
Hybrid approximation of stochastic process
algebras for systems biology

Luca Bortolussi ∗ Alberto Policriti ∗∗

∗Dept. of Mathematics and Computer Science, University of Trieste,
CBM, Area Science Park, Trieste, Italy.

(e-mail: luca@ dmi.units.it).
∗∗Dept. of Mathematics and Computer Science, University of Udine,

Istituto di Genomica Applicata, Udine, Italy
(e-mail: alberto.policriti@ dimi.uniud.it)

Abstract: We present a technique to approximate models of biological systems written in
a “distilled” version of stochastic Concurrent Constraint Programming (sCCP), a stochastic
programming methodology based on logic programming. Our technique automatically associates
to a stochastic model an hybrid automaton, i.e. a dynamical system where continuous
and discrete dynamics coexist. The hybrid automata generated in this way are, in certain
cases, capable of capturing aspects of the dynamics of stochastic processes that are lost in
approximations based solely on ordinary differential equations. In particular, they work better
for those systems whose sCCP model contains explicit logical mechanisms of control. In the
paper we outline the general technique to perform this association and we discuss some issues
related to its applicability.

Keywords: Stochastic programming, Hybrid systems, Approximate analysis, Computer
simulation, Biosystems

1. INTRODUCTION

Mathematical modeling in Computational Systems Biol-
ogy is dominated by two formalisms, the first one being
(mainly ordinary) differential equations and the second
one being continuous-time stochastic processes [Kitano,
2001, 2002]. Both methodologies have their roots reaching
back to physical and chemical arguments that, at least for
modeling biochemical reactions, give strong foundations to
the approach. Recently, stochastic modeling has received a
lot of attention, thanks also to the use of process algebras
(in their stochastic variants) as modeling languages that
allow to construct models in a compositional and reusable
way [Priami and Quaglia, 2004, Regev and Shapiro, 2002].

It is well known that the choice of “mathematics” to use
is not just a matter of personal taste, but rather it is
connected with the specific features of the system under
analysis (see Wilkinson [2006]). Differential models are
appealing, as they count on a (mature) bulk of mathemat-
ical instruments for their analysis, numerical solvers above
all. However, biological processes often have inherently
discrete components (they are ultimately constituted of
molecules interacting) and hence a continuous approxima-
tion may lead to incorrect results, especially when small-
sized populations are taken into account. Stochastic mod-
els can be more precise, as they are intrinsically discrete
and also able to capture the noise effects. However, the
exact simulation of discrete/stochastic models with the
(celebrated) Gillespie algorithm [Gillespie, 1977] is com-

? This work was partly supported by FIRB-LIBi and PRIN
“BISCA”.

putationally more expensive and, in general, the analysis
is more difficult.

Relating stochastic process algebras (SPA) and differential
equation models is a difficult and interesting problem.
Specifically, we are interested in finding methods that au-
tomatically translate SPA models into ODEs. This transla-
tion must somehow preserve both the structure and the be-
havior of the models: if we start from a SPA program, the
associated set of ODEs should be behaviorally equivalent
to it, in the sense of showing the same (at least qualitative)
dynamics. Some techniques have been proposed in the lit-
erature to cope with this problem [Hillston, 2005, Cardelli,
2006, Bortolussi and Policriti, 2007], working well for some
systems but failing to preserve behavior in general. A
paradigmatic example is given in Section 3 and the full
problem can be classified as still open.

In this paper we focus on translating stochastic programs
written in a simplified version of sCCP. Hence, we will
start our trip by presenting its syntax (Section 2.1) and the
translation procedure to ODEs (Bortolussi [2007], Borto-
lussi and Policriti [2007], Section 2.2). Then, we will deal
with an example where this translation fails to preserve
the dynamic behavior, i.e. the Repressilator [Elowitz and
Leibler, 2000], a synthetic genetic circuit that exhibits os-
cillatory behavior (Section 3): We will start from a simple
stochastic model that manifest neat oscillations, while the
solution of the associated ODEs does not oscillate at all.
Inspecting the transformation procedure, we will note how,
approximating a boolean state of our processes with a
continuous variable, we are in fact making a questionable
assumption. Next we show how, by avoiding this approx-

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 12599 10.3182/20080706-5-KR-1001.2419

imation, go straight to a decoupling of a finite number of
possible scenarios and, thereafter, to hybrid automata.

Hybrid automata (HA) are a formalism mixing discrete
and continuous ingredients: essentially, they are finite au-
tomata extended with a set of variables evolving continu-
ously in each state, according to state-specific differential
equations. The discrete dynamics is given by transitions
between states, which are triggered when activation con-
ditions on variables are satisfied and, when taking place,
also reset the value of some variables. We recall the basics
of hybrid automata in Section 2.3.

The heart of the paper is Section 4, where the translation
from sCCP to hybrid automata is presented, analyzed, and
exemplified. The basic idea is to identify a finite set of
“states” of the stochastic system, each characterized by a
specific dynamics. These “states” will constitute the dis-
crete skeleton of the hybrid automaton, while continuous
laws and discrete transitions will be defined according to
the dynamics within each “state”. In particular, we will
show that the hybrid version of the Repressilator (our
running example) preserves the oscillatory behavior (its
main behavioral property). These preliminary results and
the flexibility offered by the interplay between discrete and
continuous dynamics suggest HAs an interesting target
formalism for the approximation of stochastic process al-
gebras and, perhaps, for more general modeling techniques
with a stochastic ingredient.

The translation defined here certainly does not solve all
the problems. Most notably, there is still a qualitative di-
vergence between stochastic models and the corresponding
hybrid automata when the concentration of species is low.
We comment on this problem in the final section, sketching
a brief classification of sources of non-equivalence between
discrete stochastic models and their continuous approxi-
mations. We conclude outlining an alternative use of the
discrete ingredient—and especially of non-determinism—
as a possible way to improve our technique.

2. PRELIMINARIES

In this section we briefly recall the basic notions we
need for the following discussion. We start presenting
a simplified version of Stochastic Concurrent Constraint
Programming (sCCP, Section 2.1), then we show a method
for associating ordinary differential equations to sCCP
programs (Section 2.2). Finally, we recall the definition
of hybrid automata (Section 2.3).

2.1 Stochastic Concurrent Constraint Programming

Distilled stochastic Concurrent Constraint Programming
((d)sCCP) is a simplified version of sCCP [Bortolussi,
2006], a stochastic extension of CCP [Saraswat, 1993].

A (d)sCCP program consists of a set of agents interacting
via a shared store, containing a finite set of variables X =
{X1, . . . , Xn}, usually taking integer values. 1 A configu-
ration c of the store is simply a valuation of the variables
X. The basic action π executable by agents is a guarded
update of some variables, of the form g(X) → u(X,X′),
where g(X) is an inequality predicate on variables X and
1 More structured numerical domains are possible.

Prog = D.N D = ε | D.D | p : −A
π = [g(X)→ u(X,X′)]λ M = π.G | M +M

G = 0 | p | M A = 0 | M
N = A | A ‖ N

Table 1. Syntax of restricted sCCP.

u(X,X′) is a predicate on X,X′ of the form X′ = X + k
(X′ denotes variables of X after the update), with k a
vector of constants. 2 In addition, the language has all
the basic constructs of process algebras: non-deterministic
choice, parallel composition, and recursive calls. The char-
acteristic feature of (d)sCCP is the fact that each action π
is given a stochastic duration by associating to it an expo-
nentially distributed random variable, whose rate depends
on the state of the system through a function λ : X→ R+.
Stochastic actions are denoted by [π]λ.
Definition 1. A (d)sCCP program (or (d)sCCP-network)
is a tuple N = (Prog,X, init(X)), where

(1) Prog is defined according to the grammar of Table 1;
(2) X is the set of variables of the store (with global

scope);
(3) init(X) is a predicate on X of the form X = x0,

assigning an initial value to store variables.

Notably, in Table 1 the use of parallel operator is restricted
to the top level of the network: a fact soon implying the
lemma below.
Definition 2. A (d)sCCP agent is sequential if it does not
contain any occurrence of the parallel operator ‖.
Lemma 1. The initial configuration N of a (d)sCCP net-
work N is the parallel composition of sequential agents,
N = A1 ‖ . . . ‖ An, called components. In addition, the
number of components is constant at run-time.

The structural operational semantic of the language [Bor-
tolussi, 2006] is given by a transition relation, from which
a Continuous Time Markov Chain [Norris, 1997] can be
inferred.

Each sequential (d)sCCP agent can be conveniently repre-
sented as a graph, with vertices corresponding to different
stochastic choices and edges corresponding to actions. The
edges are labeled by the guard, the update, and the rate
function of the corresponding action.
Such graphs can be constructed from the syntactic tree of
the sequential agent, simply replacing a node correspond-
ing to the call of a procedure p with the syntactic tree of p.
This needs to be done at most once for each procedure p;
all other nodes corresponding to calls to p are removed and
their incoming edge redirected to the root of the unique
copy of the syntactic tree of p.
The resulting graph for each component is called the
reduced transition system (RTS):
Definition 3. The RTS for a sequential (d)sCCP agent A,
acting on variables X, is a tuple RTS(A) = (S(A), E(A),
guard, update, rate), where:

2 The notion of entailment of CCP (see Saraswat [1993]) takes here
a very simple form: a guard g(X) is entailed by a configuration c,
c ` g(X), if g(c) is true.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12600

(1) (S(A), E(A)) is a directed graph with vertices S(A)
(also called RTS-states) and edges E(A);

(2) each RTS-state σ ∈ S(A) corresponds to a stochastic
choice of A;

(3) each edge e ∈ E(A) corresponds to a different basic
action [g(X)→ u(X,X′)]λ(X) executable by A;

(4) the functions guard, update, and rate label edges
e ∈ E(A). Specifically, guard(e) = g(X), update(e) =
u(X,X′), and rate(e) = λ(X).

As an example, below is a (d)sCCP process composed
by one single component A, together with its RTS (∗ is
shorthand for true):

A :- [∗ → X′ = X + 1]k1 .B
B :- [∗ → X′ = X − 1]k2 .A

Definition 1 and Lemma 1 easily imply the following:
Theorem 1. The RTS of a (d)sCCP sequential component
is always a finite graph (proof can be found in Bortolussi
[2007]).

In [Bortolussi, 2007] and [Bortolussi and Policriti, 2006],
we argued that sCCP can be conveniently used for mod-
eling a wide range of biological systems, like biochemical
reactions, genetic regulatory networks, the formation of
protein complexes, and the process of folding of a protein.
Actually, (d)sCCP suffices to deal with the first two classes
of systems.

2.2 sCCP to ODE

In order to simplify the analysis of an sCCP model, we
can define a fluid-flow approximation of the system, by
treating variables as continuous and describing their time-
evolution by means of ODEs [Bortolussi, 2007, Bortolussi
and Policriti, 2007].

Starting from a (d)sCCP network N , with initial config-
uration N = A1 ‖ . . . ‖ An, we build the RTS for each
sequential component Ai. Then, letting S(N) = S(A1) ∪
. . .∪S(An) and E(N) = E(A1)∪ . . .∪E(An), we associate
a continuous variable to each RTS-state of S(N). Such
variables will be governed by the differential equations,
like all variables X of the store.

Next, we build what we will call the interaction matrix
I of our sCCP-network. The interaction matrix will have
as many rows as system’s variables (store variables and
RTS-state variables) and as many columns as the edges
in E(N). In this matrix we store the updates (constant
by definition) that each transition induces on stream
variables, putting also a +/−1 in correspondence to the
enter/exit RTS-states of the edges. To write the ODEs, we
simply need to store in a vector r the (functional) rates of
each transition of the RTS, following the same order used
in the interaction matrix. In addition, we multiply such
rates by the indicator function of the guards of the edges
and by the variables corresponding to the exit RTS-state of
the transition. The vector ode of ODEs is simply obtained
as

ode = I · r.

For the previous example, we have:

I =

e1 e2
X 1 −1
A −1 1
B 1 −1

r =

(
k1 ·A
k2 ·B

)
ode

{
Ẋ = k1 ·A− k2 ·B
Ȧ = −k1 ·A+ k2 ·B
Ḃ = k1 ·A− k2 ·B

2.3 Hybrid automata

In this section we briefly recall the ideas and the definition
of hybrid automaton. We will not be detailed, as we refer
the reader to [Henzinger, 1996] for an introductory survey.
Hybrid automata are dynamical systems presenting both
discrete and continuous evolution. Essentially, there is a
set of variables evolving continuously in time, subject to
abrupt changes induced by the happening of discrete (in-
stantaneous) control events. When discrete events happen
the automaton enters its next mode (its next state in the
finite automata jargon), where the laws governing the flow
of continuous variables change.

Formally, a hybrid automaton is a tuple H = (V,E,X,
f low, init, inv, jump, reset), where:

• X = {X1, . . . , Xn} is a finite set of real-valued
variables (the time derivative of Xj is denoted by
Ẋj , while the value of Xj after a change of mode is
indicated by X ′j).

• G = (V,E) is a finite labeled graph, called control
graph. Vertices v ∈ V are the (control) modes, while
edges e ∈ E are called (control) switches and model
the happening of a discrete event.

• Associated with each vertex v ∈ V there is a set of or-
dinary differential equations 3 Ẋ = flow(v) (referred
to as the flow conditions). Moreover, init(v) and
inv(v) are two predicates on X specifying the admis-
sible initial conditions and some invariant conditions
that must be true during the continuous evolution of
variables in v (forcing a change of mode to happen
when violated).

• Edges e ∈ E of the control graph are labeled by
jump(e), a predicate on X stating for what values
of variables each transition is active (the so called
activation region), and by reset(e), a predicate on
X ∪X′ specifying the change of the variables’ values
after the transition has taken place.

The traces of the system are essentially the time traces
of the continuous variables. Notice that the activation
conditions are in general non-deterministic (as well as
resets), hence there can be different traces starting from
the same initial values.
In this paper we are not concerned with model checking
issues, but rather with simulation of hybrid automata, i.e.
with the generation of a set of admissible traces.

3. A PARADIGMATIC EXAMPLE: THE
REPRESSILATOR

The Repressilator [Elowitz and Leibler, 2000] is an artifi-
cial biochemical clock composed of three genes express-
ing three different proteins, tetR, λcI, LacI, exerting
3 Other form of flow’s specification are possible (differential inclu-
sions, first order formulae, etc.) but sets of differential equations are
sufficient for our purposes here.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12601

Neg(X,R) :- [∗ → X′ = X + 1]kp .Neg(X,R)

+ [R ≥ 1→ ∗]kbR.[∗ → ∗]ku .Neg(X,R)

Degrade(X) :- [X > 0→ X′ = X − 1]kdX .Degrade(X)

Neg(A,C) ‖ Neg(B,A) ‖ Neg(C,B) ‖ Degrade(A) ‖ Degrade(B) ‖
Degrade(C)

Table 2. sCCP code for the Repressilator.
We are using three template processes (with
template variables X for the protein and R for
the repressor) that are instantiated with the
three global stream variables of the system,

namely A,B,C.

a cyclical inhibitory function on each other’s gene ex-
pression. The expected behavior is an oscillation of the
concentrations of the three proteins and a non-stochastic
automata-based simulation can be found in Antoniotti
et al. [2003]. An abstract stochastic model of Repressi-
lator can be found in Blossey et al. [2006], where the
authors propose a general formalism based on π-calculus
to model genetic regulatory networks. In such a model,
each gene is represented as a gate with one output (the
expressed protein) and different inputs, corresponding to
the different regulatory mechanisms it is subject to. In par-
ticular, negative gates model genes whose expression can
be inhibited by a repressor; more specifically, inhibition
is obtained as a stochastic delay. The (d)sCCP code for
NEG gates can be found in Table 2. In this formalism, the
Repressilator can be described by the combination of three
NEG gates, in addition to the degradation mechanisms
for the three regulatory proteins. The resulting (d)sCCP
model is shown in Table 2. In Figure 1(a) we show a
trace of the stochastic model generated by a simulator
of (d)sCCP based on Gillespie algorithm. The oscillatory
behavior is manifest.

(a)

(b) (c)

Fig. 1. 1(a) Stochastic time trace for the Repressilator
system of Table 2. Parameters are kp = 1, kd = 0.01,
kb = 1, ku = 0.01. 1(b) Solution of the differential
equations of Table 3, automatically derived from
sCCP program of Table 2. Parameters are the same
as in stochastic simulation. 1(c) Average trace of
the stochastic system for one of the three repressors,
computed using PRISM [Kwiatkowska et al., 2004].

We can now apply the translation procedure discussed
in Section 2.2 to this particular model. First of all, we
have to generate the reduced transition systems for all
the agents of the network. They are shown in Figure 2.
As we can see, the degradation agents have an RTS with
just one state, while the NEG gates have two states, one
corresponding to the active state of the gene, and the
other one to the repressed state of the gene. The ODEs
derived from these RTS are shown in Figure 3, while their
numerical integration is shown in Figure 1(b). As we can
readily see, there is no oscillation at all, but rather the
three proteins converge to an asymptotic value, after an
initial adjustment. In Blossey et al. [2007], the authors give
arguments suggesting that the equations in Figure 3 never
oscillate, whatever the value of parameters.
Inspecting the ODEs, we note the presence of six variables
in addition to those representing the quantity of repressors
in the systems. Such variables correspond to RTS-states
of genes gates and they are used to model the configura-
tion’s change of the gates, from active to repressed and
viceversa. The scenario looks rather suspicious: there is
no argument to support the introduction of the additional
variables, especially because we are continuously approxi-
mating boolean quantities (i.e. the on/off state of genes).
We stress the fact that the presence of these six additional
variables is not a mere byproduct of the translation of
Section 2.2, but rather they emerge naturally as a conse-
quence of the structure of the model. A NEG gate, in fact,
corresponds to the following set of reactions [Blossey et al.,
2007]: g → g+P , g+R→ g′, g′ → g, P → ∅. If one writes
the standard mass action equations for the reactions of
the three NEG gates defining the Repressilator, one will
obtain exactly the equations of Table 3.
As a matter of fact, the situation with this model of
Repressilator is even more puzzling: also the average trace
of the stochastic model shows no oscillations at all! This
trace, obtained using transient analysis techniques imple-
mented in PRISM [Kwiatkowska et al., 2004], is shown in
Figure 1(c). What happens can be readily explained: the
stochastic traces show an high variability in the duration
of oscillations, so that the phases of two traces are un-
correlated at regime. Therefore, fixing a time instant, in
two thirds of the traces each protein will not be expressed,
while in the other third of the traces it will be at its peak
value (equal to kp/kd). Hence, in the average, the quantity
of a protein converges to kp

3kd
.

Averaging the system or introducing continuous state vari-
ables, we destroy the information regarding the sequence
of changes of gene’s states. We conjecture that the oscil-
latory behavior of Repressilator is induced exactly by the
switching dynamics of genes.
In order to preserve the information of RTS-states we
translate the (d)sCCP program into an hybrid automaton,
whose discrete modes correspond to combinations of RTS-
states of the system’s components. It will turn out that this
move is enough to restore the oscillating behavior of Re-
pressilator (thereby supporting our previous conjecture).

4. SCCP TO HYBRID AUTOMATA

The translation of a (d)sCCP network N to a hybrid
automaton proceeds in two phases: first, each sequential
component Ai of N is converted into a hybrid automaton,

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12602

Fig. 2. Reduced transition systems for the NEG and
the degrade sCCP agents of Table 2. X and R are
template variables as in Table 2.

Ȧ = kpYA − kdA
Ḃ = kpYB − kdB
Ċ = kpYC − kdC
ẎA = kuZA − kbYAC
ẎB = kuZB − kbYBA

ẎC = kuZC − kbYCB
ŻA = kbYAC − kuZA
ŻB = kbYBA− kuZB
ŻC = kbYCB − kuZC

Fig. 3. ODEs derived for the Repressilator, generated by
the method of Section 2.2. Variables YX and ZX ,
X = A,B,C are respectively RTS-state variables
for active and inactive states of gene X.

then these HA are ”glued” together using a suitable prod-
uct of automata construction.
Let us outline the general technique. Consider a sequential
agent A (cf. Def. 2) and construct its RTS(A). The control
graph of the hybrid automaton HA(A) associated to A will
correspond to the graph of the RTS, with loop transitions
removed. The flows within each mode will be determined
by suitably specializing the method of Section 2.2. Defining
conditions on HA-edges, instead, is a more complicated
matter, as it requires to look into the semantics of stochas-
tic sCCP-transitions.
Consider the set of RTS-edges E(A), and let σ ∈ S(A)
be an RTS-state. Then E(A, σ) denotes the subset of
edges looping in σ, and El(A) =

⋃
σ∈S(A)E(A, σ). In

addition, the set of non-looping transitions is denoted by
E0(A) = E(A) \ El(A).
As hinted above, the control graph of the hybrid automa-
ton HA(A) is G = (S(A), E0(A)), i.e. its nodes are the
RTS-states of S(A) and its edges are the non-looping edges
E0(A). The variables of HA(A), instead, comprehend the
variables X of the store, considered as continuous and
evolving according to specific differential equations. These
are constructed specializing the general method of Sec-
tion 2.2: to every RTS-state σ ∈ S(A), we associate a
local interaction matrix, restricted to variable updating of
RTS-edges e ∈ E(A, σ) looping in σ. This matrix, call
it Iσ, has one row for each variable X, and one column
for each e ∈ E(A, σ). In every column, there is an entry
k in correspondence to a variable Xj , if the update of e
states that X ′j = Xj + k; all other entries are equal to
zero. Moreover, the entries of the rate vector rσ, of size
|E(A, σ)|, are obtained by multiplying the rate function
rate(e) by the indicator function of guard(e) (this vector
differs from the rate vector of Section 2.2 for the absence
of RTS-state variables). Hence, the equation vector odeσ
in RTS-state σ is odeσ = Iσ · rσ.

We now turn to the crucial definition of activation condi-
tions of HA-edges. Here we need to take into account the
temporal evolution of the system: while in the (d)sCCP
program the temporal duration of events is governed by
stochastic laws, in the automaton we need to remove the
stochastic ingredient without altering too much the timing
structure of events.

First of all, observe that part of the discrete events of the
(d)sCCP program has been subsumed by the differential
equations in each mode. Therefore, we need to deal only
with the events triggering an internal RTS-state change,
i.e. with RTS-edges in E0(A). To do this, we need a few
auxiliary variables, one for each RTS-edge of E0(A). The
transition variable associated to edge e ∈ E0(A) will be
identified with Ye.
In order to correctly regulate the timing of state-changing
events, we need to set appropriate activation conditions
implicitly depending on time. Consider an RTS-edge e ∈
E0(A): in sCCP the timing of the associated transition
is governed by its rate rate(e) = λ. In general, λ is a
function λ(X) of (some) system variables. Actually, as
these variables vary continuously over time, governed by
differential equations, we have that λ is time-varying as
well, say λ = λ(t). The transition in the (d)sCCP program,
when isolated from the context, is a non-homogeneous
Poisson process [Ross, 1996]. Thus, we can define the
cumulative rate function

Λ(t) =

t∫
t0

λ(s)ds,

which is a monotone function of t. The theory of non-
homogeneous Poisson processes then states that the num-
ber of firings at time t behaves like a Poisson variable with
rate equal to Λ(t), hence the average number of firings of
the transition at time t equals Λ(t). Therefore, we may
activate the transition whenever Λ(t) ≥ E[Λ(t)] = 1, corre-
sponding to the happening of at least one firing on average.
This condition is expressed in the HA as Ye ≥ 1, with the
associated transition variable Ye evolving according to

Ẏe =
dΛ(t)
dt

= λ(X). (1)

Clearly, variables Ye’s are additional HA-variables, while
their differential equations will become part of the flow
conditions of each mode.
In the activation conditions for e ∈ E0(A) we also need to
take into account the (d)sCCP transition’s guards. Hence,

jump(e) = guard(e) ∧ Ye ≥ 1.
The choice of ≥ instead of a simpler equality is introduced
in order to avoid starvation for the transition 4 .
All discrete HA-transitions are required to be urgent, i.e.
fired as soon as jump(e) is true.
The resets of the HA-edges e ∈ E0(A) consist of two
components. The first one coincides with the update of
the corresponding RTS-edge, while the second sets to
zero all variables Ye—this is a sort of counterpart of the
memoryless property of Markovian processes.
If the rate function λ(X) is constant, λ(X) ≡ k, then
Equation (1) reduces to Ẏe = k, which has solution
Ye(t) = kt (provided Ye(0) = 0). Hence, Ye ≥ 1 can be
rewritten as t ≥ 1

k : 1
k is the expected time of the first firing

of the corresponding (d)sCCP transition. Essentially, a
HA-transition fires after a time equal to the expected time
of the corresponding transition in the stochastic (d)sCCP
component.

The above discussion can be synthesized in the following:
4 guard(e) can be false when Ye = 1, but true infinitely often later
on.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12603

Fig. 4. Hybrid automata associated to Neg (left) and
Degrade (right) agents of Table 2.

Definition 4. Let A be a (d)sCCP sequential agent operat-
ing on store variables X. The hybrid automaton HA(A) =
(V,E,Z, f low, init, inv, jump, reset) associated to A is de-
fined by

(1) the control graph is given by V = S(A) and E =
E0(A);

(2) the variables are Z = X ∪ {Ye | e ∈ E};
(3) for each v ∈ V , flow(v)|X = odev|X if X ∈ X,

otherwise X = Ye for some e ∈ E and flow(v)|X =
rate(e) 5 ;

(4) init(v) is (X = x0) ∧
(∧

e∈E Ye = 0
)
, for each vertex

V ∈ V , where x0 is the initial value of X in the store
(cf. Def. 1);

(5) inv(v) = true for each v ∈ V ;
(6) jump(e) = guard(e) ∧ Ye ≥ 1, for each e ∈ E;
(7) reset(e) = update(e)∧

(∧
e∈E Y

′
e = 0

)
, for each e ∈ E.

As an example, consider the (d)sCCP code of a Neg(X,R)
gate (cf. Section 3), as defined in Table 2. Its RTS is shown
in Figure 2 and consists of two states and three edges, one
looping in RTS-state ON, the other two connecting back
and forth RTS-states ON and OFF. The hybrid automaton
associated to it is shown in Figure 4.
It has two modes and four variables, two corresponding
to the store variables, X and R, and the other two, Y1

and Y2, associated to non-looping edges. Their differential
equations are, according to Definition 4, Ẏ1 = kiR and
Ẏ2 = ku, for both modes. Equations for X and R, instead,
depend on the mode: in the ON state they are Ẋ = kp and
Ṙ = 0, while in the OFF state Ẋ = Ṙ = 0. In Figure 4
it is shown also the HA associated to the Degrade agent
of Table 2: it has one mode, no edges, and one variable X
evolving according to Ẋ = −kdX.

Automata (Flux) Product. Def. 4 gives a recipe
to construct hybrid automata of sequential components.
These have to be combined together to form the hybrid
automaton of the network. The key problem is that the
same variable of the store can be modified by several agents
concurrently. To capture this feature at the HA level, we
need a product construction which is able of superimposing
fluxes, i.e. adding the right-hand side of the differential
equations of each component for all shared variables. Be-
fore giving the formal definition of this flux product, we
put forward some notation. The product G = G1 ×G2 of
two graphs G1 = (V1, E1) and G2 = (V2, E2) has vertex
set V1 × V2 and edges of the form ((v1, w), (v2, w)), where
(v1, v2) ∈ E1, or ((v, w1), (v, w2)), where (w1, w2) ∈ E2.
Given an edge e ∈ E, the projection π1(e) is defined for all

5 flow(v)|X denotes the restriction of vector flow(v) to the compo-
nent corresponding to variable X.

edges e = ((v1, w), (v2, w)), and is the edge (v1, v2) ∈ E1.
Projection π2 can be defined symmetrically.
Definition 5. (Flux Product). LetH1 = (V1, E1,X1, f low1,
init1, inv1, jump1, reset1) and H2 = (V2, E2,X2, f low2,
init2, inv2, jump2, reset2). The flux product of H1 and H2

is the hybrid automaton H1 ⊗ H2 = (V,E,X, f low, init,
inv, jump, reset) defined by

(1) (V,E) = (V1, E1)× (V2, E2);
(2) X = X1 ∪X2;
(3) flow((v1, v2))|X = flow1(v1)|X + flow2(v2)|X , if

X ∈ X1 ∩ X2. Otherwise, if X ∈ Xi, then
flow((v1, v2))|X = flowi(vi)|X ;

(4) init((v1, v2)) = init1(v1)∧ init2(v2) and inv((v1, v2))
= inv1(v1) ∧ inv2(v2)

(5) jump(e) = jump1(e1), if e ∈ E is such that
π1(e) = e1, otherwise, if π2(e) = e2, then jump(e) =
jump2(e2);

(6) reset(e) = reset1(e1) if π1(e) = e1, while reset(e) =
reset2(e2) if π2(e) = e2.

The flux product is almost the classical product of two
HA [Henzinger, 1996], the only difference being the treat-
ment of fluxes for variables shared among the factors. In
our case, in fact, fluxes are added.
Inspecting the previous definition, it is not difficult to see
the following:
Lemma 2. The flux product ⊗ is associative and commu-
tative.

We are now ready to define the hybrid automaton associ-
ated to a (d)sCCP network N :
Definition 6. Let N be a (d)sCCP network with compo-
nents A1, . . . An. The hybrid automaton associated to N
is

HA(N) = HA(A1)⊗ . . .⊗HA(An).

Notice that the modes of the automaton HA(N) are
the combination of modes of the sequential components;
in total, HA(N) has |S(A1)| × . . . × |S(An)| states. In
addition, the variables of HA(N) are the store variables
X of the system, shared by all components, for which fluxes
are added, and the variables involved in the activation
conditions of transitions, which are local within each
component.

Repressilator revisited. It is time to go back to our
initial example, i.e. the Repressilator. In Section 3 we
showed that the simple stochastic model based on gene
gates oscillates, while the corresponding ODE model, gen-
erated with the automatic translation method of Sec-
tion 2.2, does not oscillate at all. From the analysis of the
derived equations, we had the idea of preserving part of
the discreteness of sCCP, translating it to hybrid models.
The hope was that the preservation of the discrete behav-
ior of gene gates was sufficient to produced the desired
oscillatory behavior.

The sCCP model of Repressilator has six components,
three gene gates and three agents degrading the three
proteins. The HA for these components are shown in Fig-
ure 4; applying the flux product construction to them, we
obtain a hybrid automaton with 8 modes, corresponding
to the possible combinations of genes being on or off,

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12604

Fig. 5. Time trace of the hybrid automaton associated
to the Repressilator system applying the method of
Section 4. Parameters are the same as those in caption
of Figure 1. State changing transition are activated
here as soon as the integral functions of local time
reach their threshold value. This causes the regularity
of the oscillation, as opposed to the stochastic trace
of Figure 1(a).

and 9 variables. Three of them, A,B,C, are those giving
the quantity of proteins in the system, while the other
six YX,on, YX,off , X = A,B,C, govern activation and
deactivation of genes.
The equations in each mode are decoupled; for instance,
when gene A is on, the equation for Ȧ is

Ȧ = kp − kdA,
simplifying to

Ȧ = −kdA,
when the gene if off. Notice that these equations are
obtained by adding the right-hand side of the equations for
the Neg and Degrade HA (cf. Figure 4). The interactions
between repressors and genes, instead, are confined to
the activation conditions of the automaton transitions.
Consider again gene A and suppose to be in a mode of
the automaton where gene is on. Then, the transition
switching this gene off has an activation condition equal
to

YA,off ≥ 1 ∧ C ≥ 1,

with ẎA,off = kbC depending from the repressor C
(C ≥ 1, instead, is the guard of the corresponding RTS-
edge). The transition that turns gene A on, instead, has a
constant rate ku, hence its activation condition is YA,on ≥
1, ẎA,on = ku.
In Figure 5 we show a simulation of the resulting hybrid
automaton, with urgent transitions. We can observe that
the mixed discrete/continuous nature of the automaton is
able to capture the oscillatory behavior.

As a final remark, note that in sCCP the guards R ≥ 1
and R > 0 (where R is one of the three repressors A,B,C)
are equivalent, as molecules have integer quantities. This is
not true anymore in the hybrid automaton, as small values
of the repressor still contribute to equation (1), and may
activate the repression even if R < 1, a non-sense.

State-space explosion. One issue concerning the con-
struction outlined in the paper is the number of discrete
modes of the final HA. In fact, the flux product con-
struction generates a number of modes exponential in
the number of components. However, as long as we are
interested in simulating the HA, this is not a big issue.

In fact, not all putative modes are always necessary. In
particular, the automaton can be simulated on-line, as
in each temporal instant only the current mode and its
outgoing transitions need to be kept in memory; the other
modes can be inferred directly from the HA of each single
component.

Non-determinism. In the simplest case, we require all
transitions of the hybrid automaton to be urgent, meaning
that they are taken whenever their guards are satisfied. In
this way, transition are deterministic: they are executed in
one single point of the time axis. Actually, although this
point corresponds to the mean of the stochastic process,
we are losing all the effects of stochastic variability. In
order to recover part of this effect, we can introduce some
non-determinism. The idea is simple: we can split an HA-
edge e in two, both having the same activations and resets
derived from guards and updates of the corresponding
(d)sCCP transition, but differing in the timing conditions.
Choosing an interval [1−δ1, 1+δ2], δ1 < 1, centered around
1, we activate one transition non-deterministically when
Ye ∈ [1 − δ1, 1 + δ2] (and the other guards are true). The
other transition, instead, is urgent and it is active when
Ye ≥ 1 + δ2. This second transitions is introduced in order
to deal with situations when the first transition can never
be taken due to the presence of false guards when Ye ∈ [1−
δ1, 1 + δ2]. The size δ1 + δ2 of [1 − δ1, 1 + δ2] essentially
controls how much of the stochastic variability we are
capturing; in fact, the fraction of stochastic transitions we
are capturing equals the probability of transition time T
belonging to interval [1

λ − δ1,
1
λ + δ2]. Reasonably, the size

δ1+δ2 cannot be too large, as all times in [1
λ−δ1,

1
λ+δ2] are

to be considered equally probable to be chosen in the non-
deterministic case (in contrast with the stochastic model,
where they are exponentially distributed).

5. CONCLUSIONS

We focused on the problem of approximating stochastic
dynamics of process algebras with continuous dynamical
systems. Instead of working with differential equations,
we used hybrid systems, mixing discrete and continuous
evolution. The discrete ingredient that we try to preserve
in this translation is related to all the structures devoted to
control the flow of events in process algebras. Essentially,
we want to represent explicitly those behaviors depending
on an inner state of a process. The example we used
is that of a negative gene gate, which can be in two
different states: on, producing the coded protein, or off,
not producing anything. In this translation, the difficult
part consists in defining coherently the activation regions
of automaton transitions: we used conditions based the
theory of non-homogeneous Poisson processes. We then
applied the method to Repressilator, a system composed
by three negative gene gates, cyclically repressing each
other, showing that the resulting automaton shows stable
oscillatory behavior, in contrast with the ODEs obtained
by methods present in literature.

The main problem constantly in the background of this
work is that of finding automatic translation procedures
from SPA to ODE’s or hybrid systems, preserving the
observed behavior of the described systems. The methods

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12605

present up to know in literature map SPA to ODE’s
using purely syntactic criteria, and in several situations
fail to preserve the dynamics. There are several sources of
non-equivalence, which can be broadly divided into three
classes: the effect of stochastic fluctuations, the bad ap-
proximations done in passing from discrete to continuous
variables (especially when the discrete variables are small)
and the description of logical structures of control with
continuous variables. We introduced hybrid automata to
deal precisely with this last class of disturbance, describing
these control structures explicitly in the control graph of
the target hybrid automaton. Therefore, this approach
seems suited to deal especially with all those systems
that can be described as circuits, whose components are
switches or other logical devices, like genetic networks.
This intuition is supported by several tests we performed
on other genetic networks described by gene gates (results
not shown).
Unfortunately, the other two sources of non-equivalence
are still there, though the framework of hybrid systems
can provide interesting tools to cope with them. One pos-
sibility to deal (qualitatively) with stochastic effects is that
of using non-determinism to let hybrid automata produce
set of traces showing a certain degree of variability. For
instance, non-determinism for the Repressilator may result
in oscillations with variable period, pretty much what
happens in its stochastic version. The bad approximation
of low populations, instead, may be dealt by retaking and
extending the observation made in Alur et al. [2001]: the
dynamics of our systems should be continuous for big
populations and discrete for small ones. Actually, in Alur
et al. [2001] authors suggest to use a stochastic dynamics
at low regimes, though the treatment of the stochastic
ingredient we propose here results in systems that are not
stochastic, hence computationally easier to analyze. More
concretely, for every variable of the system we can define
two modes: one in which dynamics is continuous and the
other where the evolution is discrete, i.e. represented by a
looping HA-transition with activation conditions defined
similarly to those of Section 4.

We would like to make a couple of final remarks. First of
all, the treatment of the stochasticity by means of non-
determinism is somewhat unusual: normally, in process
algebras non-determinism is quantitatively “solved” us-
ing some stochastic ingredient, while here we use non-
determinism to qualitatively encode stochastic effects. Sec-
ondly, comparing this translation with the methods as-
sociating ODEs to SPA [Bortolussi and Policriti, 2007,
Hillston, 2005, Cardelli, 2006], we observe that while these
methods are based on a purely syntactic manipulation of
terms, our translation incorporates non-trivial semantical
ingredients in the way transitions of the automaton are
defined.

We conclude by noting that throughout the paper we
used the vague locution “behavioral equivalence”, with-
out defining it precisely. This is by itself an interesting
problem, as it corresponds to decide what precisely we
want to capture and what we are willing to abandon in
a translation procedure. We believe that, above all, the
basic ingredient we need to preserve is the qualitative
evolution of the system, having maybe a family of stricter
equivalences gradually taking into account quantitative in-

gredients. In this direction, we are currently investigating
approaches based on the use of Temporal Logic.

REFERENCES

R. Alur, C. Belta, F. Ivancic, V. Kumar, M. Mintz,
G. Pappas, H. Rubin, and J. Schug. Hybrid modeling
and simulation of biomolecular networks. In Proceedings
of HSCC, LNCS 2034, pages 19–32, 2001.

M. Antoniotti, A. Policriti, N. Ugel, and B. Mishra. Model
building and model checking for biochemical processes.
Cell Biochemistry and Biophysics, 38(3):271–286, 2003.

R. Blossey, L. Cardelli, and A. Phillips. A compositional
approach to the stochastic dynamics of gene networks.
T. Comp. Sys. Biology, pages 99–122, 2006.

R. Blossey, L. Cardelli, and A. Phillips. Compositionality,
stochasticity and cooperativity in dynamic models of
gene regulation. HFPS Journal, in print, 2007.

L. Bortolussi. Stochastic concurrent constraint program-
ming. In Proceedings of QAPL 2006, ENTCS, volume
164, pages 65–80, 2006.

L. Bortolussi. Constraint-based approaches to
stochastic dynamics of biological systems. PhD
thesis in Computer Science, Univ. of Udine, 2007.
http://www.dmi.units.it/~bortolu/files/reps/
Bortolussi-PhDThesis.pdf.

L. Bortolussi and A. Policriti. Modeling biological sys-
tems in concurrent constraint programming. Con-
straints,13(1), 2008.

L. Bortolussi and A. Policriti. Stochastic concurrent
constraint programming and differential equations. In
Proceedings of QAPL 2007, 2007.

L. Cardelli. From processes to odes by chemistry. down-
loadable from http: // lucacardelli. name/ , 2006.

M.B. Elowitz and S. Leibler. A synthetic oscillatory
network of transcriptional regulators. Nature, 403:335–
338, 2000.

D.T. Gillespie. Exact stochastic simulation of coupled
chemical reactions. J. of Physical Chemistry, 81(25),
1977.

T. A. Henzinger. The theory of hybrid automata. In
Proceedings of LICS ’96, 1996.

J. Hillston. Fluid flow approximation of pepa models. In
Proceedings of QEST 2005, 2005.

H. Kitano. Foundations of Systems Biology. MIT Press,
2001.

H. Kitano. Computational systems biology. Nature, 420:
206–210, 2002.

M. Kwiatkowska, G. Norman, and D. Parker. Proba-
bilistic symbolic model checking with prism: A hybrid
approach. Int. Jo. on Software Tools for Technology
Transfer, 6(2):128–142, September 2004.

J. R. Norris. Markov Chains. Cambridge University Press,
1997.

C. Priami and P. Quaglia. Modelling the dynamics of
biosystems. Briefings in Bioinformatics, 5(3):259–269,
2004.

A. Regev and E. Shapiro. Cellular abstractions: Cells as
computation. Nature, 419, 2002.

S. M. Ross. Stochastic Processes. Wiley, New York, 1996.
V. A. Saraswat. Concurrent Constraint Programming.

MIT press, 1993.
D. J. Wilkinson. Stochastic Modelling for Systems Biology.

Chapman & Hall, 2006.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12606

