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Abstract:
An important issue in the area of reconfigurable systems is how to respond correctly if new
components are added. We consider the problem of improving control performance for a system
where a new set of sensors becomes available. It is assumed that a complete re-design of the
control system is undesirable for various reasons. The sensor dynamics are unknown and must
be identified via experiments. The paper demonstrates how new sensor information can be
fused with existing sensor information and fed to the existing control system, either based on
knowledge of the existing plant or in an entirely data-driven fashion. The method is illustrated
on a numerical example.
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1. INTRODUCTION

1.1 Plug-and-play process control: an approach towards
incremental controller design

The life-time of a controller for an embedded control
system might be just as long as the life-time of the
embedded system itself, especially if the control system
has been designed to handled aging components (e.g. by
adaptive control methods) and/or faulty components (e.g.
by fault tolerant control methods.

In contrast, the life-time of a high level control system
for a complex, industrial process is typically very short,
as industrial control processes are often characterized by
constant, structural modifications.

The short life-time of high level process control systems
is often a limiting factor for companies, when they have
to decide whether to invest in advanced control design
projects. Obviously, the payback time has to be shorter
than the controller life-time, but this precondition might
not be satisfied for complicated processes that are subject
to frequent, structural changes.

It would thus be highly desirable if new control system
hardware could enter into the system in a ”plug-and-play”
fashion, as known from the PC industry since the 1990’s;
the system automatically recognises the new device, and
dynamics made observable by new sensors are identified,
whereupon a controller that utilises new measurements
and/or actuation channels can be designed. In a true
”plug-and-play” fashion, the hope would then be that
the controller be re-designed automatically using efficient
numerical tools, thus reducing or even removing the load
on the designer.
⋆ This work is supported by The Danish Research Council for

Technology and Production Sciences.

The problem here is that a vast majority of control
design methodologies are monolithic in the sense that
they embark from a model of an uncontrolled (open-loop)
system and outputs a full, multivariable control system,
that does not exploit any knowledge or functionality from
previous designs.

This in itself poses the problem that it can be difficult
to merge the designed multivariable feedback controller
with all the other software that is part of the control
and automation system. In fact, in a typical automation
system, the feedback control algorithm constitutes at most
a few percent of the total number of source code lines.

Thus, there is a need for a novel control design paradigm,
where structural changes of a plant can be made by in-
cremental changes of the control system, and where, ulti-
mately, the control system will be able to autonomously
re-configure itself in order to accommodate such changes.

This vision can be exemplified by the industrial control
scenario described in Knudsen et al. (2008). This case
study concerns a district heating system, where the size
of the network is increased. If the existing pumping ca-
pacity of the network is not sufficient, a number of new
pumps and pressure sensors are added. It is non-trivial
how to extend the control system in such a way that both
the existing and the new part of the network performs
adequately, without having to redesign the entire control
system, which is not feasible. A common practical solution
is to integrate network extensions by separating them from
the existing network by heat exchangers. This solution,
however, is sub-optimal, and Knudsen et al. (2008) demon-
strate that a better solution can be obtained by applying
a plug-and-play control concept.

Another industrial case study is described in Michelsen
et al. (2008). This paper concerns the problem of tem-
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perature control of a domestic heating system. For such
a system, new heating elements may be added after the
initial installation, i.e., the house might have been built
with a floor heating system, and an electrical heater might
then be added later. The challenge is now that the built-
in controllers of the individual heat emitters might be
conflicting, as they are typically all designed to control
the temperature individually. In Michelsen et al. (2008)
it is described how to design these control systems in a
way such that they can be added one by one without
compromising the overall system performance.

As a third example, in Trangbaek et al. (2008), a buffer
tank example is studied. The fluid level is controlled by
a pump and a valve in series. The tank is disturbed by
an unmeasured load flow. The only measurement is the
fluid level. At the original design, the valve was manually
operated, meaning that the control system could only use
the pump to control the fluid level, and a single loop
controller is designed to that end. After some time, it is
found that the performance is not satisfactory and that
the strain on the pump is too high. Therefore the manual
valve is replaced with an electronically controlled one, and
Trangbaek et al. (2008) describes a systematic procedure
for attaching an add-on controller in a ”piggy-back config-
uration on top of the existing one while retaining stability
at all times.

As a common denominator for these three case studies,
a control system is already running before the structural
modification, and in each case, it is not acceptable to take
the plant out of operation in order to re-commission the
entire control system.

The three examples are described here to exemplify the
need for a new control design paradigm as outlined above.
Such a paradigm is the goal of a research program carried
out by a consortium of companies and universities in Italy
and Denmark, see Plug & Play Process Control.

1.2 Adding a new sensor

This paper deals with another example of a problem that
should be addressed by this new control design paradigm:
the situation where a new sensor is plugged into a control
system, providing measurements hitherto unavailable to
the control system. Typically, when introducing a new
sensor in this way, the system designer hopes to obtain
better information about specific parts of the plant, e.g.,
extra temperature or pressure sensors in a power plant,
leading to (for instance) higher-bandwidth control or bet-
ter observability of certain plant states.

On the other hand, as outlined above, the control engineers
working at the plant are rarely keen on de-commissioning
the existing control system, since the workload involved
and the system downtime this incurs, likely poses an unac-
ceptable burden on the plant, economically and otherwise.

So far, not much work has been done in this area. Mostly,
the issue of on-line reconfigurable control systems has been
done in the field of fault-tolerant control, see e.g., Bao et al.
(2003); Blanke et al. (2003); Zhang et al. (2004). However,
in fault-tolerant control, the situation is usually the reverse
of the one outlined above, namely that a sensor or actuator
breaks down, and the control system has to be able to
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ζ

Fig. 1. System setup. The existing system G is stabilised
by the existing controller K.

survive the loss. Benitez-Perez and Garcia-Nocetti (2003)
treats replacement of “dumb” sensors and actuators in an
existing distributed control system with “intelligent” ones,
along with the associated communication scheduling prob-
lem, but the numbers of in- and outputs remain the same
before and after the reconfiguration. Apparently, only Nie-
mann (2006) explicitly considers the problem of expanding
an existing control system with new sensors/actuators,
but full knowledge of both control and plant dynamics
is required, and a design method is not presented.

With complete plant and sensor knowledge, one might also
consider an approach like Abdelrahman and Kandasamy
(2003). As mentioned, however, the control system can-
not always be re-designed from the bottom up. Rather
than redesigning the control system, this paper instead
proposes to use new measurements together with the ex-
isting measurements in a data driven, sensor fusion-like
fashion (cf. e.g. Brooks and Iyengar (1998); Dasarathy
(1994) and the references therein). In addition to avoiding
the control redesign, the approach chosen here does not
require estimation of the new dynamics revealed by the
new sensor either; it only requires knowledge of the “old”
plant dynamics. To deal with the case where no such
knowledge is available, we propose an entirely data-driven
method for sensor fusion as an alternative.

The paper proceeds as follows. Section 2 describes the
setup, focusing on the existing control loop and the closed
loop with an extra sensor added. Then, we present an
approach to the aforementioned sensor fusion design based
on knowledge of existing plant dynamics and then propose
a purely data-driven filter design to fuse the new sensor
measurement with the existing measurements, assuming
no plant knowledge is available. Section 3 then compares
the approaches through numerical examples, and finally
Section 4 discusses the results and points out various issues
that should be addressed in future work.

2. INCORPORATING A NEW SENSOR

2.1 Setup

We consider the setup sketched in Fig. 1. The plant G has
the (known) state space realisation

xk+1 = Axk + Buuk + Bwwk

ζk = Cζxk + Dζwk (1)

ỹk = C̃xk + Dwwk

which maps disturbance signals w ∈ R
mw and control sig-

nals u ∈ R
m to performance outputs ζ ∈ R

pζ and original
measurement outputs ỹ ∈ R

p. A, Bw, Bu, Cζ , Dζ , C̃ and
Dw are constant real matrices of appropriate dimensions,
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Fig. 2. A new measurement y⋆ becomes available, provid-
ing measurements from the subsystem G⋆.
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Fig. 3. The filter F is introduced to fuse the sensor mea-
surements, providing an improved output estimate ŷ
to be used for the exiting feedback control.

with (A, Bu) and (A, C̃) controllable and observable pairs,
respectively. The disturbance w ∈ R

(n+p+pζ) contains
reference signals yr as well as state and measurement
noise. The noise is assumed to be sampled from a zero-
mean Gaussian sequence with covariance matrix equal to
the identity matrix. The actual effects on the states and
outputs are modelled via Bw and Dw, while Dζ models
the effect of reference and noise on the performance. G is
controlled by a controller K̃ with fixed transfer function.

At some point a new sensor is connected to the plant. The
new sensor provides access to measurements y⋆ ∈ R

p⋆

from
a new dynamical subsystem G⋆, whose states are affected
by the control inputs and system states. The dynamics
may be due to the sensor itself, as well as dynamics in
the plant. However, we shall assume that the subsystem’s
states do not affect the original system G; see Fig. 2. Thus,
even if the sensor dynamics were known, the new plant
dynamics have so far been unobservable. As a consequence,
the new subsystem is considered entirely unknown at the
point where the new sensor comes on-line.

As outlined earlier, we assume that the controller itself
cannot be reconfigured. Thus, we propose to design a
sensor fusion filter, denoted F in Fig. 3, which includes
the new sensor measurement in the existing measurements,
hopefully improving the ’quality’ of the signals provided
to the controller.

We assume that the controller itself is optimal with re-
spect to some performance objective given the original
measurements. Thus, no improvement can be achieved
by any causal filtering of these without using the new
measurement. What we can hope to achieve is to remove
measurement noise by using information from the new
sensor.

In the following we will propose various methods for
designing such a filter.

2.2 Subspace-based Filtering

In this section we present a method for designing the
filter F (z) using a model of G (but not of G⋆ or K)
and measurements. The design consists of two parts.
First we generate a sequence of desirable measurements,
in the sense that we attempt to remove measurement
noise efficiently using a non-causal filter. Then we find
a causal filter that will generate this desired result using
all measurements.

Note that xk in (1) is not measured, but can be estimated
by various means, since G is assumed to be known. Here
we propose to employ subspace methods (see e.g., van
Overschee and Moor (1996)) to estimate the states, since
they are not restricted to open-loop stable systems. In the
following, we give a brief review of this approach.

We consider the known system G. For a given number of
block rows i > n, we define the following block Hankel
matrices along with an extended observability matrix Γi:

U0|i−1 =









u0 u1 u2 . . . uj−1

u1 u2 u3 . . . uj

...
...

...
. . .

...
ui−1 ui ui+1 . . . ui+j−2









, Γi =















C̃

C̃A

C̃A2

...

C̃Ai−1















Ỹ0|i−1 =









ỹ0 ỹ1 ỹ2 . . . ỹj−1

ỹ1 ỹ2 ỹ3 . . . ỹj

...
...

...
. . .

...
ỹi−1 ỹi ỹi+1 . . . ỹi+j−2









Note that, since (A, C̃) are assumed to be observable, the
rank of Γi is equal to n.

Next, we define the extended reversed controllability ma-
trix ∆i as

∆i =
[

Ai−1Bu Ai−2Bu . . . ABu Bu

]

and a lower block triangular Toeplitz matrix Ti incorpo-
rating all the system matrices as

Ti =















Dw 0 0 . . . 0

C̃Bu Dw 0 . . . 0

C̃ABu C̃Bu Dw . . . 0
...

...
...

. . .
...

C̃Ai−2Bu C̃Ai−3Bu C̃Ai−4Bu . . . Dw















Then the optimal state sequence

Xi = [xi, xi+1, xi+2, . . . , xi+j−1]

is computed as (see van Overschee and Moor (1996)):

Xi =
[

∆i − AiΓ†
iTi AiΓ†

i

]

[

Ui

Ỹi

]

(2)

This state estimate can then be used to generate an
optimal filtered existing output sequence ŷopt:

ŷopt,k = C̃xk, k = i, . . . , i + j − 1

Note that the filtering is noncausal and as such can be
expected to give better results than a Kalman filter. Also,
a Kalman filter design would require knowledge of the full
system, which we assume is not available here.

Alternatively, we can generate yopt by a low pass filtering.
A causal low pass filter will create a phase shift, and cannot
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Fig. 4. Setup for data-driven filter design.

be expected to produce anything useful. But by using a
non-causal filter, zero phase shift can be achieved. More
specifically, the original measurements are first filtered
through a standard low pass filter. The filtered sequence
is then reversed in time and filtered again through the
same filter, and reversed again. Of course, no choice of a
causal F can reproduce this filtered sequence if only the
original measurements are provided, but in some cases the
additional measurements will help. The point is that by a
lucky selection of filter poles, mainly measurement noise
will be removed, although the best way to choose these
poles is still an open question.

In order to compute F in Fig. 3, we parameterise F using
some appropriate set of parameters θ (for instance as an
ARX model) and solve the following minimisation problem

min
θ

∥

∥

∥

∥

∥

ŷopt,k − F (θ, z)

[

y⋆
k

ỹk

uk

]
∥

∥

∥

∥

∥

(3)

for k = 1, . . . , N and some appropriate signal norm ‖ · ‖.

2.3 Data-Driven Filtering

If the plant model is not known, it is not possible to
generate the optimal state sequence, and hence ŷopt in the
previous section is not known. To devise an entirely data-
driven approach we instead turn our attention to optimal
predictors.

Consider the setup in Fig. 4. From measurement data, we
can design two predictors for ỹ: P0 = [P0y(α0, z) P0u(β0, z)]
uses control signals and only the old output measurements,
whereas P1 = [P1y(α1, z) P1u(β0, z)] also uses the new
measurement, while still only predicting the old measure-
ments. In each case α and β represents free parameters.
In the design, we enforce β1 = β0, which is equivalent to
forcing the part concerned with the control signal to be
the same for the two filters, i.e., P1u(β0, z) = P0u(β0, z).

Assuming that the new measurement contains useful infor-
mation, we would now expect P1 to be a better predictor
than P0. If not, we would like the design method to pro-
duce F = I, since the controller is assumed to be optimal.

This can be achieved with the setup in Fig. 5. Letting P1

generate a good prediction of ỹ, the inverse of P0 can then
generate a filtered version of the measurement to be fed
to the controller. Observe that the control signal may be
needed for the filter design, but is not necessary in the
real-time implementation.

To sum up, the procedure is as follows:

(1) Identify P0 based on measurements of ỹk and uk.
Extract the mapping P0u(β0, z)

P1

ỹk

y⋆
k

uk

P−1

0y

P0u

ỹfilt,k

y̆⋆
k+1

ỹk

y⋆
k

P1
ỹfilt,kP−1

0y

Fig. 5. Construction of F (z) = P0y(α0, z)−1P1y(α1, z).

(2) Identify P1 based on measurements of ỹk, y⋆
k and uk

subject to the constraint that P1u(β0, z) = P0u(β0, z)
(3) Construct F as F = P0y(α0, z)−1P1y(α1, z).

3. NUMERICAL EXAMPLES

This section illustrates the methods proposed in the previ-
ous section through two numerical examples. First, a sim-
ple single-input, single-output open-loop unstable system
described by

xk+1 =

[

1.05 0.8
0 0.8

]

xk +

[

0
2

]

uk +

[

w1,k

w2,k

]

ỹk = x1,k + w3,k

With E(wkwT
k ) = I, a standard LQG controller is designed

for this system using standard techniques, see e.g., Zhou
et al. (1995). Since the controller is optimal, no perfor-
mance gain is possible by simply filtering the existing
measurements.

A new sensor then comes online, adding the extra output

y⋆
k = x2,k + w4,k

where the standard deviation of w4 is one-tenth of the
standard deviation of w3. Utilising this new output, we
design three different filters, denoted Fopt(z), Fzpf (z) and
FFIR(z), respectively. Fopt is designed assuming full sys-
tem infomation is available, using optimal controller design
techniques; this filter is included purely for comparison
purposes. Fzpf (z) is designed via non-causal zero phase lag
filtering, while FFIR(z) is designed as outlined in Section
2.3 using second-order finite-impulse response filters.

The following table lists the variances of the control and
state sequences with and without each of the new filters:

Original Fopt FFIR Fzpf

E(uT u) 1.1468 0.6483 0.5618 0.6328
E(xT

1 x1) 9.86365 3.95976 5.3780 9.7832
E(xT

2 x2) 5.4543 2.2210 2.6055 4.1245

From the closed-loop frequency responses shown in Fig. 6
and the table, it is seen that the filters in each case improve
the performance by including the new sensor measure-
ment. Furthermore, it is worth noting that the introduc-
tion of the filters leads to performance improvements in
almost the entire frequency range, except for the channel
from w1 to x1. From Fig. 7 it is noted that the shapes
of the frequency responses of both Fzpf (z) and FFIR(z)
are similar to the optimal full-information filter Fopt(z) in
spite of the fact that no model information was used in
the design of these filters.
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Fig. 6. Magnitude Bode diagrams of the closed loop trans-
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and w4 to the control signal u and the states x1 and
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Fig. 7. Frequency response of the designed filters.

Next we consider an open-loop unstable system with two
outputs and two controllable inputs of the form (1) with

A =







0.9220 0.1592 −0.1579 −0.0012
0.2046 0.9654 0.1139 0.0654
0.1503 −0.0304 0.8254 −0.0804
0.1424 −0.5030 0.0621 0.7526







Bu =







0.0006 0.0008
0.0002 0.0015

0 0
0 0






, C̃ = [I 0]

An LQG controller with integrators for both outputs has
been designed for this system. The correct model of G and
the actual noise covariances have been used in the design.

The system is affected by reference signals, state and mea-

surement noise. Thus, w is defined as wk =
[

yT
ref,k νT

k

]T
,

where yref,k ∈ R
2 and ν is a 6-dimensional stationary

random process with mean 0 and covariance E(ννT ) = I.
The influence of the disturbance on the states and outputs
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Fig. 8. Initial experiment with new sensor. The top plot
shows the measured output ỹ with measurement noise
removed (full line) plotted together with the reference
yref (dash-dotted line). The middle plot shows the
new sensor output y⋆. The bottom plot shows the
control signal u.

is given by Bw =
[

0 10−2I 0
]

and Dw =
[

−I 0 10−1I
]

,
respectively.

Then, a new sensor is introduced into the system, provid-
ing measurements from a new subsystem G⋆ (cf. 2) with
the following (unknown) dynamics:

x⋆
k+1 = A⋆x⋆

k +
[

Ã⋆ B⋆
]

[

xk

uk

]

+ ηk

y⋆
k = C⋆x⋆

k + ξk (4)

with A⋆, B⋆ and C⋆ represent subsystem dynamics and
the in- and output matrices of the subsystem, respectively,
and ηk and ξk normally distributed independent random
samples. Ã⋆ represents the coupling between the states of
G and the subsystem states.

Ã⋆ =

[

0 0 0.2 0.1
0 0 −0.3 0.64

]

, A⋆ =

[

0 0.8
0.2 −0.12

]

B⋆ =

[

0 0
0.0002 0.00165

]

C⋆ = [0 0 0 0 1 0]

An experiment is carried out where the existing mea-
surement ỹ is used for output feedback and the new
measurement y⋆ is simply recorded. The control signals
and measurements are shown in Fig. 8. The new sensor
is simulated with measurement noise with one-tenth the
standard deviation of the sensors that yield the existing
output measurements.

Next, equation (2) is used to generate the optimal filtered

state sequence based on the known system (A, Bu, C̃) and
the input-output data collected during the experiment.
From these filtered states, a desired output sequence {ŷ}
was then computed and used for the design of a sensor
fusion filter

F (z) =

[

AF BF

CF DF

]
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Fig. 9. Experiment where the new sensor measurements
are fused with the existing measurements. The control
signal is clearly more smooth than in Figure 8.

F was found by approximating the following minimisation:

min
AF ,BF ,CF ,DF

∥

∥

∥

∥

∥

ŷ − F (z)

[

ỹ
y⋆

u

]∥

∥

∥

∥

∥

2

(5)

by a standard subspace identification method, restricting
F to be of order two.

The sensor fusion filter was then inserted in closed loop
and the experiment was repeated (with the same noise
sequence for comparison). The result can be seen in Fig.
9. From this figure, it is observed that although the output
performance has only been improved by a small amount,
the control is clearly much smoother than before the filter
was introduced. Deeper examination reveals, however, that
the filter does not actually use the new measurement
considerably (i.e., the gain from y⋆ to ỹ is very small).
Instead, the performance improvement seems to be due to
a noise smoothing effect in the filter.

The filter needs access to the control signal in the above
implementation. However, by removing u from the op-
timisation problem (5), we obtain a filter without this
need. This has also been tested on the example, again
resulting in a performance improvement (albeit not quite
as significant).

4. CONCLUSION

This paper identified a need for a novel direction in control
engineering, which enables designers to make incremental
changes to the control system of a ’living’ process. That
is, a process that changes with time in a structural
fashion, such as when new actuators or sensors are added.
It then proposed a novel method for fusing new sensor
measurements with existing sensor measurements from an
existing plant, so that they may be used in an existing
control loop. It is assumed that the controller cannot be
changed; this situation is fairly common in large-scale
plants where existing controllers are implemented using
programmable logic controllers with various safety logics
etc.

Two methods for designing the filter were presented, one
based on partial plant knowledge being available, for
instance acquired during plant operation, and one that
does not asssume any plant knowledge at all. Perhaps
surprisingly, the method that ignores plant knowledge
appears to work best, at least in simulations. This is likely
to be an issue of applying open-loop estimation methods
in closed-loop.

REFERENCES

M. Abdelrahman and P. Kandasamy. Integration of multi-
ple sensor fusion in controller design. ISA Transactions,
42:197205, 2003.

J. Bao, W. Z. Zhang, and P. L. Lee. Decentralized fault-
tolerant control system design for unstable processes.
Chemical Engineering Science, 58:50455054, 2003.

H. Benitez-Perez and F. Garcia-Nocetti. Reconfigurable
distributed control using smart peripheral elements.
Control Engineering Practice, 11:975–988, 2003.

M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki.
Diagnosis and Fault-Tolerant Control. Springer Berlin-
Heidelberg, 2003.

R. R. Brooks and S. S. Iyengar. Multiple-Sensor Fusion-
Fundamentals and Applications with Software. Prentice
Hall, Englewood Cliffs, NJ, 1998.

B. V. Dasarathy. Decision Fusion. IEEE Press, New York,
1994.

Torben Knudsen, Klaus Trangbaek, and Carsten Skovmose
Kallese. Plug and play process control applied to a
district heating system. In Proceedings of the 2008 IFAC
World Congress, Seoul, Korea, July 2008.

Axel G. Michelsen, Roozbeh Izadi-Zamanabadi, and Jakob
Stoustrup. Towards automatic model based controller
design for reconfigurable plants. In Proceedings of the
2008 IFAC World Congress, Seoul, Korea, July 2008.

H. Niemann. Parameterisation of extended systems. IEE
Proceedings: Control Theory and Applications, 153:221–
227, 2006.

Plug & Play Process Control. Research program of the
Danish Research Council for Technology and Produc-
tion Sciences. http://www.control.aau.dk/plugandplay,
2006.

Klaus Trangbaek, Jakob Stoustrup, and Jan Bendtsen.
Stable controller reconfiguration through terminal con-
nections. In Proceedings of the 2008 IFAC World
Congress, Seoul, Korea, July 2008.

P. van Overschee and B. De Moor. Subspace Identification
for Linear Systems. Kluwer Academic Publishers, 1996.

X. D. Zhang, T. Parisini, and M. M. Polycarpou. Adaptive
fault tolerant control of nonlinear uncertain systems:
An informationbased diagnostic approach. IEEE Trans.
Automatic Control, 49:12591274, 2004.

K. Zhou, J. Doyle, and K. Glover. Robust And Optimal
Control. Prentice-Hall International, 1995. ISBN 0-13-
456567-3.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

341


