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Abstract: In this paper, the dynamic behaviour of a rail vehicle with single-wheel drive and
brake modules is analysed. It is shown that in the wheelslide or wheelskid case, the linearised
plant obtains an unstable pole whose location is determined by the shape of the current
creep force curve. By considering possible variations in the shape of the creep force curve, the
corresponding variation of the pole location in the right-half plane is calculated and a controller
structure for creepage control and creep velocity control is suggested. If the controller design
takes the worst-case pole location into account, the resulting controller stabilises the closed loop
even at small velocities. Finally, this fact is illustrated through simulation results.
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1. INTRODUCTION

An improvement with respect to the state-of-the-art of
traction systems for rail vehicles is expected from the
integration of the functionalities driving and braking into
a single mechatronic traction module with a few precisely
defined mechanical, electrical and data interfaces. Thus,
the railway industry is currently developing and success-
fully testing an integrated traction drive system called
SyntegraTM, which consists of a gearless drive based on
a high-torque permanent magnet motor [Ger06]. In the
SyntegraTM concept, the gearless drive is mounted on a
wheelset axle which is rigidly connected to both wheels of
the wheelset.

But the degree of modularisation of an integrated traction
drive system can be even further increased, if the focus
is set on the single wheel instead of the entire wheelset.
This consideration leads to the so-called single-wheel drive
and brake module (SDBM) whose driving and braking
components are integrated into a single wheel (wheel hub
motor). By breaking up the rigid connection between the
two wheels (or SDBMs) of a wheelset, the opportunity
is gained for a reduction of wear and noise as well as
an improvement of the driving comfort. At the RWTH
Aachen University, four institutes (IFS, IFAS, ISEA, IRT)
are currently investigating the SDBM in a joint research
project which is funded by the DFG (German Research
Foundation). Figure 1 shows the current design stage of
the SDBM.

The SDBM consists of a single wheel with a switched re-
luctance drive and a hydraulic brake. In the joint research
project, the task of the Institute of Automatic Control is
to design wheelslide and wheelskid protection controllers
for an optimal creep force utilisation.

Fig. 1. Current design stage of the SDBM [Her07]

This paper presents the results of a dynamic analysis of
the SDBM-wheelslide and wheelskid protection problem
which is based on a set of mathematical models. It follows
primarily the approach already introduced in [Stü06] but
extends it about the consideration of the wheelskid case,
the treatment of the creep velocity control task and the use
of the well-known Polach-creep force curve. From that,
a structure for creepage and creep velocity controllers is
suggested, that is applicable with respect to the wheelslide
and wheelskid protection task. Finally, simulation results
are shown.

2. WHEELSLIDE AND WHEELSKID PROTECTION

Figure 2 shows the non-dimensional creep force fx with the
maximum value µmax as a non-linear function of the longi-
tudinal creepage s. When a brake torque is applied at the
wheel, a longitudinal creepage s occurs in the wheel-rail
contact region and with this a creepage dependent creep
force which decelerates the vehicle. The non-dimensional
creep force fx is the ratio of the creep force to the nor-
mal force. Bad frictional conditions reduce the maximum
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Fig. 2. Non-dimensional creep force vs. longitudinal creep-
age

considerably. When the maximum is exceeded due to a
too high brake torque, the braking becomes unstable - the
wheel decelerates much faster than the vehicle and tends to
lock up. A similar scenario occurs, when a driving torque
is applied at the wheel. If the driving torque is chosen too
high, the wheel will start to skid which leads directly to
strong wear of the wheel and the rail.

A modern wheelslide protection system must in all cases
prevent a wheel lock-up. In addition, it has to ensure that
the vehicle brakes within acceptable braking distances.
The primary task of a wheelskid protection system is to
avoid wheel skidding. At the same time, it should always
guarantee an adequate vehicle acceleration.

In order to obtain acceptable braking distances, [UIC05]
states that the longitudinal creepage should be greater
than 0.1 during most of the braking time. This means that
the controller must hold operating points on the decreasing
branch of the non-dimensional creep force curve. Experi-
ence shows that the same requirement must be fulfilled in
order to obtain a reasonable acceleration in the wheelskid
protection case. In the following the dynamics of sliding
and skidding are considered with the help of mathematical
models.

3. MATHEMATICAL MODELS

3.1 Vehicle Model

First of all, a very simple vehicle model is established that
can be used for further investigations on the dynamics and
the controller design. In the following, the nth part vehicle
model for vehicles with n SDBMs shown in figure 3 is
considered. The model is based on the so-called quarter
vehicle model which is often used in connection with the
design of anti-lock brake systems in automobiles, see e.g.
[Wu98]. Setting up Newton’s equation of motion for the
nth part vehicle model results in:

v̇ =
n

M

[
−fx

M

n
g

]
=−fx g , (1)

ω̇ =
1
IC

[
Rfx

kM

n
g + TD − TB

]
. (2)

In these equations, M is the vehicle mass, IC is the
SDBM’s moment of inertia, R is the nominal wheel radius,
TD is the driving torque, TB is the brake torque, and fx
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Fig. 3. The nth part vehicle model

is the available non-dimensional creep force in x-direction.
The acceleration of gravity is denoted by g. A change in
the normal force that might occur during braking due to
the pitching of the vehicle is considered by the factor k.

The creep velocity vs is the difference between the vehicle
velocity v and the wheel circumference velocity R ω

vs = v − R ω . (3)

By relating the creep velocity vs to the vehicle velocity v,
the non-linear creepage relationship is gained

s =
vs

v
=

v − R ω

v
=

v
R − ω

v
R

. (4)

In this particular definition of the creepage, the value of
s equals 0 if the SDBM-wheel is purely rolling. When
braking, the wheel is slipping and the creepage values
lie in a range between 0 and 1. Full sliding (or a wheel
lock-up) occurs for s = 1. During driving, the creepage
becomes negative. Skidding means that s tends towards
great negative values. Note that s is only defined for v > 0
and ω ≥ 0.

The derivative with respect to time of equation (3) yields
v̇s = v̇ − R ω̇ . (5)

The insertion of equation (1) and equation (2) into equa-
tion (5) results in

v̇s = −fx g

(
1 +

R2kM

ICn

)
− R

IC
(TD − TB) . (6)

Due to the non-linear relationship between vs and fx,
equation (6) represents a non-linear differential equation
for the creep velocity dynamics.

The derivative with respect to time of equation (4) writes

ṡ =
1
v

[v̇ (1 − s) − R ω̇] . (7)

Inserting equation (1) and equation (2) into equation (7)
yields

ṡ =
1
v

[
−fx g

(
1 +

R2kM

ICn
− s

)

− R

IC
(TD − TB)

]
. (8)

With this, a non-linear differential equation for the creep-
age dynamics is obtained. The so-called rotation factor λ,

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

16052



which is a common number in the field of railway vehicle
design, has the following definition for the case of the nth
part vehicle model

λ = 1 +
ICn

MR2
. (9)

With λ, equations (6) and (8) become

v̇s = −fx g

(
1 +

k

λ − 1

)
− n

M R(λ − 1)
(TD − TB) , (10)

and

ṡ =
1
v

[
−fx g

(
1 +

k

λ − 1
− s

)

− n

M R (λ − 1)
(TD − TB)

]
. (11)

3.2 Creep Force Model

The ongoing physical processes in the wheel-rail contact
region are of very high complexity and difficult to describe.
For instance, the creep force depends on the contact area
between the wheel and the rail, its temperature, the sur-
face roughness, as well as environmental conditions such as
contamination due to water, oil, dirt, snow and other fac-
tors. However, a multitude of measurements showed, that
primarily the dependency of the non-dimensional creep
force on the longitudinal creepage or creep velocity plays
a significant role and obtains the characteristics shown in
figure 2 [Vie06]. The model of the non-dimensional creep
force in longitudinal direction which is used in this work
was suggested by Polach in [Pol05] and writes

fx(s) =
2µ

π

(
KAs

1 + (KAs)2
+ arctan (KSs)

)
. (12)

Here, KA and KS are coefficients with values greater
than 0 that depend on the parameters of the wheel-rail
contact. Polach assumes that the friction coefficient µ is
a function of the creep velocity

µ = µ0

[
(1 − A)e−B|vs| + A

]
, (13)

where A is the ratio of the limit friction coefficient µ∞ at
infinity creep velocity to the maximum friction coefficient
µ0 at zero creep velocity

A =
µ∞
µ0

. (14)

The coefficient B influences the exponential friction de-
crease. Figure 4 shows the course of the non-dimensional
creep force according to equations (12) and (13) for dry
rails (here: KA = 250, KS = 100, µ0 = 0.5, A = 0.4,
B = 0.6 sec/m). From equation (12) it is clear that for
|s| → ∞ follows |fx| → µ. With a reasonable choice of KA

and KS it can be seen from figure 4 that |fx| ≈ µ already
holds for |s| > 0.1. Thus, the following approximation of
the non-dimensional creep force is assumed for |s| > 0.1:

fx(s) ≈ µ0

[
(1 − A)e−Bv|s| + A

]
· sgn(s) . (15)

In reality, there is not a single creep force curve that would
always occur. Instead, the parameters µ0, A and B lie in
certain ranges:
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Fig. 4. The Polach model of the non-dimensional creep
force

µ0 ∈ [µ0,min ; µ0,max] , (16)

A ∈ [Amin ; Amax] , (17)

B ∈ [Bmin ; Bmax] . (18)
Practical wheelslide and wheelskid protection systems
must be able to cope with all kinds of possible creep force
curves that might emerge during normal operation.

3.3 Actuator Models

Both actuators, the switched reluctance drive and the
hydraulic brake, have their own underlying torque control
loop. Hence, each actuator possesses a reference torque
input and returns the actual torque output value, which
is a direct result of the underlying control action. In the
following, both actuators are assumed to exhibit a first
order lag behaviour which represents the individual torque
control dynamics. Thus, for the switched reluctance drive,
it holds

TDrive ṪD + TD = TD,ref , (19)

and for the hydraulic brake

TBrake ṪB + TB = TB,ref , (20)

with the time constants TDrive and TBrake and the ref-
erence torque input variables TD,ref and TB,ref . In the
following, it is assumed that the switched reluctance drive
will be only used for driving and not for braking.

4. DYNAMIC ANALYSIS

First of all, the second order system described by the non-
linear differential equations (1) and (10) is considered.
Figure 5 shows the phase portrait for braking (TD =
0, TB > 0) and driving (TD > 0, TB = 0) when started
from the initial condition v = 20 m/sec, vs = 0 m/sec. The
model parameters are M = 30000 kg, n = 4, R = 0.46 m,
k = 1.0, λ = 1.1, µ0 = 0.1, A = 0.6, B = 0.4 sec/m,
KA = 250 and KS = 100.

As long as the maximum (or minimum) of the non-
dimensional creep force is not exceeded, braking (or driv-
ing) remains stable. For the examples shown in figure 5,
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Fig. 5. Phase portrait of the creep velocity vs. velocity for
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this is the case for TB ≤ 2500 Nm and TD ≤ 2000 Nm. For
TD = 2500 Nm driving is first stable and becomes later
unstable since the non-dimensional creep force changes
as a function of the creep velocity vs (see equation 13).
Immediately after driving or braking got unstable, the
creep velocity vs changes very quickly whereas the velocity
v does not change too much. This fact can be recognised
in figure 5 especially for TB ≥ 3000 Nm or TD ≥ 3000 Nm.

The phase portrait of the second order system represented
by the differential equations (1) and (11) is not shown
here. But similarly to the creep velocity case shown in
figure 5, the longitudinal creepage s changes rapidly while
the velocity v remains almost constant after braking or
driving became unstable.

As a consequence of these results, a major assumption
in this work is that for operating points on the unstable
branches of the creep force curve, the vehicle velocity
dynamics can be neglected compared to the dynamics of
the creep velocity or to those of the longitudinal creepage:

v̇ ≈ 0 . (21)

In this particular case, equations (5) and (7) turn into

v̇s =−R ω̇ , (22)

ṡ =−1
v

R ω̇ , (23)

where the only difference between v̇s and ṡ is the factor 1
v

with the parameter v. Again, with equations (2) and (9),
v̇s and ṡ become

v̇s = −fx (vs) g
k

λ − 1
− n

MR(λ − 1)
(TD − TB) , (24)

ṡ =
1
v

[
−fx (s) g

k

λ − 1
− n

MR(λ − 1)
(TD − TB)

]
.(25)

These relationships write in general

v̇s = f1(vs, TD, TB) , (26)

ṡ = f2(s, TD, TB) . (27)
In the following, the non-linear model equations (24)
and (25) are linearised around an operating point on an

unstable branch of the creep force curve and transfer
functions are established that describe the behaviour of
the system in the vicinity of this operating point. The
location of the poles of the transfer functions determine
the local stability.

First, the non-linear relationship (27) for the creepage s is
linearised around the operating point P (ṡ0, s0, TD,0, TB,0),
what results in

∆ṡ =
∂f2

∂s

∣∣∣∣
P

∆s − n

M R(λ − 1)v
(∆TD − ∆TB) , (28)

with the deviation variables

∆ṡ = ṡ − ṡ0 , (29)

∆s = s − s0 , (30)

∆TD = TD − TD,0 , (31)

∆TB = TB − TB,0 . (32)
The partial derivative in the operating point is

∂f2

∂s

∣∣∣∣
P

=
g

λ − 1

(
−k

1
v

∂fx

∂s

∣∣∣∣
P

)
︸ ︷︷ ︸

σ(v)

. (33)

Furthermore, the following abbreviation is introduced

η =
n

M R(λ − 1)
. (34)

Applying the Laplace transform to equation (28) results
after a rearrangement in the following relationship

S(s) = − η 1
v

s − g
λ−1σ(v)︸ ︷︷ ︸

GWR2(s)

(TD(s) − TB(s)) , (35)

with the transfer function GWR2 for the wheel-rail dynam-
ics. The pole is located at

sP (v) =
g

λ − 1
σ(v) . (36)

Since the non-dimensional creep force curve has a negative
slope (the operating point is on the unstable branches, see
figure 4), σ(v) is positive and the pole is located in the
right-half plane (RHP).

In correspondence to equation (4) and due to the assump-
tion (21), the Laplace-transformed creep velocity Vs(s)
and the creepage S(s) are directly related by the constant
vehicle velocity v as

Vs(s) = v S(s) . (37)

Inserting S(s) from equation (35) into (37) yields the
following linear relationship for the creep velocity

Vs(s) = − η

s − g
λ−1σ(v)︸ ︷︷ ︸

GWR1(s)

(TD(s) − TB(s)) , (38)

with the transfer function GWR1, whose pole is located at
the same position (36) as the one of GWR2. In addition, it
holds

GWR2 =
1
v
GWR1 . (39)
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Which control variable to take for wheelslide or wheelskid
protection, either the longitudinal creepage s or the creep
velocity vs, is a question often raised among practitioners.
One result of the analysis above is that under the assump-
tion (21) the location of the unstable pole sP remains the
same, regardless if the longitudinal creepage s or the creep
velocity vs is taken as output of the transfer system. In
addition, by investigating equation (36), a well-known fact
from experience becomes obvious: the pole sP is located
further to the right for a small λ-value, or in other words,
the system is getting “more unstable” for a smaller wheel’s
moment of inertia IC .

The value of σ(v) and thus the location of the unstable
pole depends on the slope of the non-dimensional creep
force curve (equation 33). Using the assumption (15) for
|s| > 0.1, the derivative of the non-dimensional creep force
with respect to the longitudinal creepage is

∂fx

∂s
= µ0(A − 1)B v e−Bv|s| . (40)

It is now possible to determine the range of σ(v) at a
certain velocity v

σ(v) ∈ [σmin(v) ; σmax(v)] , (41)

where the longitudinal creepage in the operating point s0

may lie in the domain |s0| ∈ [smin,0 ; smax,0] with smin,0 ≥
0.1. The factor k that accounts for a possible change in the
normal force may lie in the range k ∈ [kmin ; kmax]. The
lower bound of (41) is then

σmin(v) =
{

Zmin Bmin e−Bmin smax,0 v ; v ≤ vT

Zmin Bmax e−Bmax smax,0 v ; v > vT
(42)

with

vT =
ln (Bmin) − ln (Bmax)
smax,0 (Bmin − Bmax)

(43)

and
Zmin = kmin µ0,min (1 − Amax) . (44)

The upper bound of (41) results in

σmax(v) =




Zmax Bmax e−Bmax smin,0 v ; v< 1
Bmax smin,0

Zmax Bmin e−Bmin smin,0 v ; v> 1
Bmin smin,0

Zmax
1

smin,0 v e−1 ; otherwise
(45)

with
Zmax = kmax µ0,max (1 − Amin) . (46)

For a given velocity range v ∈ [vmin ; vmax], the pole
variation for an entire braking or driving procedure is
finally

sP ∈
[

g

λ − 1
σmin(vmax) ;

g

λ − 1
σmax(vmin)

]
. (47)

This range of the pole location needs to be considered in
the following controller design.

5. CONTROLLER DESIGN

First of all, the appropriate control variable must be cho-
sen. In this approach, the longitudinal creepage s is taken

as control variable for wheelslide protection (braking). As
mentioned above, s lies in a range between 0 (purely rolling
wheel) and 1 (wheel lock-up) during braking. Hence, by
controlling s, the ratio between these two extreme states
can be directly influenced. Furthermore, [UIC05] specifies
that a wheelslide protection system should be able to
stabilise the braking down to a velocity of about 3 km/h
before the full and unaffected brake torque must be applied
to the wheel. Thus, the fact that s is not defined for v = 0
is of no great matter for wheelslide protection. However,
in the case of wheelskid protection (driving), very often
the wheel skidding has to be prevented at extremely low
velocities. As a consequence, the creep velocity vs is pre-
ferred as control variable for wheelskid protection in this
work.

From equation (19), the transfer function GD of the
switched reluctance drive can be determined as

GD(s) =
TD(s)

TD,ref (s)
=

1
TDrive s + 1

. (48)

The transfer function GB of the hydraulic brake is found
from equation (20)

GB(s) =
TB(s)

TB,ref (s)
=

1
TBrake s + 1

. (49)

The overall transfer function which describes the dynamic
behaviour in the wheelskid case is given by the serial
connection

GSK (s) =
Vs(s)

TD,ref (s)
= −GD(s)GWR1(s) . (50)

Similarly, the dynamic behaviour of the sliding wheel is
represented by

GSL(s) =
S(s)

TB,ref (s)
= GB(s)GWR2(s) . (51)

In this approach, the controller design is based on the
consideration of the pole location sP which is furthest to
the right in the RHP. Hence, controllers are to be designed
that are able to stabilise the two systems

GSK (s) = − 1
TDrive s + 1

· η

s − g
λ−1 σmax(vmin)

(52)

and

GSL(s) =
1

TBrake s + 1
·

η
vmin

s − g
λ−1 σmax(vmin)

. (53)

A key technique used to stabilise loops with an unstable
plant is a lead compensator. A controller of the form

GC(s) = KR
TV s + 1
Ts + 1

, TV > T > 0 (54)

is able to stabilise both, a closed loop including GSK from
equation (52) and one including GSL from equation (53).
As a rule of thumb, the controller parameters KR, TV

and T have to be chosen in such a way that the band-
width of the control system extends beyond the frequency
of the highest frequency unstable pole (see citations in
[Stü06]). Hence, the bandwidth must be greater than

g
λ−1σmax(vmin).
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Fig. 6. Creep velocity and creepage control with creep force
parameters µ0 = 0.1, A = 0.4 and B = 0.6 sec/m
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Fig. 7. Creep velocity and creepage control with creep force
parameters µ0 = 0.15, A = 0.15 and B = 0.95 sec/m

Simulation results are shown in figures 6 and 7. In the
chosen simulation scenario, the train driver applies first
a driving torque TD,des = 4000 Nm and later a brake
torque TB,des = 4000 Nm while running on slippery rails.
The difference TD,des − TB,des is called desired torque
and shown as a dashed line in the lowest subplot of the
figures 6 and 7. For wheelskid protection, a creep velocity
reference value of vs,R = −3 m/sec is chosen. In the
wheelslide protection case, sR = 0.3 is taken as creepage
reference value. In figure 6, common nominal parameter
values are taken for the non-dimensional creep force curve
(15) (µ0 = 0.1, A = 0.4, B = 0.6 sec/m). As can be
seen from the simulation results, the creep velocity control
during driving and the creepage control during braking
are both stable. The scenario shown in figure 7 illustrates
driving and braking under frictional conditions that are
even more critical due to a steeper slope of the non-
dimensional creep force curve (µ0 = 0.15, A = 0.15 and
B = 0.95 sec/m). However, these values of µ0, A and B
still lie within the parameter ranges that were considered
in the determination of the pole variation (47). Since the

creep velocity controller and the creepage controller are
both given in the form (54) and were both designed with
regard to (47), the control is stable, even in the critical
case depicted in figure 7.

6. CONCLUSION

The wheelskid and wheelslide protection task for a single
wheel with an integrated drive and brake system was
considered. By using mathematical models, a dynamic
analysis was performed which showed, that for operating
points on the unstable branches of the creep force curve
the system has an unstable pole that depends on the shape
of the creep force curve. For a given range of the creep
force curve parameters, the possible locations of the pole
in the right-half plane were determined and based on this
result, a conventional controller structure was suggested
for both, creep velocity control and creepage control,
that was able to stabilise the system, even for critical
frictional conditions. Further research should investigate
the parameter value changes of the creep force curve
during driving or braking with respect to altering rail
conditions over the track length.
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