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Abstract: This paper presents a nonsmooth optimization technique for solving a special µ-
synthesis control problem. Attention is focused on controller synthesis problems that involve real
diagonal scalings. An academic example illustrates the synthesis algorithm and a comparison
is made with the well-known DK-iteration algorithm. This paper shows that nonsmooth
optimization synthesis can provide better solutions than the standard DK-iteration algorithm.

1. INTRODUCTION

Over the past few years, the application of nonsmooth,
nonconvex optimization to non standard linear feedback
synthesis has been a subject of interesting research e.g.
Apkarian and Noll [2006a], Henrion and Overton [2006].
Many non standard control problems, such as, fixed-
order controller synthesis and decentralized control, are
by their nature nonconvex and hence are difficult to solve
by standard means (e.g. Bernstein [1992]). Semi-definite
relaxation conditions for those problems can sometimes
be derived at the expense of some conservatism.

Recently, nonsmooth optimization algorithms have been
developed to cope with fixed-order feedback synthesis, de-
centralized control and other related polynomial and ma-
trix optimization problems (Henrion and Overton [2006],
Burke et al. [2006], Apkarian and Noll [2006a]). More so-
phisticated algorithms, combining multidirectional search
with nonsmooth optimization techniques, are given in (Ap-
karian and Noll [2007]). Multidirectional search and non-
smooth optimization strategies are utilized in (Apkarian
and Noll [2007]) for solving fixed-order output feedback
controller synthesis, simultaneous stabilization and multi-
objective controller synthesis problems. In Apkarian and
Noll [2006b] local nonsmooth optimization algorithms are
presented to allows one to synthesize controllers under
integral quadratic constraints.

This paper focuses on a special scaled H∞ controller
synthesis. The problem consists of determining the pa-
rameters of an output feedback controller together with
those of a real similarity scaling matrix such that the
H∞ norm of the (scaled) closed-loop transfer matrix is
minimized. This problem is standard and appears in robust
and gain scheduled control theories (Packard and Doyle
[1993], Apkarian and Gahinet [1995], Apkarian and Adams
[1998]). This problem is known to be nonconvex and a
common way to solve it (approximately) is to use the well-
known DK-iteration procedure (e.g. Balas et al. [2001]).
The aim of this paper is to give an alternative solution
based on a nonsmooth optimization.

The µ synthesis can be reformulated as finding the local
minima of the unconstrained optimization program:

minimize f(X), X ∈ RN ,

where f is a continuously differentiable function of X, and
where the gradient of f(X) can be easily computed. In this
paper, f will represent the H∞ norm of a scaled closed-
loop transfer matrix which depends both on the controller
and the scaling parameters. X is the vector of decision
variables including the controller and scaling parameters
to be optimized.

The main motivation of this paper is to show that some µ-
synthesis problems, like the one of this paper, can be easily
solved by taking advantage of the freely available hybrid
nonsmooth optimization Matlab solver HANSO Overton
[2006]. This nonsmooth unconstrained optimization solver
combines gradient sampling and bundle methods and aims
to find the local minima of a continuously differentiable
function if its gradient can be computed almost every-
where.

The paper is structured as follows. Section 2 describes the
control synthesis problem. Section 3 outlines the synthesis
algorithm. In Section 4, the effectiveness of our µ-synthesis
algorithm is illustrated on a satellite example taken from
the µ-Analysis and Synthesis toolbox Balas et al. [2001]
and a comparison with the standard µ-synthesis algorithm
is given. Conclusions are given in section 5.

The notation is standard. If P and K are Linear Time-
Invariant (LTI) systems, the notation F(P,K) denotes
the closed-loop system resulting from the interconnection
of systems P and K. Tzw is the transfer matrix relating
the signal output z to the input signal w. ‖G(s)‖

∞
is the

H∞ norm of the LTI system G(s), which for continuous-
time systems, is given by

‖G(s)‖
∞

= sup
ω∈R

σ̄(G(jω)),

where σ̄(M) is the largest singular value of matrix M .
I stands for the identity matrix and In is the identity
matrix of dimension n. M∗ is the conjugate transpose of
the matrix M and for a non singular matrix M , M−∗

stands for (M−1)∗. If f(X) is a complex or a real function
of a matrix X then the derivative of f(X) with respect to

X is defined as ∂
∂X

f(X) =
[

∂
∂xij

f(X)
]

.
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2. PROBLEM STATEMENT

We consider the nth order linear time-invariant generalized
plant P (s) with state-space equations:

ẋ = Ax + Bww + Buu, (1)

z = Czx + Dzww + Dzuu, (2)

y = Cyx + Dyww + Dyuu, (3)

where x ∈ Rn is the plant state vector, w ∈ Rnw is
partitioned as [pT , w̃T ]T , where w̃ includes disturbances,
measurement noise, reference signals etc and where p ∈
Rnp is the output signal from a block-diagonal uncertainty
∆. zT = [qT , z̃T ]T ∈ Rnz , where z̃ is the error signal
and q ∈ Rnq is the input signal to the block-diagonal
uncertainty ∆. u ∈ Rnu is the control input and y ∈ Rny

is the measured input. The signals p and q satisfy p = ∆q
where ∆ belong to the set ∆ defined as

∆ = {blockdiag(θ1Ir1
, . . . , θmIrm

) : θi ∈ R}.

System (1)-(3) is supposed to be stabilizable and de-
tectable. This assumption ensures the existence of an inter-
nally stabilizing output feedback control law u = K(s)y of
order n. Also we will suppose Dyu = 0. This assumption
makes the closed-loop state-space matrices linear in the
control matrices. This is a standard assumption that can
always be satisfied via loop loop transformation (see e.g.
Zhou et al. [1995] for details). We suppose, without loss of
generality, that nw = nz and we define integers r > 0 and
s > 0 as r := np = nq and s := nw − r.

The similarity matrices J ∈ Rr×r associated with ∆ are
the real matrices J which commute with ∆, that is, the
matrices J in

J∆ := {J ∈ Rr×r | J∆ = ∆J, ∆ ∈ ∆}.

Definition 1. Scaled H∞ synthesis The γ-suboptimal
scaled H∞ synthesis problem consists of finding an in-
ternally stabilizing output control law u = K(s)y and a
scaling matrix J ∈ J∆ such that

∥

∥LF(P (s),K(s))L−1
∥

∥

∞
< γ, (4)

where L =

(

J 0
0 Is

)

.

Inequality (4) implies that the loop of figure 1 is well-
posed, internally stable, and ‖Tz̃w̃‖∞ < 1/γ for all ∆ ∈ ∆
with ‖∆‖

∞
< 1/γ where Tz̃w̃ is the closed-loop transfer

matrix relating the error signal z̃ to the exogenous signal
w̃ (figure 1).

The above H∞ controller synthesis problem, which is
based on a scaled version of the small gain theorem,
is a well-known nonconvex problem; see e.g. Apkarian
and Gahinet [1995]. A standard way to deal with such
a problem consists of using the so-called DK-iteration
algorithm used in µ-synthesis Packard and Doyle [1993],
Balas et al. [2001]. The DK-iteration algorithm involves a
sequence of convex minimizations, first over the regulator
(holding the scaling variable J fixed), and then over the
scaling J for a fixed value of the regulator. However the
DK-iteration procedure is not guaranteed to converge

to the minimum µ value, even if it often works well in
practice.

K

∆

P (s)

qp

w̃ z̃

yu

Fig. 1. Robust output feedback setting

Given a realization

K(s) = CK(sI − AK)−1BK + DK , AK ∈ Rn×n,

of the output controller, a realization of the scaled closed-
loop transfer function Tzw, where

Tzw(s) := LF(P (s), K(s))L−1, (5)

is

Acl =

(

A + BuDKCy BuCK

BKCy AK

)

, (6)

Bcl =

(

Bw + BuDKDyw

BKDzw

)

L−1, (7)

Ccl = L ( Cz + DzwDKCy DzuCK ) , (8)

Dcl = L(Dzw + DzuDKDyw)L−1. (9)

Define the function

f = sup
w∈R

σ(Tzw(jω)), (10)

f is just the H∞ norm of the scaled closed-loop transfer
matrix Tzw. It can be shown that f is continuous and
continuously differentiable almost everywhere.

The derivatives of f with respect to the closed-loop state-
space matrices and the scaling matrix L are given by:

∂f

∂Acl

= φ∗C∗

cluv∗B∗

clφ
∗ (11)

∂f

∂Bcl

= φ∗C∗

cluv∗L−∗ (12)

∂f

∂Ccl

= L∗uv∗B∗

clφ
∗ (13)

∂f

∂Dcl

= L∗uv∗L−∗ (14)

∂f

∂L
= uv∗L−∗M∗ − L−∗M∗L∗uv∗L−∗ (15)

where φ = (jωI − Acl)
−1, M = L−1(CclφBcl + Dcl)L

and where u and v are respectively the left and the
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right singular vectors corresponding to the largest singular
value of the scaled closed-loop transfer matrix Tzw across
frequency.

If A, B, X and C are matrices of compatible dimensions,
it can be shown that the derivative of f(A + BXC) with

respect to the matrix X is B∗GC∗ where G =
[

∂
∂xij

f(X)
]

.

Because the controller matrices enter affinely into the
closed-loop state-space matrices, the gradient of f with
respect to the controller matrices can be easily derived
from (11)-(14) using rule given above.

3. ALGORITHM

The minimization of f is done with the Matlab package
HANSO which locally optimizes nonconvex, nonsmooth
functions. HANSO requires the gradient of the function to
be optimized, which, in this case, can be deduced from
(11)-(15). It is worth recalling that HANSO does not
require f or its gradient to be defined everywhere. For
more details on the algorithms used by HANSO the reader
is refereed to Overton [2006].

As is the case for any local optimization solver, HANSO
requires an initial starting point. Here, a sensible initial-
ization consists of using the parameters of an optimal full-
order H∞ controller obtained with L equal to the identity
matrix.

4. EXAMPLE

The example is taken from the µ-Analysis and Synthesis
Matlab toolbox Balas et al. [2001].

The state-space equations of a spinning satellite model G
are given by

(

ẋ1

ẋ2

)

=

(

0 10
−10 0

)(

x1

x2

)

+

(

0 1
1 0

)(

u1

u2

)

(

y1

y2

)

=

(

1 10
−10 1

)(

x1

x2

)

The model of the first channel actuator uncertainty is
represented by a multiplicative uncertainty with frequency
weight

W11 =
10s + 40

s + 200
.

The model of the second channel actuator uncertainty is
represented by a multiplicative uncertainty with frequency
weight

W12 =
10s + 240

3s + 600
.

The total actuator uncertainty model is then W1 =
diag(W11, W12). The open-loop interconnection structure
has uncertainty in each input channel. The shape of the
frequency content of the disturbances acting at the plant
output is given by

Wp =
s + 4

2s + 0.04
I2.

w̃2

G

p

∆

W1 Wp

Wn

z̃

yu

q
w̃1

Fig. 2. Spinning satellite interconnection structure

Similarly, the sensor noise frequency content is represented
by the transfer function

Wn =
12(s + 25)

5(s + 6000)
.

The interconnection structure P has 8 states, 6 outputs
and 8 inputs. Dyu is a 2-by-2 matrix, that is, the controller
uses 2 measurements and has 2 control inputs (figure 2).

The uncertainty structure is ∆ = diag(δ1, δ2) where δ1 and
δ2 are supposed to be complex numbers with magnitude
less than 1.

Here the plant signals zT = [qT , z̃T ]T and wT =
[pT , w̃1

T , w̃2
T ] do not have the same dimension. In order

to apply the procedure described in Section 2, two extra
rows of zeros have been added to Cz, Dzw and Dzu, so that
the augmented plant P , used in the sequel, has a total of
8 inputs and 8 outputs.

4.1 Algorithm initialization

A standard full-order H∞ controller, K0, is first designed
with the initial scaling matrix J = I2. The corresponding
optimal H∞ closed-loop attenuation value is γ = 70.53.
The state-space matrices of the full-order H∞ controller
K0 will be used as an initial stating point to our algorithm
based on the nonsmooth solver HANSO.

4.2 Nonsmooth optimization vs µ-synthesis

The best H∞ attenuation obtained by nonsmooth opti-
mization, when initialized with the full-order H∞ controller
K0 and the identity scaling, is γ = 5.11 (see Table 1) and
the sub-optimal scaling matrix, obtained at the end of the
optimization process, is

J =

(

0.0513 0
0 0.0397

)

.

In this problem the number of decision variables is 103;
100 decision variables are for the controller, one is for γ
and two are for the scaling matrix J . 110 seconds of CPU
times (on a 1.9 GHz PC) are necessary for the nonsmooth,
nonconvex optimization solver to optimize simultaneously
the scaling and controller state-space matrices.
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Fig. 3. Upper and lower µ bounds obtained with the
nonsmooth controller

The first row in Table 1 is ‖ LF(P,K)L−1 ‖∞ (i.e. the
scaled closed-loop γ attenuation) where L and K are
the suboptimal scaling and controller computed by the
nonsmooth solver. The second row is the peak value of the
structured singular value µ of the closed-loop F(P,K).
More precisely, for a given closed-loop system and an
uncertainty structure ∆, an upper bound on the peak µ
value is

max
k

inf
Dk∈D∆

σ̄(DkF(P,K)(jωk)D−1

k ),

where {ωk} is a discrete set of frequency points and where
the Dks are positive definite matrices in the set D∆ whose
structure is closely related to the uncertainty structure ∆;
see Packard and Doyle [1993] for more details. In this case,
the peak µ value was computed over the frequency inter-
val [10−4, 102] discretized in 100 logarithmically equally
spaced points. Lower and upper bounds of the structured
singular value corresponding to the closed-loop obtained
with the nonsmooth regulator K(s) are shown in figure 3.

It worth noting that closed-loop γ-attenuation and peak
µ values are not the same. In general, the peak µ value is
less than or equal to the closed-loop γ attenuation value.
The reason for this is due to the scaling matrix L which,
in our nonsmooth optimization synthesis, is constrained to
be constant across the whole imaginary axis, while, in the
calculation of the µ upper bounds, the Dks are optimized
at each frequency point (ωk) and hence are different from
each other.

γ 5.11

Peak µ value 3.251

Table 1. µ-synthesis based on nonsmooth opti-
mization

It is instructive to compare the approach of this paper
with the standard DK-iteration algorithm of the Matlab
Robust Control toolbox (Packard et al. [2004]). The com-
mand dksyn, which automates the DK-iteration synthesis,
is used. To make the comparison sensible, the scaling
order is set to 0 in dksyn. The frequency range is chosen,

iteration 1 2 3 4

γ 70.54 8.56 14.76 17.46

Peak µ value 49.96 4.395 3.256 3.899

Table 2. µ-synthesis based on the DK-iteration
procedure

as before, as [10−4, 102] and contains 100 logarithmically
equally spaced points.

In this experiment, the DK-iteration and our nonsmooth
optimization algorithms are initialized with the same ini-
tial data, that is the set of parameters corresponding to the
full-order H∞ controller K0 and the the identity scaling
matrix J = I2.

The DK-iteration results 1 are given in table 2. One
can see that DK-iteration exhibits a typical oscillatory
behaviour (here after the third iteration; the closed-loop
H∞ performance and the peak µ values at the fourth
iteration are actually bigger than at the third iteration).
In this case, the DK-iteration procedure does not pro-
vide better controllers and scalings than those directly
obtained by nonsmooth optimization. The results obtained
by nonsmooth and DK-iteration synthesis are, in terms of
µ peak value, very close. This means that a satisfactory
µ controller could be computed via DK-iteration, but
inevitably this will be done at the expense of using some
high order scaling functions (i.e. those interpolating the
Dks). However, the optimal γ attenuation value obtained
by DK-iteration, with zero order scalings, is 14.76, a value
which is almost three times bigger than the γ attenuation
achieved directly by nonsmooth optimization (γ = 5.11).
In this example, the algorithm providing the best closed-
loop attenuation (with constant scalings) is the controller
computed by nonsmooth optimization.

5. CONCLUSIONS

This paper describes a simple µ-synthesis algorithm based
on the freely available nonsmooth, nonconvex optimization
solver HANSO. It demonstrates the potential of using non-
smooth optimization for µ-synthesis and for other related
control synthesis problems. The numerical results given
indicate that nonsmooth optimization may provide supe-
rior results to those given by the standard DK-iteration
procedure. The algorithm of this paper can be further
improved. If, for instance, one selects a Jordan canonical
form for the controller evolution matrix, then one can
reduce significantly the number of decision variables in the
optimization program.

Because both DK-iteration and nonsmooth algorithms
return local solutions, more numerical experiments are
needed to contrast the merits of each approach.

Within this framework, other interesting µ-synthesis prob-
lems, such as structured and fixed-order controllers using
frequency dependent scalings, could be considered.

1 Results may vary according to settings in the DK iteration

algorithm.
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