
Large-scale Task/Target Assignment for UAV Fleets

Using a Distributed Branch and Price Optimization

Scheme ⋆

Sertac Karaman ∗ Gokhan Inalhan ∗∗

∗ Department of Mechanical Engineering, Massachusetts Institute of
Technology, Cambridge, MA 02139 USA (e-mail: sertac@mit.edu).

∗∗ Faculty of Aeronautics and Astronautics, Istanbul Technical University,
Istanbul, 34469 TURKEY (e-mail: inalhan@itu.edu.tr)

Abstract: In this work we consider the large-scale distributed task/target assignment problem across a
fleet of autonomous UAVs. By using delayed column generation approach on the most primitive non-
convex supply-demand formulation, a computationally tractable distributed coordination structure (i.e.
a market created by the UAV fleet for tasks/targets) is exploited. This particular structure is solved via a
fleet-optimal dual simplex ascent in which each UAV updates its respective flight plan costs with a linear
update of way-point task values as evaluated by the market. We show synchronized and asynchronous
distributed implementations of this approximation algorithm for dynamically changing scenarios with
random pop-up targets. The tests performed on an in-house built network mission simulator provides
numerical verification of the algorithm on a) bounded polynomial-time computational complexity and
b) hard real-time performance for problem sizes on the order of hundred waypoints per UAV.

1. INTRODUCTION

During the last decade, Unmanned Air Vehicles (UAVs) have
enjoyed practical success at scenarios involving reconnais-
sance, surveillance and active tracking. Two of the major
drivers that make such unmanned systems favorable over
manned vehicles are physical working conditions (such as re-
mote locations with harsh terrain or chemical/radioactive spill)
and the scenario constraints (such as uninterrupted day long
service) that make the operation of manned systems or vehicles
impractical, risky or just cost ineffective.

With the ever growing involvement of UAVs in complex ap-
plication areas (such as dynamically changing urban rescue
operations), the types and the number of tasks easily outgrow
one vehicle’s (or a set of UAV operators’ command and control)
limited capabilities and thus require a fleet of UAVs working
autonomously in a collaborative fashion to achieve desired op-
erational goals. In this work, we show a distributed optimization
method that allows collaborative task/target assignment across
such autonomous UAV fleets for cases in which the number of
tasks/targets 1 is very large (i.e. on the order of tens to hundreds
per UAV) and dynamically change.

For large-scale assignment problems with limited resources, the
optimal/near-optimal allocation of such resources becomes a
crucial deciding factor for the success of a mission. The prob-
lem of task assignment in optimization framework is inherently
a binary integer linear program (a special case of mixed integer
linear programming (MILP)) and has been used widely for
formulating UAV task assignment problems [4,5]. In this work,
we exploit a structural decomposition of the most general form

⋆ The work is funded in part by DPT HAGU program administrated by ITU-

ROTAM.
1 Through out the discussion, we will use “tasks” and “targets” interchange-

ably, both meaning a waypoint (within the flight plan) which corresponds to an

activity.

Fig. 1. The in-house developed network mission simulator
allows real-time simulation across interoperable manned-
unmanned fleets, and the mission control center.[25]

of this task assignment formulation through column generation.
The column generation approach essentially provides a method
for breaking up column-dense large scale optimization prob-
lems into subcomponents that are integrated to a growing mas-
ter problem which is optimized one step at a time. Together with
[8] a good survey of column generation in integer programming
is presented in [17]. We refer the reader to the use of column
generation technique in integer programming for many other
problems as outlined in [15] and [16].

There has been considerable effort in literature to use column
generation with shortest path problems [11] and vehicle routing
problems with time windows [12], [13], [14]. However these
solution formulations are aimed at solving the centralized as-
signment problem in step-by-step progressive fashion in com-

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 13310 10.3182/20080706-5-KR-1001.2401

parison to the distributed implementation structure as illustrated
in this work.

Specifically, in Section II, we reconstruct the most primitive
non-convex supply-demand form of the assignment problem
with extreme point solutions that conveniently correspond to
selection of waypoints each of the UAVs. This column-dense
extreme point formulation is used for employing a delayed-
column generation optimization scheme which involves (a re-
stricted form of) a master and sub-problem formulations. Both
of these steps are shown to be implementable at the local
computer of any of the UAVs requiring only communication
for passing flight path information(i.e. specific waypoint se-
lections) and the costs associated with these flight paths. This
two-step solution corresponds to a fleet-optimal dual simplex
ascent method in which each UAV updates its respective flight
plan costs with a linear update of way-point task values as
evaluated in the market created by the UAVs for the targets.
We devote Section III for algorithmic implementation details
of this method on the standard fleet-optimal shortest path target
assignment problem. In addition, we provide insight on the real-
time implementations on an in-house built network simulator
shown in Fig. 1.

2. MAIN TASK/TARGET ASSIGNMENT PROBLEM

The m vehicle n target assignment problem, shown in Eq. 1,
pays close resemblance to the general “transportation problem”
[6] with notably two differences :

Problem A:

min c1(y1)+ c2(y2)+ · · ·+ cm(ym) (1)

subject to Iy1 + Iy2 + . . .Iym = 1n×1

∑
j

y1 j ≥ 1

∑
j

y2 j ≥ 1

...

∑
j

ym j ≥ 1

yi j ∈ {0,1}

First, is the nonlinear cost structure ci(yi) for each ith vehicle in
which yi corresponds to a selection of targets (i.e. waypoints).
This nonlinear form is a mask for entailing both each of the
vehicles’ internal constraints and also the nonlinear dependence
of choice of an arbitrary way-point assignment such as y i =
[0 1 1 0 . . .0]′ to the corresponding cost such as the shortest
path : ci(yi) = shortest path between the way-points selected−
yi. Second, is the nature of the supply constraint which demands
that the “supplier should at least supply one unit”, i.e. each UAV
should at least visit at least one target.

For the LP relaxation of the problem, one can consider y i j ∈

{0,1}→ 0 ≤ yi j ≤ 1. 2

The integer solution type of this particular problem suggest
the well-known Dantzig-Wolfe decomposition to explore a

2 Note that, in explicit formulation there is no need for upper-bounding yi j

because it is naturally bounded by the interconnecting assignment constraint.

For guaranteed integer valued solutions in LP relaxed form refer to [1].

distributed structure of the Problem A. Specifically, using the
resolution theorem, any feasible way-point selection for each
UAV within its respective bounded polyhedron region Pi =
{∑ j yi j ≥ 1;0 ≤ yi j ≤ 1} can be described as:

yi = ∑
q∈Qi

x
q
i y

q
i

with convexity constraints ∀i = 1, . . . ,m

∑
q∈Qi

x
q
i = 1; x

q
i ≥ 0

Here y
q
i correspond to the extreme point solutions or just the

selection of way-points that will be visited in a particular flight
plan. Qi is the set of all the extreme point solutions or just the
collection of all combinations of possible way-point selections.
x

q
i is the convex combination coefficients for a particular q th

way-point combination.

Using this explicit solution representation, the original formu-
lation’s cost components can be transformed via c i(x

q
i y

q
i) =

x
q
i ci(y

q
i) = x

q
i c

q
i and d

q
i = Iy

q
i = y

q
i is again just the selection

of way-points that will be visited in a particular flight plan.
In Dantzig-Wolfe decomposition, this is known as the master
problem :

min ∑
q∈Q1

c
q
1x

q
1 + · · ·+ ∑

q∈Qm

cq
mxq

m (2)

subject to ∑
q∈Q1

d
q
1x

q
1 + · · ·+ ∑

q∈Qm

dq
mxq

m = bo = 1m×1

∑
q∈Q1

x
q
1 = 1

...

∑
q∈Qm

xq
m = 1

x
q
i ≥ 0 ∀q ∈ Qi, i = 1, . . . ,m

or in compact form :

Master Problem:

min c
′

1x1 + · · ·+ c
′

mxm (3)

D1x1 + D2x2 + Dmxm = bo

f
′

1x1 = 1

...

f
′

mxm = 1

x
q
i ≥ 0 ∀q ∈ Qi, i = 1, . . . ,m

where fi = [1 . . .1]′ is of appropriate length. D1 = [d1
1 |d2

1 | . . .d
q
1

. . .], q ∈ Q1.

Before describing the sub-problems, note that the number of
variables in the Master Problem is much larger than the number
of constraints. For this we consider solving the Master Problem
by keeping only a small number of variables in the problem that
is adequate for forming the basis for simplex formulation. We
call this problem with less number of variables the Restricted
Master Problem (RMP). 3 i.e.,

3 The compact form of the RMP can be represented as :

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13311

Restricted Master Problem:

min ∑
q∈Q̄1

c
q
1x

q
1 + · · ·+ ∑

q∈Q̄1

cq
mxq

m

subject to ∑
q∈Q̄m

d
q
1x

q
1 + · · ·+ ∑

q∈Q̄m

dq
mxq

m = b0

∑
q∈Q̄1

x
q
1 = 1

...

∑
q∈Q̄m

xq
m = 1

x
q
i ≥ 0 ∀q ∈ Qi, i = 1, . . . ,m

where Q̄i is a subset of Qi. The RMP in this case includes a
smaller number of columns when compared to the MP. For this
reason it is called as the restrictive master problem. If we let
π j be the dual variables associated with n coupling constraints
and µi be the dual values associated with the m convexity
constraints and define B as :

B =

D̄1 D̄2 . . . D̄m

[1 . . .1] [0 . . .0] [0 . . .0] [0 . . .0]
[0 . . .0] [1 . . .1] [0 . . .0] [0 . . .0]

...
...

...
...

[0 . . .0] [0 . . .0] [0 . . .0] [1 . . .1]

(4)

For the Restricted Master Problem the primal and the dual
solutions is given as [1]:

xB = B−1b (5)

[π µ]′ = [c̄′1 . . . c̄′m]′B−1 (6)

In addition, the dual formulation of the RMP can be uniquely
defined as,

Dual of Restricted Master Problem :

max
n

∑
j=1

π j +
m

∑
i=1

µi

subject to (dq
1)′π + µ1 ≤ c

q
1 q ∈ Q̄1

...

(dq
m)′π + µm ≤ cq

m q ∈ Q̄m

(7)

Note that there is one dual variable π j associated with each
target for j = 1, ...,n and one dual variable µ i associated with
each UAV for i = 1, ...,m.

min c̄
′

1x̄1 + · · ·+ c̄
′

m x̄m

D̄1x̄1 + D̄2x̄2 + D̄mx̄m = bo

f̄
′

1x̄1 = 1

.

.

.

f̄
′

mx̄m = 1

x̄
q
i ≥ 0 ∀q ∈ Q̄i, i = 1, . . . ,m

Our aim is to solve the dual of the RMP to find the optimal
target assignments. However, in order to solve the RMP the
problem is to find new columns with negative reduced costs to
enter the basis at any simplex ascent. The reduced cost for any
column is,

c
q
i − [π µ]

d
q
1

0
...

1i

...
0

= c
q
i −πd

q
1 − µi (8)

Considering a pivoting rule as getting the column with the most
negative reduced cost to the basis, the problem finding a column
to enter the basis can be posed as an optimization problem as:

min
q∈Qi

c
q
i −πd

q
i − µi

or returning back to our original formulation, we can pose this
subproblem simply by :

min
yi

ci(yi)−πyi− µi

These problems for i = 1, ...,m will be called the sub-problems
(SPs). These SPs actually provide a very elegant way to update
of flight the costs for each vehicles flight plan with a linear
update of way-point values of the market as created by the
UAVs. SPs are binary integer linear programs considering the
feasible set However, the special structure of the SP allows for
it to be interpreted as a search problem, which searches for the
minimum value of updated costs. This basic search problem can
be solved in polynomial time, although a binary integer linear
program is the class of NP-hard problems in general and no
polynomial time algorithm is known for its solution. Generally
these binary integer linear programs are solved using the branch
and bound techniques.

Notice that in its most general form every sub-problem becomes
a binary integer program and master iteration can be kept as
a linear program. The solution procedure is then to solve the
sub-problems and generate new columns if possible, and solve
one master iteration to bind up these columns. The master
iteration in this case is one iteration of the simplex algorithm
which is detailed in [1]. In the master iteration, revised simplex
method can be used so that the master problem includes only
the columns that are in the basis. Any column that exists the
basis is taken out of the master problem. In the next section, we
explore this approach for shortest-fleet path problem.

A general discussion on implementing mixed integer column
generation is given in [9] using the two main techniques con-
vexification and discretization. These techniques will not be
detailed further in this work, but the Dantzig-Wolfe decompo-
sition technique that is used here with Column Generation is
a convexification method [16]. Detailed information on these
different methods can be obtained from [9].

3. ALGORITHMIC IMPLEMENTATIONS FOR
SHORTEST-FLEET PATH PROBLEM

For algorithmic implementations, we consider one of the basic
problems : the problem consists of n targets to be visited by m

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13312

Fig. 2. The synchronized distributed implementation of the
main phase II of the algorithm.

UAVs and we would like to find the waypoint selections that
results in the minimum total path traveled by the UAV fleet. For
easier analysis the problem is examined in two phases.

3.1 Distributed Synchronized

Phase I : Initialization Before the algorithm starts, we as-
sume that all the vehicles communicate their states, i.e. their
position in the field and the targets that they have identified and
that must be visited. Thus the waypoints to be visited and the
position of other UAVs are known by each UAV 4 . There may
be some restrictions on some of the waypoints, e.g. a specific
waypoint must be visited by a specific UAV which are also all
known.

In the initialization phase of the algorithm, each UAV

• Calculates its distance between each and forms n × n
matrix V such that an element Vi j is the distance of
waypoint i to j. Naturally this matrix is symmetric and
all the diagonal elements are zero.

• Computes its distance of every UAV to every waypoint
and a n × 1 vector ri is generated for which ri j is the
distance to the jth waypoint.

• Forms its flight plan matrix Di i.e. the possible combina-
tion of waypoints that it can travel

• Find the cost for each waypoint combination (i.e. each
vector in Di) by first calculating the different order of
waypoints that can be visited and the calculating the
distance for each different ordering using the V i, ri. Then,
select the minimum cost option (i.e. the shortest path) of
such waypoint orderings for all the elements of flight plan
matrix form ci.

• Create the restricted master problem matrix B (in the dual
of RMP this refers to B′) matrix using the predefined (n+
m)× (n+ m) invertible matrix structures in memory. 5

• Communicate the associated flight cost c̄i for B to the
other UAVs.

Note that this initialization phase is applicable for shortest path
problems and can be modified for each application type depen-
dent on the metric to be optimized (such as target priority and
target order). In addition one can apply various approximation
techniques for shortest path calculation for an arbitrary number
of waypoints while providing bounds on optimality.

4 In real-time applications, we found that this assumption can be relaxed by

only identifying the set of overlapping targets
5 Such initialization matrix selections can be easily created for any combina-

tion of n and m and stored in memory. We refer the reader to [1] for selection

of such initial matrices.

Phase II : Dual Simplex Ascent Phase two of the algorithm
implements the dual simplex ascent over the extreme points.
In every iteration of the sub-problem each UAV selects a cost
minimizing path for itself and puts it into the master problem
to find out if this path is better than the its path in the previous
iteration for the whole group.

The sub-problems are solved simultaneously on every UAV
thus through this synchronization the master problems are all
identical at each UAV . All the UAVs communicate with each
other to send the generated better path which is not in the
restriced master problem and the cost of this new path. This
generated path is basically ones and zeros of the number of
waypoints indicating if the selected waypoint is being visited or
not. The communication data is thus very small containing the
UAV number the waypoints to be visited and the cost of the path
that the UAV will follow. After new columns are generated to
enter the basis of the master problem the same master problem
is solved in every UAV. Since every UAV solves the same
problem with exactly same numerical values there is no need
to exchange the solutions. This is illustrated in Fig. 2. Since the
master problem contains only a few constraints its solution is
rather very fast. In the primal restricted master problem form,
the master problem consists of inverting a small matrix which
has dimensions (n + m)× (n + m) and its multiplication for a
few times. The complete method is given in implementation
form as Algorithm 1.

Algorithm 1 Distributed Synchronized Implementation for i th

UAV
Input: n waypoint positions and the ith UAVs position.
Output: The fleet shortest path optimal waypoint assignments

for ith UAV
PHASE I : Initialization

1: Compute the distances between the waypoints and form
the n×n matrix V

2: Compute Compute the distance to the waypoints and form
the n×1 matrix di

3: Compute Compute the distance to the waypoints and form
the n×1 matrix di

4: for every possible path ith UAV can travel do
5: Add the path to the matrix Di

6: Calculate the cost of this path to vector ci

7: end for
8: Read the (n+ m)× (n+ m) initial B matrix from memory
9: Communicate The costs for corresponding paths in the

initial B matrix to start the master iteration
PHASE II : Dual Simplex Ascent

10: repeat
11: Solve the restricted master iteration and find the dual

variables vector : [π µ]′ = [c̄′1 . . . c̄′m]′B−1

12: Remove the ineffective flight path (if any) with maxi-
mum cost

13: Solve the sub-problem corresponding to the i th UAV by
updating the flight costs : c

q
i updated

= c
q
i −πd

q
1 − µi

14: Select the minimum negative c
q
i updated

(sub-problem

cost) and the associated path :
15: Exchange the selected path and its flight cost and the

paths and the associated costs generated by other vehi-
cles

16: Insert the first feasible flight path with minimum cost
solution and its cost to the restricted master problem.

17: until There are no paths with negative subproblem costs

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13313

Fig. 3. The cost variation across the iteration steps for a three
vehicle ten waypoint scenario.

Fig. 4. The waypoint selection for a three vehicle ten waypoint
scenario.

It is clear from the above algorithm that the communication
phase between the iterations is limited and both the initial-
ization and the optimization problems are well distributed to
the UAVs. There are several other advantages of the approach
followed here. The first advantage of the approach followed
here is that the sub-problems running in each vehicle requires
much less memory than a standard centralized mixed-integer
program. This advantage allows relatively cheap hardware in
the UAVs. Another advantage of the column generation pro-
cess is that in each iteration cost of the master problem re-
duces. Although it is sometimes possible to come across with
a non-integer solution in the master problem, using a round-
up algorithm leads to a suboptimal solution quickly. Thus the
algorithm can be quit returning a suboptimal solution which is
very advantageous in hard-real-time applications. This solution
is guaranteed to approach the optimal solution in each iteration.
It is also possible to pose upper and lower bounds for the
optimal cost of the problem such that if the algorithm is quit in
the middle, the distance of the solution to the optimal solution
can be known. Figs. 3 and 4 show a typical cost convergence
and the solution that can be found using the algorithm. Fig. 5
provides a detailed look (simulation covering 600 scenarios) at
the computational behavior of algorithm. Notice that a total of
250 targets can be solved across 5 UAVs for around 50 seconds.

Fig. 5. The computational behavior of the algorithms shows
strong correlation with the number of way-points per UAV
given a particular snap-shot of scenario

Fig. 6. The asynchronous distributed implementation of the
algorithm.

Another feature of the method is that the algorithm can run in a
totally asynchronous mode with arbitrary local initial B (initial
set of waypoint selection batch) selection. The structure of this
implementation is shown in Fig. 6.

3.2 Network Mission Simulator : Dynamic Task Assignment for
Real-Time Implementations

Since the task assignment algorithm has to run in real-time,
real-time performance and the implementation in real-time
becomes of great importance. There are several examples of
real-time implementation of task assignment and path planning
algorithms (see [21] for example).

For real-time implementation of the algorithm, a sub-optimal
algorithm can be considered that takes a number of targets from
all set of targets to be assigned to the vehicles in the fleet.
This subset of the targets can be chosen as the closest subset
in this case. The assignment process can be re-executed taking
one more target into the optimization problem when one of the
targets is visited by one of the UAVs. Using this scheme the
number of targets in the optimization problem is always fixed
and the optimization is executed for every new target together
with the targets that were used in the optimization problem
before but were not visited.

The flow of the algorithm is as follows. First a specific number
of targets are taken to the problem for optimization. These tar-
gets are determined from the ones that are available with a small
communication between the vehicles. This communication is
the initialization of the Algorithm 1. Then the Algorithm 1 is

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13314

Fig. 7. The in-house developed Network Simulator (NSIM) allows rapid prototyping and HIL testing of various coordination
algorithms among manned and unmanned fleets, and the mission control center.

executed for distributed solution. Afterwards the UAVs start to
get to the targets that are assigned to them. Whenever one UAV
reached a target a new target is taken to the optimization prob-
lem to be considered with other unvisited targets. Algorithm 1
is re-executed to find a new solution. The algorithm is executed
in this manner as the mission continues.

After the re-execution of the algorithm one of the UAVs can
change its route to another target leaving the one it is already
traveling to one of the other UAVs. This is possible since the
new target taken into the optimization problem changes the
assignments and now one target can be more easily visited by
another UAV considering the newly entering target in hand.
Note that after a target is fixed to a jth vehicle, we update
its flight costs with ci = ci + πassigned to create balance as
new targets appear in the scenario.Using such a scheme the
solution achieved is a sub-optimal solution but it can be easily
implemented in real-time.

The numeric implementation of such scenarios for four vehicles
200 hundred waypoints and then again for 500 waypoints
are given in Figs. 8 and 9 respectively. Fig. 10 provides an
extensive verification of the restricted horizon polynomial-time
computational growth.

The in-house developed network mission simulator allows real-
time simulation across interoperable manned-unmanned fleets,
and the mission control center[25]. The hardware structure
within the network simulator is tailored to mimic the distributed
nature of each of the vehicle’s processors and communication
modules. Open-source flight simulation software, FlightGear,
is modified for networked operations and it is used as the 3D
visualization element for the pilot and the mission controls. The
UAV dynamics and low-level control algorithms are embedded

within the xPC target rack. Equipped with 3D flight simulation
displays and touch-screen C2 interface at the desktop pilot
level, the platform also allows us to rapidly prototype and test
pilot-unmanned fleet supervisory control and pursuit-evasion
game designs.

In this particular set-up, we use the Mission Coordination Com-
puters (MCCs) to embed the real-time implementation of the
task/target assignment algorithm and run simulations if they are
in a real mission. Vehicle dynamics and the low level control al-
gorithms for each UAV is embedded within a unique xPC target
modules. They simulate an autonomous UAV which receives a
sequence of targets from a UDP based communication channel
and execute these commands to reach to the targets. MCCs run a
C program that is used as a bridge between the communication
layer between the UAVs and the Matlab based computation
layer of each of the UAVs. Each UAVs MCC send its respective
targets to the UAV control systems during the execution of
the target assignment algorithm. The multi-vehicle simulator
system also includes a world computer which is responsible for
simulation of the mission. This computer is the computer that
informs the MCCs if new target appears in the scenario. The
implementation is illustrated in Fig. 7.

4. CONCLUSION

A distributed task allocation algorithm is designed and imple-
mented for real-time operation in this work. The performance
of the distributed algorithm is seen to be well better than the
central one. This is attributed to two main reasons, namely the
distributed nature of the algorithm and the polynomial time sub-
problem structure. The former reason was expected since the
algorithm contains very small communication messages to be

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13315

Fig. 8. The waypoint routes for a random pop-up task-target as-
signment for four vehicles. The algorithm is implemented
in the receeding horizon mode for two hundred waypoints.

Fig. 9. The waypoint routes for a random pop-up task-target as-
signment for four vehicles. The algorithm is implemented
further in the receeding horizon mode for five hundred
waypoints.

Fig. 10. The numeric computational complexity analysis sug-
gests polynomial-time growth for restricted time horizons.

exchanged between the decision making agents and the distri-
bution uses more than one processing units. The latter reason
is a good advantage of the decomposition algorithm used; an
NP-hard sub-problem structure is seen to be polynomial-time
solvable for restricted horizons after decomposition.

A testbed for real-time distributed task allocation algorithms
was also presented. This simulator is a general purpose simula-
tor for testing UAV dependent algorithms. The tests performed
on an in-house built network mission simulator provides numer-
ical verification of the algorithm on a) bounded polynomial-
time computational complexity and b) hard real-time perfor-
mance for problem sizes on the order of hundred waypoints per
UAV.

ACKNOWLEDGEMENTS

The authors would like to acknowledge Ahmet Cetinkaya, Ok-
tay Arslan and Mirac Aksugur for their work in the develop-
ment of the network mission simulator.

REFERENCES

[1] D. Bertsimas, J.N. Tsitsiklis, Introduction to Linear Opti-
mization, Athena Scientific, 1997.

[2] L. Brickman, Mathematical Introduction to Linear Pro-
gramming and Game Theory, Springer-Verlag, 1989.

[3] R.S. Garfinkel, G.L. Nemhauser, Integer Programming,
John Wiley, 1972.

[4] T. Schouwenaars, E. Feron, B. de Moor, and J. P. How,
”Mixed Integer Programming for Multi-vehicle Path Plan-
ning,” in Proceedings of the European Control Confer-
ence, European Union Control Association, Porto, Portu-
gal, September, 2001, pp. 2603-2608.

[5] J. Bellingham, M. Tillerson, A. Richards, J. P. How,
”Multi-Task Allocation and Trajectory Design for Coop-
erating UAVs,” in Cooperative Control: Models, Applica-
tions and Algorithms at the Conference on Coordination,
Control and Optimization, November 2001, pp. 1-19.

[6] L. Lasdon, Optimization Theory for Large-Scale Systems,
Macmillan, 1970.

[7] J. Desrosiers, M.E. Lbbecke, ”A Primer in Column Gen-
eration”, in Eds. G. Desaulniers, J. Desrosiers, M.M.
Solomon, Column Generation, 2005, pp. 1-32.

[8] G. Desaulniers, J. Desrosiers, M.M. Solomon, Column
Generation, Springer-Verlag, 2005.

[9] F. Vanderback, ”Implementing Mixed Integer Column
Generation”, in Eds. G. Desaulniers, J. Desrosiers, M.M.
Solomon, Column Generation, 2005, pp. 331-358.

[10] R.K. Ahuja, T.L. Magnati, J.B. Orlin, Network Flows:
Theory, Algorithms, and Application, Prentice Hall, 1993.

[11] S. Irnich, G. Desaulniers, ”Shortest Path Problems with
Time Windows”, ”, in Eds. G. Desaulniers, J. Desrosiers,
M.M. Solomon, Column Generation, 2005, pp. 33-66.

[12] B. Kallehauge, J. Larsden, O.B.G. Madsen, M.M.
Solomon, ”Vehicle Routing Problem with Time Win-
dows”, ”, in Eds. G. Desaulniers, J. Desrosiers, M.M.
Solomon, Column Generation, 2005, pp. 67-98.

[13] E. Donna, C.L. Pape, ”Branch-and-Price Heuristics: A
Case Study on the Vehicle Routing Problem with Time
Windows”, ”, in Eds. G. Desaulniers, J. Desrosiers, M.M.
Solomon, Column Generation, 2005, pp. 99-130.

[14] A. Chabrier, ”Vehicle Routing Problem with Elementary
Shortest Path Based Column Generation”, Computers and
Operations Research, vol. 33, 2006, pp. 2972-2990.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13316

[15] M. Ehrgott, J. Tind, ”Column Generation in
Integer Programming with Applications to
Multicriteria Optimizaiton” Unpublised work-
ing paper, 2006, draft available online htt p :
//www.math.ku.dk/ tind/workingpapers.html.

[16] M. E. Lubbecke, J. Desrosiers, ”Selected
Topics in Column Generation”, to appear in
Operations Research, available online at Opti-
mization Online htt p : //www.optimization −
online.org/DBHTML/2002/12/580.html.

[17] C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P.
Savelsbergh, P.H. Vance, ”Branch-and-Price: Column
Generation for Solving Huge Integer Programs”, Opera-
tions Research vol. 46, no. 3, 1998, pp. 316-329.

[18] F. Vanderback, M.W.P. Savelsbergh, ”A Generic View of
Dantzig-Wolfe Decomposition in Mixed Integer Program-
ming”, Operations Research Letters, vol. 34, 2006, pp.
296-306.

[19] T.K. Ralphs, M.V. Galati, ”Decomposition and Dynamic
Cut Generation in Integer Linear Programming”, Mathe-
matical Programming A, vol. 106, 2006, pp. 261-285.

[20] P. Toth, D. Vigo, The Vehicle Routing Problem, SIAM
Publications, 2002.

[21] A. Richards, Y. Kutawa, J. How, ”Experimental Demon-
strations of real-time MILP control”, AIAA Control, Nav-
igation and Guidance Conference and Exhibit, 2003.

[22] K. Melhorn, M. Ziegelmann, ”Resource Constrained
Shortest Paths”, Proceedings of the 8th Annual European
Symposium on Algorithms, no. 1879 in Lecture Notes in
Computer Science, Springer, 2000, pp. 326-337.

[23] M. Minoux, ”A Class of Combinatorial Problems
with Polynomially Solvable Large Scale Set Cover-
ing/Partitioning Relaxations”, RAIRO Rech. Opr., vol. 21,
1987, pp. 105-136.

[24] E.L. Johnson, A. Mehrotra, G.L. Nemhauser, ”Min-cut
Clustering”, Mathematical Programming, vol. 62, 1993,
pp. 133-151.

[25] A. Cetinkaya and S. Karaman, O. Arslan, M. Aksugur,
G. Inalhan, ” Design of a Distributed C2 Architecture
for Interoperable Manned-Unmanned Fleets,” Conference
on Cooperative Control and Optimization, Gainsville, FL,
2007

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13317

