fig. 7. The part shown represents what happens
in the system when the ball is measured. Since the non-
deterministic ECC of the process model block allows for
both the big ball and small ball to be reported that is
shown in the resulting behavior of the system. The left
branch shows what happens if the small ball is measured
while the right branch shows what happens if the big ball is
measured. Each input to the process is thus covered in the
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formal verification and so is the control code that reacts
to that process input.

In Fig. 7 it is shown that the states become unmarked
after the process sends out the event that reports the size
of the ball. This is the consequence of the specification EFA
model since all the states in the automatically generated
application model are marked. The states will remain
unmarked in each branch of the closed-loop model until
the process sends out events reporting that the ball has
arrived to the specified level.

When the correct behavior of the application has been
achieved the plant model block can be exchanged with a
block that communicates with the hardware of the process
and executed.

5. CONCLUSION

The proposed development method provides the means
for closed-loop control system development by integrating
process modeling and control code development that use
the same language. The method makes development of
control code possible without ever running it against the
real hardware until it is ready by supporting the simulation
and verification of the closed-loop system. This leads to
shorter development time and less economic loss in cases
when the control application is behaving incorrectly and
destroying the controlled equipment while it is being tested
against the real process.
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Formal modeling of function block applications running
in IEC 61499 execution runtime. In Proceedings of
the 11th IEEE International Conference on Emerging
Technology and Factory Automation, pages 1269–76.
IEEE, September 2006b.

George Doukas and Kleanthis Thramboulidis. A real-
time linux execution environment for function-block
based distributed control applications. In Proceedings
of 3rd IEEE International Conference on Industrial
Informatics, pages 56–61. IEEE, August 2005.

Victor Dubinin and Valeriy Vyatkin. Towards a formal
semantic model of IEC 61499 function blocks. In
Proceedings of the 4th IEEE International Conference
on Industrial Informatics, pages 6–11. IEEE, August
2006.

Victor Dubinin, Valeriy Vyatkin, and Hans-Michael
Hanisch. Modelling and verification of IEC 61499 appli-
cations using Prolog. In Proceedings of the 11th IEEE
International Conference on Emerging Technology and
Factory Automation, pages 774–81. IEEE, September
2006.

Luca Ferrarini and Carlo Veber. Implementation
aproaches for the execution of IEC 61499 applications.
In Proceedings of 2nd IEEE International Conference on
Industrial Informatics, pages 612–7. IEEE, June 2004.

Nils Hagge and Bernardo Wagner. A new function block
modeling language based on petri nets for automatic
code generation. IEEE Transactions on Industrial In-
formatics, 1(4):226–37, November 2005.

IEC. IEC 61131 programmable controllers—part 3: Pro-
gramming languages. Technical report, International
Electrotechnical Commission, 1993.

IEC. IEC 61499-1: Function blocks—part 1: Architec-
ture. Technical report, International Electrotechnical
Commission, 2005.
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