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Abstract: This paper considers identification of unknown parameters in elastic dynamic models
of industrial robots. Identifying such models is a challenging task since an industrial robot
is a multivariable, nonlinear, resonant, and unstable system. Unknown parameters (mainly
spring-damper pairs) in a physically parameterized nonlinear dynamic model are identified
in the frequency domain, using estimates of the nonparametric frequency response function
(FRF) in different robot configurations/positions. The nonlinear parametric robot model is
linearized in the same positions and the optimal parameters are obtained by minimizing the
discrepancy between the nonparametric FRFs and the parametric FRFs (the FRFs of the
linearized parametric robot model). In order to accurately estimate the nonparametric FRFs,
the experiments must be carefully designed. The selection of optimal robot configurations for
the experiments is also part of the design. Different parameter estimators are compared and
experimental results show the usefulness of the proposed identification procedure. The weighted
logarithmic least squares estimator achieves the best result and the identified model gives a
good global description of the dynamics in the frequency range of interest.

Keywords: System identification, multivariable systems, nonlinear systems, closed-loop
identification, frequency response methods, industrial robots

1. INTRODUCTION

Accurate dynamic models of industrial robots are needed
for mechanical design, performance simulation, control, su-
pervision, diagnosis, and so on. The industrial robot poses
a challenging modeling problem both due to the system
complexity and the required model accuracy. Usually a
robot has six joints (also called axes), see Fig. 1, with
coupled dynamics, giving a truly multivariable system.
The dynamics is nonlinear, both with respect to the rigid
body dynamics and other things such as non-ideal motors
and sensors, and a transmission with friction, backlash,
hysteresis, and nonlinear stiffness. The system is resonant
due to elastic effects and, in addition, experimental data
must usually be collected while the robot controller is
operating in closed loop since the system is unstable.

Historically, the dynamic models used for control are
either entirely rigid (An et al., 1988), or only flexible
joint models are considered, i.e., elastic gear transmission
and rigid links (Spong, 1987; Albu-Schäffer and Hirzinger,
2000). The trend in industrial robots is toward lightweight
robot structures with a reduced mass but with preserved
payload capabilities. This is motivated by cost reduction
as well as safety issues, but results in lower mechanical
resonance frequencies inside the controller bandwidth.
The sources of elasticity in such a manipulator are, e.g.,
gearboxes, bearings, elastic foundations, elastic payloads,
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Fig. 1. The ABB manipulator IRB6600.

as well as bending and torsion of the links. In Öhr
et al. (2006) it is shown that there are cases when these
other sources of flexibilities can be of the same order as
the gearbox flexibilities for a modern industrial robot.
Accurate dynamic models that also describe these elastic
effects are therefore needed to obtain high performance.
These models are, however, very difficult to use for robot
control, where, e.g., feedforward control involves solving
a DAE, but could in the future improve the performance
(Moberg and Hanssen, 2007).

2. PROBLEM DESCRIPTION

The main problem considered in this paper is about iden-
tification of unknown parameters in a nonlinear dynamic
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model of an industrial robot. The model must be global,
i.e., valid throughout the whole workspace (all robot con-
figurations/positions), as well as elastic, which here means
that resonances due to elastic effects are captured by the
model. The elastic effects are modeled through a lumped
parameter approach (Khalil and Gautier, 2000) where each
rigid body is connected by spring-damper pairs (see also
Section 3). The model is of gray-box type, i.e., a physi-
cally parameterized model, and the rigid body parameters
of the model are usually assumed to be known from a
CAD model or prior rigid body identification. The main
objective is identification of elasticity parameters (spring-
damper pairs) but other parameters can be added, such as
the location in the robot structure of the spring-damper
pairs and a few unknown rigid body parameters. It is
also possible to include nonlinear descriptions of selected
quantities (e.g., the gearbox stiffness) and identify those by
a linearization for each position (robot configuration and
position are used interchangeably in this paper).

The real challenge for system identification methods is that
the industrial robot is multivariable, nonlinear, unstable,
and resonant at the same time. Usually, in the literature, at
least one of the first three topics is left out. Identification
of such a complex system is therefore a huge task, both in
finding suitable model structures and efficient identifica-
tion methods.

One solution could be to apply a nonlinear prediction
error method (Ljung, 1999, pp. 146–147), where measured
input-output data are fed to the model and the predicted
output from the model is compared with the measured
output. This has been treated in Wernholt and Gunnars-
son (2006a) for axis one of the industrial robot, which
means a stable scalar system (axis one is not affected
by gravity). Extending these results to a multivariable
and unstable system would involve, for example: finding a
stable predictor, numerical problems, and handling large
data sets. The last two problems stem from the fact that
the system is resonant and numerically stiff, as well as
large in dimension both with respect to the number of
states and parameters. In addition comes also the choice of
model structure (parameters) and handling local minima
in the optimization. Apart from all these problems, such
a solution would really tackle our main problem.

Due to the complexity of the industrial robot, it is common
practice to estimate approximate models for various pur-
poses. By, for example, using a low-frequency excitation,
elastic effects have a minor influence and a nonlinear model
of the rigid body dynamics can be estimated using least
squares techniques. This is a much studied problem in
the literature, see, e.g., Kozlowski (1998) for an overview.
Taking elastic effects into account makes the identification
problem much harder. The main reason is that only a
subset of the state variables now are measured such that
linear regression cannot be used. One option could be
to add sensors during the data collection to measure all
states, even though accurate measurements of all states are
not at all easy to obtain (if even possible) and such sensors
are probably very expensive (for example laser trackers).

It is common to study the local dynamic behavior around
certain operating points (also called positions in the paper)
and there estimate parametric or nonparametric linear

models (see, e.g., Behi and Tesar, 1991; Johansson et al.,

2000; Albu-Schäffer and Hirzinger, 2001; Öhr et al., 2006).
One application area for these linear models is control
design, where a global controller is achieved through gain
scheduling. The linear models can also be used for the
tuning of elastic parameters in a global nonlinear robot
model, which is the adopted solution in this paper :

• The local behavior is considered by estimating the
nonparametric frequency response function (FRF) of
the system in a number of positions.

• Next, the nonlinear parametric robot model is lin-
earized in each of these positions.

• Finally, the parameters are optimized such that the
parametric FRFs (the FRFs of the linearized para-
metric robot model) match the estimated nonpara-
metric FRFs.

This identification procedure, first suggested in Öhr et al.
(2006), will here be described in more detail. Various
aspects of the procedure are also treated in Wernholt and
Gunnarsson (2006b), Wernholt and Löfberg (2007), Wern-
holt and Gunnarsson (2007) and Wernholt and Moberg
(2008). Using an FRF-based procedure allows for data
compression, unstable systems are handled without prob-
lems, it is easy to validate the model such that all impor-
tant resonances are captured, and model requirements in
the frequency domain are also easily handled.

The proposed procedure also has some possible problems.
The choice of model structure (parameters) and handling
local minima in the optimization are problems here as
well. In addition comes some difficulties with biased non-
parametric FRF estimates due to closed-loop data and
nonlinearities. There are also cases when even a small
perturbation around an operating point can give large
variations due to the nonlinearities, which makes a linear
approximation inaccurate, e.g., passing through Coulomb
friction, backlash, or different parts of a nonlinear stiffness.
This can be partly handled by the choice of excitation (e.g.,
avoid zero velocity to reduce Coulomb friction). Using
multiple positions is good for the parameter accuracy as
well as for identifiability issues. It will, however, make it
harder to use a linear approximation of certain quantities.
Consider, for example, the problem of nonlinear stiffness,
where a linear approximation will vary between different
positions due to gravity and the amplitude of the excita-
tion. It is then impossible to find a linear stiffness that
perfectly matches the resonances for all positions. Still,
if the nonlinearity can be parameterized and properly
linearized in the different positions, those parameters could
possibly be identified as well.

The procedure will now be described, starting with the
robot model in Section 3, carrying on by describing the
FRF estimation and the parameter estimation in Sec-
tions 4 and 5. Experimental results are shown in Section 6,
and finally some conclusions are drawn in Section 7.

3. ROBOT MODEL

The robot model described in this section comes from
Moberg and Hanssen (2007). A general serial link indus-
trial robot, as in Fig. 1, is then modeled by a kinematic
chain of rigid bodies, where each rigid body is connected to
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the preceding body by three torsional spring-damper pairs,
giving three degrees-of-freedom (DOF) to each rigid body.
At most one of these DOFs can be actuated, corresponding
to a connection of the two rigid bodies by a motor and
a gearbox. In this representation, a robot link (always
actuated) can consist of one or more rigid bodies. The
model equations, described in Moberg and Hanssen (2007),
can be written as a nonlinear gray-box model

ẋ(t) = f(x(t), u(t), θ), (1a)

y(t) = h(x(t), u(t), θ), (1b)

with state vector x(t), input vector u(t), output vector
y(t), and nonlinear functions f(·) and h(·) that describe
the dynamics. The rigid body parameters are assumed to
be known and θ is a vector of unknown parameters for
(mainly) springs and dampers. See the previous section
for examples of other unknown parameters to include.

4. FRF ESTIMATION

As a first step toward the parameter identification, esti-
mates of the nonparametric FRF in a number of positions
are needed. These are obtained by performing experiments
where the robot is moved into a position and a speed
reference signal is fed to the robot controller. The result-
ing motor torques (actually the torque reference to the
torque controller) and angular positions are sampled and
stored. The measured angular positions are then filtered
and differentiated to obtain estimates of the motor angular
speeds, which are here considered as the output signals.

The open-loop system to be identified is unstable, which
makes it necessary to collect data in closed loop. Consider
therefore the setup in Fig. 2, where the controller takes
as input the difference between the reference signal r
and the measured and sampled output y, and u is the
input. The disturbance v contains various sources of noise
and disturbances. An experimental control system is used,
which enables the use of off-line computed reference signals
for each motor controller.

ControllerΣ
+

Robot
u

Σ

−

r y

v

Fig. 2. Closed-loop measurement setup.

To avoid leakage effects in the discrete Fourier transform
(DFT), which is used by the estimation method, the
excitation signal, r, is assumed to be periodic, with NP

samples in each period, and an integer number of periods of
the steady state response are collected. The nonparametric

FRF estimate Ĝ(ωk) ∈ C
n×n (assuming n inputs and

outputs) is calculated from a block of n experiments like
(Pintelon and Schoukens, 2001, p. 61)

Ĝ(ωk) = Y(ωk)U−1(ωk), (2)

where the n columns of Y(ωk) and U(ωk) contain the
DFT of the sampled data from the n experiments. See
also, e.g., Wernholt and Gunnarsson (2007) for other FRF
estimators for multivariable systems.

As excitation, an orthogonal random phase multisine sig-
nal (Dobrowiecki and Schoukens, 2007) is used, which

here gives R(ωk) = Rdiag(ωk)T, where Rdiag(ωk) =
diag {R1(ωk), . . . , Rn(ωk)} and T is an orthogonal matrix,

Til = e
2πj

n
(i−1)(l−1), with TTH = nI. Each Rl(ωk) is the

DFT of a random phase multisine signal, which in the time
domain can be written as

r(t) =

Nf∑

k=1

Ak cos(ωkt + φk), (3)

with amplitudes Ak, frequencies ωk chosen from the grid

{ωk = 2πk
NP Ts

, k = 1, . . . ,
Np

2 − 1, (NP even)} with Ts

the sampling period, and random phases φk uniformly
distributed on the interval [0, 2π). Using the orthogonal
multisine signal in closed loop corresponds to an optimal
experiment design given output amplitude constraints.

The selection of frequencies as well as the amplitude spec-
trum will affect the parameter estimation in the next step.
Using too many frequencies will give a low signal-to-noise
ratio, which increases both the bias and the variance in the
nonparametric FRF estimate. The amplitude spectrum
should also reflect the sensitivity for the unknown param-

eters (cf. Ψ
(i)
0 (k) in (5)), at least such that the unknown

parameters influence the parametric FRF for the selected
frequencies.

The nonparametric FRF estimate can be improved by
averaging over multiple blocks and/or periods. The covari-
ance matrix can then also be estimated. For a linear sys-
tem, averaging over different periods is sufficient, whereas
for a nonlinear system, it is essential to average over blocks
where Rdiag in each block should have different realizations
of the random phases. The reason is that nonlinearities
otherwise will distort the estimate and give a too low
uncertainty estimate, see Pintelon and Schoukens (2001,
Chap. 3) and Schoukens et al. (2005).

For the industrial robot, the nonlinearities cause large
distortions and averaging over multiple blocks is there-
fore important (Wernholt and Gunnarsson, 2006b). For
the same reason, one should only excite odd frequencies
(only odd k in the grid ωk = (2πk)/(NP Ts) in (3)), see
Schoukens et al. (2005).

5. PARAMETER ESTIMATION

When the FRFs have been estimated from data, the next
step is to linearize the nonlinear model (1) in the same
positions and calculate the parametric FRFs, G(i)(ωk, θ),
i = 1, . . . , Q. A cost function V (θ) is then formed, mea-
suring the (weighted) discrepancy between the parametric
FRF and the estimated nonparametric FRF for all the
Q positions. This cost function is finally minimized to
identify the unknown parameters.

First, two different parameter estimators will be analyzed
and compared. Next, the selection of optimal positions for
the experiments is treated, and finally, the solution of the
optimization problem is discussed.

5.1 Estimators

Weighted Nonlinear Least Squares (NLS) Estimator The
NLS estimator is given by
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θ̂NLS

Nf
= arg min

θ∈Θ
V NLS

Nf
(θ), (4a)

V NLS

Nf
(θ) =

Q∑

i=1

Nf∑

k=1

[E(i)(k, θ)]H [Λ(i)(k)]−1E(i)(k, θ), (4b)

E(i)(k, θ) = vec(Ĝ(i)(ωk)) − vec(G(i)(ωk, θ)), (4c)

with Λ(i)(k) a Hermitian (Λ = ΛH) weighting matrix, and
(·)H denoting complex conjugate transpose. The asymp-
totic properties (Nf → ∞) of this estimator will be derived
in the following theorem.

Theorem 1. Consider the NLS estimator (4) and assume
that:

(1) Ĝ(i)(ωk) = G(i)(ωk, θ0)+η(i)(ωk) with vec(η(i)(ωk)) a
zero mean circular complex random vector, indepen-

dent over i and ωk, with covariance matrix Λ
(i)
0 (ωk).

(2) Θ is a compact set where V NLS
Nf

(θ) and its first- and

second-order derivatives are continuous for any value
of Nf .

(3) For Nf large enough, the expected value of V NLS
Nf

(θ)

has a unique global minimum θ0 in Θ.

The estimator θ̂NLS

Nf
will then converge to θ0 as Nf → ∞

and
√

Nf (θ̂NLS

Nf
− θ0) is asymptotically Normal distributed

with covariance matrix Pθ,

Pθ =
1

2



 1

Nf

Q∑

i=1

Nf∑

k=1

ℜ
{

Ψ
(i)
0 (k)Ξ(i)(k)[Ψ

(i)
0 (k)]T

}



−1

×



 1

Nf

Q∑

i=1

Nf∑

k=1

ℜ
{

Ψ
(i)
0 (k)Σ(i)(k)[Ψ

(i)
0 (k)]T

}




×



 1

Nf

Q∑

i=1

Nf∑

k=1

ℜ
{

Ψ
(i)
0 (k)Ξ(i)(k)[Ψ

(i)
0 (k)]T

}



−1

, (5)

with the Jacobian matrix [Ψ
(i)
0 (k)]T = ∂ vec(G(i)(ωk,θ))

∂θ

∣∣∣
θ=θ0

,

(·) denoting complex conjugate, and

Ξ(i)(k) = [Λ(i)(ωk)]−1,

Σ(i)(k) = [Λ(i)(ωk)]−1Λ
(i)
0 (ωk)[Λ(i)(ωk)]−1.

The covariance is minimized by using the optimal weights

Λ(i)(ωk) = Λ
(i)
0 (ωk), (6)

which also simplifies (5) to

Pθ =
1

2



 1

Nf

Q∑

i=1

Nf∑

k=1

ℜ
{

Ψ
(i)
0 (k)[Λ(i)(ωk)]−1[Ψ

(i)
0 (k)]T

}



−1

.

Proof. Follows from fairly straightforward calculations
using Theorem 7.21 in Pintelon and Schoukens (2001).

Note that in addition to the mentioned assumptions, there
are some technical details for the asymptotic normality
that η(i)(ωk) has uniformly bounded absolute moments of
order 4 + ǫ with ǫ > 0. See Pintelon and Schoukens (2001,
Theorem 7.21) for details.

Weighted Logarithmic Least Squares (LLS) Estimator
For systems with a large dynamic range, the NLS estima-
tor may become ill-conditioned. The weighted logarithmic

least squares (LLS) estimator has been suggested as an
alternative (Pintelon and Schoukens, 2001, pp. 206–207)

θ̂LLS

Nf
= arg min

θ
V LLS

Nf
(θ), (7a)

V LLS

Nf
(θ) =

Q∑

i=1

Nf∑

k=1

[E(i)(k, θ)]H [Λ(i)(k)]−1E(i)(k, θ), (7b)

E(i)(k, θ) = log vec(Ĝ(i)(ωk)) − log vec(G(i)(ωk, θ)), (7c)

where log G = log |G| + j arg G. This estimator has
improved numerical stability and is particularly robust
to outliers in the measurements. However, from a the-
oretical point of view, the estimator is inconsistent

(limNf→∞ θ̂LLS

Nf
6= θ0). The bias can be neglected if the

signal-to-noise ratio (vec(Ĝ) vs.
√

diag {Λ0}) is large
enough (at least 10 dB according to Pintelon and Schoukens,
2001, p. 207).

Similarly to Theorem 1, one can show that the covariance
matrix, using the LLS estimator (7) and neglecting the
bias, is approximately given by (5) with

Ξ(i)(k) =
[
G

(i)
d (ωk, θ0)Λ

(i)(ωk)[G
(i)
d (ωk, θ0)]

H
]−1

,

Σ(i)(k) = Ξ(i)(k)Λ
(i)
0 (ωk)Ξ(i)(k),

and G
(i)
d (ωk, θ0) = diag

{
vec(G(i)(ωk, θ0))

}
. Using the

optimal weights

Λ(i)(ωk) =
[
G

(i)
d (ωk, θ0)

]−1

Λ
(i)
0 (ωk)

[
G

(i)
d (ωk, θ0)

]−H

,

(8)
gives approximately the same covariance as for the NLS
estimator.

Selection of Weights Even if the covariance is minimized
by using the optimal weights, the choice of weights will
in general deviate from the optimal ones for a number

of reasons. Firstly, the true covariance matrix Λ
(i)
0 (ωk) is

usually not known so the user must instead be content

with an estimated covariance matrix Λ̂
(i)
0 (ωk). Secondly,

the weights also reflect where the user requires the best
model fit. This is important in case the model is unable
to describe every detail in the measurements. The bias-
inclination will then be small for frequencies, elements,
and positions where the weights [Λ(i)(ωk)]−1 are large.

For a resonant system, it is often easier to use the LLS
estimator in the way that even constant weights will make
sure that both resonances and anti-resonances are matched
by the model. This is due to the fact that the logarithm
in the LLS estimator inherently gives the relative error,
compared to the absolute error when using the NLS
estimator. With the NLS estimator, the anti-resonances
are easily missed if not choosing large weights at those
frequencies.

5.2 Optimal Positions

Given a nonlinear gray-box model (1), the information
about the unknown parameters will differ between non-
parametric FRF estimates in different positions. There-
fore, given a limited total measurement time, one should
perform experiments in the position(s) that contribute the
most to the information about the unknown parameters.
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In Wernholt and Löfberg (2007), this problem is formu-
lated as follows: Assume a set of Qc candidate positions.
Determine the number of experiments to be performed in
each position (mi experiments in position i) such that
the parameter uncertainty is minimized, given a total

of M =
∑Qc

i=1 mi experiments. Determining the values
mi, i = 1, . . . , Qc, is a combinatorial experiment design
problem which relatively quickly will become intractable
when Qc is large. If M is not too small, a good approximate
solution can be found by relaxing the constraint that each
mi should be an integer. This relaxed problem is convex,
which enables the global optimum to be found. In the
paper Wernholt and Löfberg (2007), it is also shown that
the experiment design is efficiently solved by considering
the dual problem. The candidate positions are obtained
by griding the workspace. Given thousands of candidate
positions, only a few positions typically have a nonzero
mi in the optimum. See Wernholt and Löfberg (2007) for
details and examples.

5.3 Solving the Optimization Problem

The minimization problem to be solved, (4) or (7), is
unfortunately non-convex. Here, the problem is solved
using fminunc in Matlab, which is a gradient-based
method which only returns a local optimum. Due to
the existence of local minima, a good initial parameter
vector, θinit , is important. The problem can be solved
for a number of random perturbations around θinit in
order to avoid local minima. Or, alternatively stated, to
obtain a local minimum which is good enough for the
purpose of the model. The quality of the resulting model,
as well as problems with local minima and identifiability
properties, depend on the choices of estimator, weights,
and position(s) for the experiments. This will be illustrated
in the next section.

6. EXPERIMENTAL RESULTS

The identification procedure, described in the previous
sections, will here be used for the identification of an
industrial robot from the ABB IRB6600 series. A nonlinear
gray-box model with 26 unknown parameters is used.
The nonparametric FRFs are estimated in the 15 optimal
positions from Wernholt and Löfberg (2007) by using an
odd orthogonal random phase multisine signal with a flat
amplitude spectrum as excitation and averaging over a
number of blocks. The parameters are then estimated
using the following estimators:

LLSM15U: LLS estimator, Q = 15, only magnitude
(log |G|), user-defined weights.
LLS15U: LLS estimator, Q = 15 , user-defined weights.
LLS15O: LLS estimator, Q = 15, optimal weights.
NLS15U: NLS estimator, Q = 15, user-defined weights.
NLS15O: NLS estimator, Q = 15, optimal weights.
LLS1U: LLS estimator, Q = 1, user-defined weights.

For simplicity only diagonal weights [Λ(i)(ωk)]−1 are con-
sidered. The user-defined weights are constant for each
element in the FRF, the same for all positions, zero for low
frequencies where the nonparametric FRF is uncertain,
and lower for the non-diagonal elements in the FRF. The
optimal weights are calculated from (6) and (8), using the

10 20 30 40 50 60 70 80 90 100
1

1.5

2

2.5

3

3.5

4

Sorted optimizations

N
o

m
a

liz
e

d
 L

L
S

 C
o

s
t,

 U
s
e

r 
W

e
ig

h
ts

 

 
LLSM15U

LLS15U

LLS15O

NLS15U

NLS15O

LLS1U

Fig. 3. Normalized LLS cost with user-defined weights for
all initial parameters and all estimators.

estimated covariance Λ̂
(i)
0 (ωk) and G(i)(ωk, θ0) ≈ Ĝ(i)(ωk).

The optimal weights often turn out to be small at the reso-
nances and anti-resonances due to a larger relative error in
the nonparametric FRF estimate at those frequencies. For
the LLS1U estimator, the single position with the smallest
theoretical parameter covariance is used.

To assess the sensitivity to the initial parameter vector,
θinit , 100 optimizations are performed for each of the 6
estimators, using randomly perturbed initial parameters,

θ
[l]
init

, l = 1, . . . , 100 (the same for all estimators). Each ele-

ment in θ
[l]
init

is obtained by multiplying the corresponding
element in θinit by 10ϕ, where ϕ is a random number from
a uniform distribution on the interval [−1, 1].

To evaluate the resulting 600 models, the same cost
function is used for all models. The LLS cost, V LLS(θ),
is calculated with user-defined and optimal weights, which
can be seen in Figs. 3 and 4, respectively. The cost varies
quite much between the different estimators. What is more
important is the trend over the different optimizations.
The first three estimators tend to be much more robust to
varying initial parameters.

To compare the number of reasonable models, some mea-
sure is needed. Since the optimal weights are small at
the resonances and anti-resonances, Fig. 4 is not so well
suited for judging if resonances (and anti-resonances) are
accurately modeled or not. Consider therefore Fig. 3.
When comparing the FRFs of the parametric models with
the estimated nonparametric FRFs, the models usually
miss important resonances when the normalized cost in
Fig. 3 exceeds approximately 1.5. That gives the following
percentage of reasonable models (out of the 100 models):
LLS15U, 80 %, LLSM15U, 64 %, LLS15O, 35 %, NLS15U, 3 %,
LLS1U, 2%, and NLS15O, 0%. These numbers are only
approximate since the same cost can be achieved if one
resonance is missed completely but all others are accurate,
and if many resonances are only modeled with moderate
accuracy. The latter is often the case for the LLS15O

estimator since the exact location of the resonances, as
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Fig. 5. Normalized spring parameters of the gearboxes for the 6 different estimators, sorted according to Fig. 3.
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Fig. 6. Normalized spring parameters of the arm structure for the 6 different estimators, sorted according to Fig. 3.
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well as their damping, are not so important when using
the optimal weights.

To further evaluate the estimated models, the parameter
variation is studied. The spring parameters of the gear-
boxes and the arm structure as a function of the sorted
optimizations can be seen in Figs. 5 and 6, respectively.
These parameters are normalized by the best LLS15U

model. One immediately notes that the arm structure
springs are harder to estimate, in particular one of them.
This parameter does not influence the FRF that much in
the selected frequency interval and is therefore hard to es-
timate. Considering the number of optimizations with es-
timated parameters inside the interval [0.5, 2] (black lines
in the figures) gives the following percentage of reasonable
models (out of the 100 models): LLS15U, 62 %, LLSM15U,
43 %, LLS15O, 21%, NLS15U, 2%, LLS1U, 2 %, and NLS15O,
0 %. One arm structure parameter is excluded in these
numbers, but the LLS15U estimator actually manages to
accurately estimate the 12 spring parameters in 12% of
the optimizations. The dampers are unfortunately much
harder to accurately estimate, as can be seen in Fig. 7.
Some of the damping parameters fluctuate quite much
even among the best models. These variations can also
be seen in the parametric FRF in Fig. 8.

The LLS15U estimator is further analyzed by computing
the theoretical parameter uncertainty from (5) for the
model with the lowest V LLS cost, as well as the statistics
for the best 31 models, i.e., all models with a cost less than
1.05 in Fig. 3. Statistics for 8 representative springs ki and
dampers di are shown in Table 1, where the parameters
with both the smallest and the largest uncertainties are
included. The conclusions are that the springs are more
accurately estimated than the dampers and that the
theoretical uncertainty gives a good indication of the
variations of the estimated parameters.

Fig. 9 finally shows the magnitude of the estimated non-
parametric FRF and the best parametric model for one of
the positions. The identified model gives a good global
description of the dynamics in the frequency range of
interest.
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Fig. 8. Parametric FRF G(i)(ωk, θ), element (4,4), in one
of the positions. Thick gray line: best LLS15U model
(cf. Fig. 9), black lines: the 31 best LLS15U models.

Table 1. Statistics for the LLS15U estimator,
where the first five columns are obtained using
the 31 best parameter sets in Fig. 3, and the
last column is calculated for the best parame-

ter set, using (5).

θi min median max mean std stdth

k1 0.97 1.01 1.05 1.01 0.020 0.0069

k2 0.99 1.02 1.04 1.02 0.012 0.0081

k3 0.061 1.00 3.67 1.10 0.66 0.103

k4 0.72 0.99 1.26 0.97 0.13 0.042

c1 0.84 0.99 1.45 1.00 0.12 0.037

c2 0.24 1.04 1.51 0.99 0.30 0.056

c3 0.16 0.55 7.05 1.57 1.93 0.865

c4 0.048 0.44 34.1 2.27 6.14 0.186

7. CONCLUDING DISCUSSION

This paper has dealt with the problem of estimating un-
known elasticity parameters in a nonlinear gray-box model
of an industrial robot. An identification procedure has
been proposed where the parameters are identified in the
frequency domain, using estimates of the nonparametric
FRFs for a number of robot configurations/positions. Two
different parameter estimators (NLS and LLS), as well
as the selection of weights in the estimators, have been
evaluated in an experimental study with the following
result:

• the LLS estimator is superior to the NLS estimator
for this type of system,

• more than one position is needed in order to get a
reasonable estimate,

• using phase information improves the estimate,
• rough user-defined weights work much better than the

theoretically optimal weights,
• gearbox parameters are easier to estimate than arm

structure parameters,
• spring parameters are easier to identify than damping

parameters, and
• the theoretical uncertainties for the estimated param-

eters in Table 1 give a good indication of the quality
of the estimated parameters.
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Fig. 7. Normalized damping parameters of the gearboxes (first row) and the arm structure (second row) for the estimators
LLSM15U, LLS15U and LLS15O, sorted according to Fig. 3.

The uncertainties in the dampers and in some of the
springs in the best identified model are quite large, but
the resulting global model should anyway be useful for
many purposes.

An explanation to the fourth point is that the assumptions
in Theorem 1 are violated since the nonparametric FRF
estimate has bias errors due to nonlinearities and closed-
loop data, and the model is unable to describe every detail
of the true system. The weights should, for such a case,
primarily be selected to distribute the bias, not to get
minimum variance. The theoretically optimal weights are
low at the resonance and anti-resonance frequencies (due
to uncertainties in the FRF), which in turn gives large
model errors there.

The fifth point comes as no surprise. The model structure,
where all elastic effects in the arm structure are lumped
into a few spring-damper pairs, can of course be modified
and refined. Both regarding the location of these spring-
damper pairs, as well as how many that are needed in
order to properly model the system. Identifiability of these
added parameters can also be discussed. Maybe additional
sensors are needed, e.g., accelerometers attached to the
structure, as is the case in experimental modal analysis
(Behi and Tesar, 1991; Verboven, 2002).

The main reasons for the large uncertainties in the damp-
ing parameters probably are that the system is poorly
damped and that the nonparametric FRFs contain errors
at the resonances and anti-resonances such that unique
damping parameters are hard to find.

A number of areas are still subject to future work. The se-
lection of weights can certainly be improved by combining
the user choices and the estimated FRF uncertainty. The
selection of frequencies, as well as the amplitude spectrum
for the nonparametric FRF estimation can be further
improved. An experimental verification of the optimal
positions for identification is still interesting to perform.
The parameter accuracy and problems with local minima,
versus measurement time and excitation energy are also
interesting problems to study. Using a frequency-domain
method for identification of a nonlinear system has some
problems, as was pointed out in Section 2. Therefore,
it would be interesting to apply time-domain prediction
error methods as a comparison, even though that involves
a number of hard problems to tackle, also mentioned
in Section 2. A simulation-based study, using a realistic
nonlinear model, could also be enlightening.

Finally, to conclude this paper: Identification of industrial
robots is a challenging task. Using a general purpose
method by pressing a button will almost surely fail.
The problem instead requires a combination of tailored
identification methods, experiment design, and a skilled
user, using all available knowledge about the system.
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J. Öhr, S. Moberg, E. Wernholt, S. Hanssen, J. Pettersson, S. Pers-
son, and S. Sander-Tavallaey. Identification of flexibility pa-
rameters of 6-axis industrial manipulator models. In ISMA2006
International Conference on Noise and Vibration Engineering,

pages 3305–3314, Leuven, Belgium, September 2006.
R. Pintelon and J. Schoukens. System identification: a frequency

domain approach. IEEE Press, New York, 2001.
J. Schoukens, R. Pintelon, T. Dobrowiecki, and Y. Rolain. Identifi-

cation of linear systems with nonlinear distortions. Automatica,
41(3):491–504, March 2005.

M. W. Spong. Modeling and control of elastic joint robots. Journal
of Dynamic Systems Measurement and Control, 109(4):310–319,
December 1987.

P. Verboven. Frequency-domain system identification for modal
analysis. PhD thesis, Vrije Universiteit Brussel, Belgium, May
2002.

E. Wernholt and S. Gunnarsson. Nonlinear identification of a
physically parameterized robot model. In 14th IFAC Symposium
on System Identification, pages 143–148, Newcastle, Australia,
March 2006a.

E. Wernholt and S. Gunnarsson. Detection and estimation of nonlin-
ear distortions in industrial robots. In 23rd IEEE Instumentation
and Measurement Technology Conference, pages 1913–1918, Sor-
rento, Italy, April 2006b.

E. Wernholt and S. Gunnarsson. Analysis of methods for multivari-
able frequency response function estimation in closed loop. In 46th
IEEE Conference on Decision and Control, pages 4881–4888, New
Orleans, Louisiana, USA, December 2007.
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