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Abstract: In this paper we use a 2D systems setting to develop new results on iterative learning
control for linear plants. It is well known in the subject area that a trade-off exists between speed
of convergence and transient response. Here we give new results in this area by designing the
control scheme using a strong form of stability for repetitive processes/2D linear systems known
as stability along the pass (or trial). The resulting design computations are in terms of Linear
Matrix Inequalities (LMIs) and they are also experimentally validated on a gantry robot.

1. INTRODUCTION

Iterative learning control (ILC) is a technique for con-
trolling systems operating in a repetitive, or trial-to-trial,
mode with the requirement that a reference trajectory
r(t) defined over a finite interval 0 ≤ t ≤ α, where α
denotes the trial length, is followed to a high precision.
Examples of such systems include robotic manipulators
that are required to repeat a given task to high precision,
chemical batch processes or, more generally, the class of
tracking systems.

Since the original work Arimoto et al. (1984) in the mid
1980’s, the general area of ILC has been the subject of
intense research effort. An initial source for the literature
here is the survey paper Bristow et al. (2006). The analysis
of ILC schemes is firmly outside standard (or 1D) control
theory — although it is still has a significant role to play
in certain cases of practical interest. Instead, ILC must
be seen (as one approach) in the context of fixed-point
problems or, more precisely, repetitive processes (see the
references in Rogers and Owens (1992)) which are a
distinct class of 2D systems where information propagation
in one of the two independent directions only occurs over
a finite duration.

In ILC, a major objective is to achieve convergence of
the trial-to-trial error and often this has been treated as
the only objective. In fact, it is possible that enforcing
fast convergence could lead to unsatisfactory along the
trial performance. In this paper, the problem is addressed
by first showing that ILC schemes can be designed for
a class of discrete linear systems by, in effect, extending
techniques developed for 2D systems using the framework
of linear repetitive processes. This allows us to use the
strong concept of stability along the pass (or trial) for
these processes in an ILC setting as a possible means of
dealing with poor/unacceptable transients in the along the
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trial dynamics. The results developed here give control law
design algorithms which can be implemented via LMIs.
Finally, the resulting control laws are experimentally vali-
dated on a gantry robot executing a pick and place oper-
ation where the plant models used for design are obtained
by frequency response tests.

The symbols Γ ≻ 0, respectively Γ ≺ 0, are used in this
paper to denote a symmetric positive definite, respectively
negative, definite matrix.

2. BACKGROUND AND INITIAL ANALYSIS

The plants considered in this paper are assumed to be
differential linear time-invariant systems described by the
state-space triple {A, B, C} which in an ILC setting is
written as

ẋk(t) = Axk(t) + Buk(t), 0 ≤ t ≤ α
yk(t) = Cxk(t)

(1)

where on trial k, xk(t) ∈ R
n is the state vector, yk(t) ∈ R

m

is the output vector, uk(t) ∈ R
r is the vector of control

inputs, and the trial length α < ∞. If the signal to be
tracked is denoted by r(t) then ek(t) = r(t) − yk(t) is the
error on trial k. The most basic requirement then is to
force the error to convergence in k. This, however, cannot
always be addressed independently of the dynamics along
the trial as the following analysis demonstrates.

Consider the case where on trial k+1 the control input is
calculated using

uk+1(t) :=

M
∑

j=1

αjuk+1−j(t)+

M
∑

j=1

(Kjek+1−j(t)+(K0ek+1))

(2)

In addition to the ‘memory’ M , the design parameters in
this control law are the static scalars αj , 1 ≤ j ≤ M , the
linear operator K0 which describes the current pass error
contribution, and the linear operator Kj , 1 ≤ j ≤ M ,
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which describes the contribution from the error on pass
k + 1 − j.

It is now routine to show that convergence of the error
here holds if, and only if, all roots of

zM − α1z
M−1 − . . . − αM−1z − αM = 0 (3)

have modulus strictly less than unity. Also the error
dynamics on trial k+1 here can be written in convolution
form as

ek+1(t) = r(t) − (Guk+1)(t), 0 ≤ t ≤ α

Suppose also that (3) holds. Then the closed-loop error
dynamics converge (in the norm topology of Lp[0, T ]) to

e∞ = (I + GKeff)−1r (4)

where the so-called effective controller Keff is given by

Keff :=
K

1 − β

and

β :=

M
∑

i=1

αi, K =

M
∑

i=1

Ki

The result here counter-intuitive in the sense that stability
is largely independent of the plant and the controllers used.
This is a direct result of the fact that the trial duration
α is finite and over such an interval a linear system can
only produce a bounded output irrespective of its stability
properties. Hence even if the error sequence generated
is guaranteed to converge to a limit, this terminal error
may be unstable and/or possibly worse than the first trial
error, i.e. the use of ILC has produced no improvement in
performance.

We have the following (see Owens et al. (2000) for the
details).

(1) Convergence is predicted to be ‘rapid’ if λe is small
and will be geometric in form, converging approxi-
mately with λk

e , where λe ∈ (max|µi|, 1) and µi, 1 ≤
i ≤ N, is a solution of (3).

(2) The limit error is nonzero but is usefully described
by a (1D linear systems) unity negative feedback
system with effective controller Keff defined above. If
maxi(|µi|) → 0+ then the limit error is essentially
the first learning iterate, i.e. use of ILC has little
benefit and will simply lead to the normal large errors
encountered in simple feedback loops. There is hence
pressure to let maxi |µi| be close to unity when Keff

is a high gain controller which will lead (roughly
speaking) to small limit errors.

(3) Zero limit error can only be achieved if
∑N

i=1
αi = 1.

(This situation — again see Owens et al. (2000)
for the details — is reminiscent of classical control
where the inclusion of an integrator (on the stability
boundary) in the controller results in zero steady
state (limit) error in response to constant reference
signals.)

There is a conflict in the above conclusions which has
implications on the systems and control structure from
both the theoretical and practical points of view. In
particular, consider for ease of presentation the case when
Ki = 0; 1 ≤ i ≤ M . Then small learning errors will require
high effective gain yet GK0 should be stable under such
gains.

To guarantee an acceptable (i.e. stable (as the most basic
requirement)) limit error and acceptable along the trial
transients, a stronger form of stability must be used. Here
we consider the use of so-called stability along the trial
(or pass) from repetitive process theory. In effect, this
demands convergence of the error sequence with a uniform
bound on the along the trial dynamics. We also work in
the discrete domain and so assume that the along the pass
dynamics have been sampled at a uniform rate Ts seconds
to produce a discrete-state space model of the form (where
for notational simplicity the dependence on Ts is omitted
from the variable descriptions)

xk(p + 1) = Axk(p) + Buk(p), p = 0, 1, . . . , α − 1
yk(p) = Cxk(p)

(5)

Consider now the so-called discrete linear repetitive pro-
cesses described by the following state-space model over
p = 0, 1, . . . , α − 1, k ≥ 1

xk(p + 1) = Âxk(p) + B̂uk(p) + B̂0yk−1(p)

yk(p) = Ĉxk(p) + D̂uk(p) + D̂0yk−1(p)
(6)

where xk(p) ∈ R
n, uk(p) ∈ R

r, yk(p) ∈ R
m are the state,

input and pass profile vectors respectively. Also rewrite
the state equation of the process model in the form

xk(p) = Axk(p − 1) + Buk(p − 1) (7)

and introduce
ηk+1(p + 1) = xk+1(p) − xk(p)

∆uk+1(p) = uk+1(p) − uk(p)
(8)

Then we have

ηk+1(p + 1) = Aηk+1(p) + B∆uk+1(p − 1) (9)

Consider also a control law of the form

∆uk+1(p) = K1ηk+1(p + 1) + K2ek(p + 1) (10)

and hence

ηk+1(p + 1) = (A + BK1)ηk+1(p) + BK2ek(p) (11)

Also ek+1(p)−ek(p) = yk(p)−yk+1(p) and we then obtain

ek+1(p) − ek(p) = CA(xk(p − 1) − xk+1(p − 1))

+ CB(uk(p − 1) − uk+1(p − 1)) (12)

Using (8) we now obtain

ek+1(p) − ek(p) = −CAηk+1(p) − CB∆uk+1(p − 1)

or, utilizing (10),

ek+1(p) = −C(A + BK1)ηk+1(p)

− Cηk+1(p) + (I − CBK2)ek(p) (13)

Also introduce

Â = A + BK1

B̂0 = BK2

Ĉ = −C(A + BK1)

D̂0 = I − CBK2

(14)

Then clearly (11) and (13) can be written as

ηk+1(p + 1) = Âηk+1(p) + B̂0ek(p)

ek+1(p) = Ĉηk+1(p) + D̂0ek(p)
(15)

which is of the form (6) and hence the repetitive process
stability theory can be applied to this ILC control scheme.
In particular, stability along the trial is equivalent to
uniform bounded input bounded output stability (defined
in terms of the norm on the underlying function space), i.e.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2833



independent of the trial length,and hence we can (poten-
tially) achieve trial-trial error convergence with acceptable
along the trial dynamics.

The stability theory for linear repetitive processes is crit-
ically dependent on the structure of the boundary condi-
tions and, in particular, the state initial vector sequence
Here we assume that

ηk+1(0) = 0, k ≥ 0

Note 1. It is also possible to give a 2D discrete linear
systems representation of the ILC scheme considered here,
as first proposed in Kurek and Zaremba (1993). The
work here progresses beyond this, and other work on ILC
using 2D model descriptions, by use of a stronger form of
stability, control law design and (uniquely for such ILC
laws) experimental verification.

3. ANALYSIS

The following result gives stability along the trial under
control action together with formulas for control law
design.

Theorem 1. The ILC scheme of (15) is stable along the
trial if there exist compatibly dimensioned matrices X1 ≻
0, X2 ≻ 0, R1 and R2 such that the following LMI is
feasible







−X1 0
0 −X2

AX1 + BR1 BR2

−CAX1 − CBR1 X2 − CBR2

X1A
T + RT

1 BT −X1A
T CT − RT

1 BT CT

RT
2 BT X2 − RT

2 BT CT

−X1 0
0 −X2






≺ 0

(16)

If (16) holds, the control law matrices K1 and K2 can be
computed using

K1 = R1X
−1
1

K2 = R2X
−1
2

(17)

Proof.
Numerous conditions for stability along the trial of dis-
crete linear repetitive processes of the form (15) exist,
e.g. Rogers and Owens (1992); Rogers et al. (2007) but
here we use the co-called 2D Lyapunov equation approach
(see Rogers et al. (2007) Chapter 6) and hence (15) is
stable along the trial if there exists P = diag{P1, P2} ≻ 0
such that

ΦT PΦ − P ≺ 0 (18)

where

Φ =

[

Â B̂0

Ĉ D̂0

]

(19)

An obvious application of the Schur’s complement formula
to (18) yields









−P1 0
0 −P2

Â B̂0

Ĉ D̂0

ÂT ĈT

B̂T
0 D̂T

0

−P−1
1 0

0 −P−1
2









≺ 0 (20)

Now introduce
X1 = P−1

1

X2 = P−1
2

(21)

and pre- and post multiply (20) by

diag {X1, X2, I, I } (22)

to obtain








−X1 0
0 −X2

ÂX1 B̂0X2

ĈX1 D̂0X2

X1Â
T X1Ĉ

T

X2B̂
T
0 X2D̂

T
0

−X1 0
0 −X2









≺ 0 (23)

Now use (14) to obtain (after some routine manipulations)






−X1 0
0 −X2

AX1 + BK1X1 BK2X2

−CAX1 − CBK1X1 X2 − CBK2X2

X1A
T + X1K

T
1 BT −X1A

T CT − X1K
T
1 BT CT

X2K
T
2 BT X2 − X2K

T
2 BT CT

−X1 0
0 −X2






≺ 0

(24)
Finally, let

R1 = K1X1

R2 = K2X2
(25)

to obtain the required LMI of (16) and the control law
matrices which define (17) can be calculated from (25).
This completes the proof.

In practical applications, it is often beneficial (or indeed
essential) to bound the entries (above or below) in the
control law matrices. In the ILC setting, there could
well be cases where it is beneficial to keep the entries
in the control law matrix K2 as large as possible. Note,
however, that direct manipulation of the entries in K2

is difficult to achieve in an LMI setting and hence other
approaches must be employed. As an example in this latter
category is described next drawing on the work of Siljak
and Stipanovic (2000) where it was first proposed (in an
non ILC setting)). The basic result is that if L and kl > 0
are real scalars subject to the constraint

L2 < kl (26)

then in LMI terms this can be written as
[

−kl LT

L −1

]

≺ 0 (27)

This operation can also be applied in the matrix case —
the scalar L2 is replaced by the matrix LT L, kl by klI,
where I is an identity matrix of compatible dimensions,
and less than is replaced by a negative definite constraint.

4. EXPERIMENTS

Other work, e.g. Ratcliffe et al. (2006) has used a gantry
robot facility to experimentally verify ILC designs. Fig-
ure 1 shows this experimental facility where the robot head
performs a pick and place task and is similar to systems
which can be found in many industrial applications. These
include food canning, bottle filling or automotive assembly,
all of which require accurate tracking control, each time
the operation is performed, with a minimum level of error
in order to maximize production rates. This is an obvious
general area for application of ILC.

Each axis of the gantry robot has been modelled based
on frequency response tests where, since the axes are
orthogonal, it is assumed that there is minimal interaction
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between them. Here we first consider the X-axis (the
one parallel to the conveyor in Figure 1) and frequency
response tests (via the Bode gain and phase plots in Figure
2) result in a 7th order continuous-time transfer-function
as an adequate model of the dynamics on which to based
control systems design. This has then been sampled at
Ts = 0.01 seconds to yield the following z-transfer function
approximation of the dynamics

G(z) =
0.00051745(z + 0.5823)(z − 0.3014)

(z − 1)(z2 − 0.07057z + 0.009459)

·
(z2 − 0.09718z + 0.008969)(z2 − 0.2046z + 0.7846)

(z2 + 0.3149z + 0.1024)(z2 − 0.7757z + 0.5403)
(28)

and hence in the state-space model used for design (where
the subscript x is to distinguish that it is this axis we are
considering)

Fig. 1. The multi-axes gantry robot.
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Fig. 2. Frequency response test results and fitted model

Ax =

















2.41 −0.86 0.85 −0.59 0.30 −0.19 0.32
4.00 0 0 0 0 0 0
0 1.00 0 0 0 0 0
0 0 1.00 0 0 0 0
0 0 0 1.00 0 0 0
0 0 0 0 0.50 0 0
0 0 0 0 0 0.25 0

















Bx = [ 0.0313 0 0 0 0 0 0 ]
T

Cx = [ 0.0095 −0.0023 0.0048 −0.0027 0.0029

−0.0011 0.0029 ]

At this stage, Theorem 1 can be used to undertake control
law design and note that the LMI setting actually produces
a family of such designs. As one example, we consider the
case when the following additional LMI constraints are
imposed (where for this particular case X2 is a scalar)

X2 < 1 × 10−4 (29)

X1 ≺ 1 × 10−2 (30)

R1 ≺ 1 × 10−2 (31)

The control law matrices of (10) for this data are given by

K1 = [7.3451 −2.7245 0.1499 7.6707

2.7540 −3.6088 −20.4519] (32)

K2 = 82.4119 (33)

Suppose now that the trial length is α = 200 and the
reference signal is given by Figure 3.

0 20 40 60 80 100 120 140 160 180 200
0

0.005

0.01

0.015
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0.025
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0.035

0.04

Sample Number

X−axis Reference Trajectory

Fig. 3. Reference signal for X-axis

Figure 4(a) shows the outputs produced by the X-axis
of the gantry for 20 trials and Figures 4(b) and 4(c) the
corresponding control input and error dynamics. It can be
seen that within this number of trials, the tracking error
has been reduced to a very small value.

It is been reported (see for example Longman (2000)) that
in ILC algorithms high frequency noise will build up as
the number of trials increase and tracking of the reference
signal then begins to diverge (one possible cause is numeri-
cal problems in both computation and measurement). One
option to limit this is to employ a zero-phase low pass filter
to remove such noise (and retain stability along the trial).
Figure 5 shows a case where the trial error without filtering
starts to diverge after (approximately) 100 trials but the
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Fig. 4. (a) Evolution of the output of X-axis for the first 20 trials in one experiment, (b) Evolution of the control input,
(c) Evolution of the error dynamics
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Fig. 5. The effect of filtering

addition of a filter of this type is able to maintain (this
aspect of overall) performance. (Zero-phase filtering of the
previous trial error is undertaken during the time when the
gantry robot is resetting to start the next trial and relies
on the fact that the previous trial error is fully available
once this resetting commences. In the gantry robot this
resetting time is 2 seconds.)

After the success of the initial test programme on the
X-axis, the design exercise has been repeated for the Y
(perpendicular to the X-axis in the same plane) and Z
(perpendicular to the X-Y plane)-axes. Figure 6 shows
the mean square error for all axes in comparison to
those from a simulation study for each corresponding
axis with the ILC control law applied. Moreover, the
along the trial dynamics have proved to be less oscillatory
than alternative designs where no stability constraint
was placed on the along the trial dynamics (i.e. on the
eigenvalues of the state matrix).

5. CONCLUSIONS

This paper has considered the design of ILC schemes in
a 2D linear systems setting and, in particular, the the-
ory of discrete linear repetitive processes. This releases a
stability theory for application which demands uniformly
bounded along the trial dynamics (whereas previous ap-
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Fig. 6. Mean squared error for all axes

proaches only demand bounded dynamics over the finite
trial length). Here we have shown that this approach leads
to a stability condition expressed in terms of an LMI
with immediate formulas for computing the control law
matrices. This is a potentially powerful approach in this
general area which also makes a significant step forward in
the application of 2D linear systems theory. Uniquely (in
the 2D systems approach) the designs have been experi-
mentally validated on a gantry robot system whose basic
task is to continually execute a pick and place operation.

The results here establish the basic feasibility of this
approach in terms of both theory and experimentation.
There is a significant degree of flexibility in the resulting
design algorithm and current work is undertaking a de-
tailed investigation of how this can be fully exploited. One
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aspect which clearly requires investigation is to attempt
design without the need to use current trial state feedback
(particularly as the control law in this paper actually uses
the difference of the state vector on two successive trials).
Another is to extend this analysis to other classes of ILC
and seek ways to reduce the possible conservativeness aris-
ing from the use of sufficient, but not necessary, stability
conditions. Moreover, the gantry robot system has been
used in experimentally testing a wide range of other non
LMI based ILC designs and hence it will also be possible in
due course to compare relative performance (an essential
item in terms of end users).
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