

Sliding Mode Algorithm for On-line Learning
in Fuzzy Rule-based Neural Networks

Andon V. Topalov*1, Okyay Kaynak**,

 Nikola G. Shakev*, Suk K. Hong***

*Technical University Sofia, Plovdiv branch, 25, Tsanko Dyustabanov str.,
4000 Plovdiv, Bulgaria (Tel: +359-32-659528; e-mail: topalov@tu-plovdiv.bg).

1currently with the School of Electrical and Computer Engineering,
College of Information Technology, Ajou University, Suwon, Rep. of Korea

** Department of Electrical and Electronic Engineering, Bogazici University,
34342 Bebek, Istanbul, Turkey (email: okyay.kaynak@boun.edu.tr)

*** School of Electrical and Computer Engineering, Ajou University,
442-749 Suwon, Rep. of Korea, (e-mail: skhong@ajou.ac.kr)

Abstract: A new, variable structure systems theory based, algorithm has been developed for on-line
training of fuzzy-neural networks. Such computationally intelligent structures are widely used for
modeling, identification and control of nonlinear dynamic systems. The algorithm is applicable to fuzzy
rule-based neural nets of Takagi-Sugeno-Kang type with a scalar output. Its convergence is established and
the conditions are given. Differently from other similar approaches which are limited to the adaptation of
the parameters of the network defuzzification part only, the proposed algorithm tunes also the parameters
of the implemented membership functions. The zero level set of the learning error variable is considered as
a sliding surface in the space of network learning parameters. The effectiveness of the proposed algorithm
is shown when applied to on-line learning of nonlinear functions approximation.

1. INTRODUCTION

During the last decade the concept of incorporating fuzzy
logic into neural network has emerged and has become a
popular research area (Farag et al., 1998), (Lin et al., 1998),
(Lin et al., 2001), (Wang, 1997). Fuzzy neural networks
(FNN) combine the advantages of both techniques. They are
capable to deal with fuzzy reasoning when working with
imprecise information (Wang, 1997) and possess the learning
ability of neural networks as well (Narendra et al., 1990).
Like the fuzzy systems and neural networks, FNNs have been
proven to be universal approximators too (Lin et al., 1996). A
fuzzy neural network can be considered as a fuzzy system
that can be trained in similar way like the neural networks
are. The typical approach of building FNNs is to implement
standard neural networks which are designed to approximate
a fuzzy system through their structure. Such structures are
also known as fuzzy rule-based neural networks or neuro-
fuzzy networks. The investigations carried out during the last
years are showing that FNN can be very successfully applied
for modelling and control of complex systems (Wang et al.,
1997), (Wu et al., 2000).

Despite of the existing variety of learning algorithms used for
training of FNN, they can be mainly classified into two
groups: 1) gradient descent type algorithms that include
computation of partial derivatives or sensitivity functions;
they can be also viewed as different variants of the well
known backpropagation learning algorithm (Rumelhart et al.,
1986), and 2) algorithms based on evolutionary computations
with genetic algorithms (GAs) being the most widely used

among them (Aliev et al., 2001). When considering the
application of FNN structures in different adaptive schemes
where on-line learning is required the existing methods have
some major drawbacks among which in particular are (i) the
difficulty to obtain analytical pertaining to the convergence
and stability of the learning schemes and (ii) the slow
convergence speed. Recent investigations on neural and
neuro-fuzzy networks control applications have begun to
address stability issues more rigorously. Research in this area
has been split over two main directions. It has been shown in
several works that Lyapunov approach can be directly
implemented to obtain robust training algorithms for
continuous-time neural networks (Kosmatopoulos et al.,
1995), (Suykens et al., 1999). Another proposed way to
design a robust learning scheme is to utilize the Variable
Structure Systems (VSS) theory in constructing the parameter
adaptation mechanism of the NNs and FNNs (Parma et al.,
1998), (Yu et al., 2004). The results obtained in this direction
(Shakev et al., 2003) have shown that the convergence of the
learning strategies can be significantly improved. Such
intelligent systems exhibit the robustness and invariance
properties inherited from Variable Structure Control (VSC)
technique while still maintaining good approximation
capability and flexibility.

The new on-line learning method for neuro-fuzzy networks,
suggested in the current investigation, controls the error
dynamics. The latter is defined as a difference between the
current and the desired output signal of the fuzzy rule-based
neural network and it is described using a differential
equation. Differently from the gradient-based learning

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 12793 10.3182/20080706-5-KR-1001.2398

methods which aim to minimize an error function, here the
learning parameters are tuned by the proposed algorithm in a
way to enforce the error to satisfy this stable equation.

The present work consists of four sections. Section 2 presents
the developed new method for parametric adaptation of fuzzy
rule-based neural networks with a scalar output using the
Sliding Mode Control (SMC) theory. The results from
simulations are shown in section 3. Finally, section 4
summarizes the obtained results.

2. THE SLIDING MODE LEARNING

2.1 The Neuro-Fuzzy Network

A neuro-fuzzy network with three inputs and one output will
be considered for simplicity (see Fig. 1). The obtained results
can be generalized for any number of network inputs. The
incoming signals are fuzzyfied by using Gaussian
membership functions. The input signals ()1x t , ()2x t and

()3x t are associated accordingly with I , J and K
numbers of fuzzy labels which are determined by their
corresponding membership functions µ . Then the total
number of the fuzzy if-then rules will be I J K× × .

Fig. 1. The fuzzy-neural network

A fuzzy if-then rule base of Takagi-Sugeno type is used
where the fuzzy sets are included in the premise part only. In
this case the corresponding rule ijkR can be expressed as:

:ijkR if 1x is iA and 2x is jB and 3x is kC

then 1 2 3ijk i j k ijkf a x b x c x d= + + + (1)

where 1,...,i I= ; 1,...,j J= ; 1,...,k K= .

It is further assumed that the output of each fuzzy if-then rule
consists of a constant ijkd only (i.e. iа , jb and kc are all

equal to zero and ijk ijkf d=) which is a widely used
simplification.

The Gaussian membership function is described by two
parameters – the center c and the distribution σ which are
among the tunable parameters of the fuzzy-neural structure.

The strength of the rule ijkR is obtained as a T-norm of the
membership functions in the premise part (by using a
multiplication operator):

 () () ()1 2 3i j kijk A B CW x x xµ µ µ= (2)

The output signal of the fuzzy-neural network ()y t is
calculated as a weighted average of the output of each rule:

∑ ∑ ∑

∑ ∑ ∑

= = =

= = ==
max

1

max

1

max

1

max

1

max

1

max

1)(
i

i

j

j

k

k
ijk

i

i

j

j

k

k
ijkijk

W

fW
ty (3)

In the above expression ()1iA xµ , ()2jB xµ and ()3kC xµ are

the Gaussian membership functions of the inputs 1x , 2x and

3x respectively and have the following appearance:

()
()2

1
1 2exp i

i
i

A
A

A

x c
xµ

σ

⎡ ⎤−⎢ ⎥= −
⎢ ⎥
⎣ ⎦

, ()2

2

2exp j

j

j

B

B
B

x c
µ

σ

⎡ ⎤−⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

and
()2

3

2exp k

k

k

C
C

C

x c
µ

σ

⎡ ⎤−⎢ ⎥= −
⎢ ⎥
⎣ ⎦

 (4)

Therefore (2) can be rewritten also as follows

() () ()
22 2

21 3

2 2 2exp ji k

i j k

BA C
ijk

A B C

x cx c x c
W

σ σ σ

⎡ ⎤−− −⎢ ⎥= − − −⎢ ⎥
⎢ ⎥⎣ ⎦

 (5)

After the normalization of (3) the output signal of the neuro-
fuzzy network will acquire the following form:

1 1 1

()
I J K

ijk ijk
i j k

y t f W
= = =

= ∑∑∑ (6)

where ijkW is the normalized value of the output signal of the

neuron ijk from the second hidden layer of the network:

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12794

1 1 1

ijk
ijk I J K

ijk
i j k

W
W

W
= = =

=

∑∑∑
 (7)

2.2 Initial Assumptions

The following vectors have been specified:

() () () ()1 2 3
T

X t x t x t x t= ⎡ ⎤⎣ ⎦ – vector of the time varying

input signals;

() () () () () ()111 112 211...
T

ijk IJKW t W t W t W t W t W t⎡ ⎤= ⎣ ⎦ –

vector of the output signals of the neurons from the second
hidden layer;

1 2
... ...

i I

T

A A A A Aσ σ σ σ σ⎡ ⎤= ⎣ ⎦ – vector of the parameters

defining the distribution of the Gaussian membership
functions relevant to the first input of the network;

1 2

... ...
j J

T

B B B B Bσ σ σ σ σ⎡ ⎤= ⎣ ⎦ – vector of the parameters

defining the distribution of the Gaussian membership
functions relevant to the second input of the neuro-fuzzy
network;

1 2

... ...
k K

T

C C C C Cσ σ σ σ σ⎡ ⎤= ⎣ ⎦ – vector of the parameters

defining the distribution of the Gaussian membership
functions relevant to the third input of the neuro-fuzzy
network;

1 2

... ...
i I

T

A A A A Ac c c c c⎡ ⎤= ⎣ ⎦ – vector of the parameters

defining the centers of the Gaussian membership functions
relevant to the first network input;

1 2

... ...
j J

T

B B B B Bc c c c c⎡ ⎤= ⎣ ⎦ – vector of the parameters

defining the centers of the Gaussian membership functions
relevant to the second network input;

1 2

... ...
k K

T

C C C C Cc c c c c⎡ ⎤= ⎣ ⎦ – vector of the parameters

defining the centers of the Gaussian membership functions
relevant to the third network input;

() () () () () () ()111 112 211 212...ijk IJKf t f t f t f t f t f t f t⎡ ⎤= ⎣ ⎦ -

vector of the time variable weight coefficients of the
connections between the neurons from the second hidden
layer and the output neuron (node) of the fuzzy rule-based
neural network.

The following assumptions have been used in this
investigation:

Both, the input signals ()1x t , ()2x t and ()3x t , and their

time derivatives ()1x t& , ()2x t& and ()3x t& will be
considered bounded:

()1 xx t B≤ , ()2 xx t B≤ , ()3 xx t B t≤ ∀ (8)

()1 xx t B≤ && , ()2 xx t B≤ && , ()3 xx t B t≤ ∀&& (9)

where xB and xB& are known positive constants.

The parameters of the Gaussian membership functions are
also bounded as follows:

A B
σ

σ ≤ ; B B
σ

σ ≤ ; C B
σ

σ ≤ ;

A cc B≤ ; B cc B≤ ; C cc B≤ (10)

where Bσ and cB are known positive constants.

It follows then from (5) and (7) that the normalized value of
the output signals of the neurons from the second hidden
layer will be also bounded:

ijk WW B≤ (11)

where the positive constant WB is bounded by the following
inequality:

()2

2exp 3 x c
W

B B
B

Bσ

⎡ ⎤−
≤ −⎢ ⎥

⎢ ⎥⎣ ⎦
 (12)

It is also assumed that the elements of the vector ()f t are
bounded at each moment of time t by a given known
positive constant fB .

()ijk ff t B≤ (13)

The scalar signal ()dy t represents the time-varying desired

output of the neural network. It will be assumed that ()dy t

and ()dy t& are bounded signals, i.e.,

()
dd yy t B≤ , ()

dd yy t B t≤ ∀&& (14)

where
dyB and

dyB & are positive constants.

2.3 The Sliding Mode Learning Algorithm

Let us define the learning error of the fuzzy-neural network
as the difference between the network’s current output ()y t

and its desired value ()dy t :

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12795

 () () ()de t y t y t= − (15)

Using the theory of Sliding Mode Control of Variable
Structure Systems (Utkin, 1992) the zero value of the
learning error coordinate ()e t can be defined as time-
varying sliding surface, i.e.,

()() () () () 0ds e t e t y t y t= = − = (16)

Condition (16) guarantees that the output ()y t of the neuro-
fuzzy network coincides with the desired output signal

()dy t for all time ht t> , where ht is the hitting time of

0e = .

Definition: A sliding motion will have place on a sliding
manifold ()() () 0s e t e t= = after a time ht , if the

condition () () () () 0s t s t e t e t= <& & is satisfied for all t in
some nontrivial semi-open subinterval of time of the form
[) (), ,h ht t t⊂ −∞ .

It is desired to devise a dynamical feedback adaptation
mechanism, or online learning algorithm for the neuro-fuzzy
network parameters such that the sliding mode condition of
the above definition is enforced.

Theorem: If the learning algorithm for the parameters of the
membership functions with a Gaussian distribution is chosen
respectively as:

()i

i

A
A T

A A

c sign e
σ

α
σ σ

= −& (17)

()j

j

B
B T

B B

c sign e
σ

α
σ σ

= −& (18)

()k

k

C
C T

C C

c sign e
σ

α
σ σ

= −& (19)

()i

i

A
A T

A A

s
sign e

s s
σ α= −& ;

1i iA As x c= − ;
1 2

...
I

T

A A A As s s s⎡ ⎤= ⎣ ⎦ (20)

()j

j

B
B T

B B

s
sign e

s s
σ α= −& ;

2j jB Bs x c= − ;
1 2

...
J

T

B B B Bs s s s⎡ ⎤= ⎣ ⎦ (21)

()k

k

C
C T

C C

s
sign e

s s
σ α= −& ;

3k kC Cs x c= − ;
1 2

...
K

T

C C C Cs s s s⎡ ⎤= ⎣ ⎦ (22)

and the adaptation of the connection weights between the
second hidden layer and the output layer of the neuro-fuzzy
network is chosen as follows:

()ijk
ijk T

W
f sign e

W W
α= −& (23)

with 111 112 ...T
IJKW W W W⎡ ⎤= ⎣ ⎦ (24)

where α is a sufficiently large positive number satisfying
the inequality

()
()

2 1
1 4 1

r f ydW W

q fW W

nB B B nB B
nB B B nB

α
+ +

>
− +

& (25)

where n I J K= × × ,

then, given an arbitrary initial condition ()0е , the learning

error ()е t will converge to zero during a finite time.

Proof: Consider the following Lyapunov function candidate:

 ()() ()21
2

V e t e t= (26)

The time derivative of ()()V e t is given by

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=−== ∑∑∑ d

i j k
ijkijkd yWf

dt
deyyeeeteV &&&&&)())((

()ijk ijk ijk ijk d
i j k

e f W f W y
⎡ ⎤

= + −⎢ ⎥
⎣ ⎦
∑∑∑ && & (27)

It can be easily shown that

()2 2ijk ijk ijk ijk ijk ijk
i j k

W W K W W K= − + ∑∑∑& (28)

where

 ijkK AA BB CC= + +& && (29)

and

 1 i

i

A

A

x c
A

σ
−

= , 2 j

j

B

B

x c
B

σ

−
= , 3 k

k

C

C

x c
C

σ
−

= (30)

Then ()()V e t& can be further expressed as follows:

3 3 3

2 2ijk ijk ijk ijk ijk ijk ijk ijk d
i j k i j k

V e f W f W K W W K y
⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= + − + − =⎢ ⎥⎨ ⎬⎜ ⎟

⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
∑∑∑ ∑∑∑&& &

 ()2ijk ijk ijk ijk
i j k i j k

e f W W AA BB CC f
⎧

= − + + +⎨
⎩
∑∑∑ ∑∑∑& & &&

()2 ijk ijk ijk d
i j k i j k

W f W AA BB CC y
⎫⎡ ⎤ ⎪+ + + − =⎬⎢ ⎥
⎪⎣ ⎦ ⎭

∑∑∑ ∑∑∑ & && &

()()12() 2 2
i

i

ijk ijk A
i j k A

Ae sign e W f x sign eα σ α
σ

⎛⎧
= − − + +⎜⎨ ⎜⎩ ⎝

∑∑∑ &

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12796

 ()() ()())2 32 22 2
j k

j k

B C
B C

B Cx sign e x sign eσ α σ α
σ σ

+ + + + +& &

 ()()122 2
i

i

ijk ijk ijk A
i j k i j k A

AW f W x sign eσ α
σ

⎛⎡
+ + +⎜⎢ ⎜⎣ ⎝

∑∑∑ ∑∑∑ &

()() ()()2 32 22 2
j k

j k

B C d
B C

B Cx sign e x sign e yσ α σ α
σ σ

⎫⎤⎞ ⎪⎥⎟+ + + + − =⎬⎟⎥ ⎪⎠⎦ ⎭
& & &

() ()2 4ijk ijk ijk ijk ijk ijk
i j k i j k

e sign e W f r sign e W f qα α
⎡

= − − − +⎢
⎣

∑∑∑ ∑∑∑

()2 4ijk ijk ijk ijk d
i j k i j k

y W r y sign e W q yα
⎤

+ + − =⎥
⎦

∑∑∑ ∑∑∑ &

 () ()2 ijk ijk ijk
i j k

e sign e W r f yα
⎡

= − − − −⎢
⎣

∑∑∑

 () ()4 ijk ijk ijk d
i j k

sign e W q f y yα
⎤

− − − =⎥
⎦

∑∑∑ &

()4 ijk ijk ijk
i j k

W q f y eα α
⎡ ⎤

= − − − −⎢ ⎥
⎣ ⎦

∑∑∑

 ()2 ijk ijk ijk d
i j k

W r f y y e
⎡ ⎤

− − + ≤⎢ ⎥
⎣ ⎦

∑∑∑ &

 ()4 q f fW We nB B B nB B eα α≤ − + + +

 ()2
dr f f yW We nB B B nB B B e+ + + =&

 (){ 1 4 1q fW We nB B B nBα ⎡ ⎤≤ − − + +⎣ ⎦

() }2 1 0
dr f yW WnB B B nB B+ + + <&

 (31)

where ijkr and ijkq are defined as follows:

1 2 3
i j k

ijk
A B C

A B Cr x x x
σ σ σ

= + +& & & (32)

2 2 2

i j k

ijk
A B C

A B Cq
σ σ σ

= + + (33)

ijk rr B≤ , ijk qq B≤ (34)

and the positive constants rB and qB are bounded by the
following inequalities:

23 x c
r x

B BB B
Bσ

+
≤ &

,
33 x c

q
B BB

Bσ

+
≤ (35)

The inequality (31) means that the controlled trajectories of
the learning error ()e t converge to zero in a stable manner.

3. APPLICATION TO ONLINE LEARNING OF
NONLINEAR FUNCTION

In order to demonstrate the functionality of the proposed
learning algorithm a simulation experiment has been carried
out in the Matlab/Simulink programming environment. A
fuzzy rule-based neural network has been trained with the
proposed SMC based algorithm to approximate the function:

 10() sin(3)
x

F x e x
−

= (36)

The latter is commonly used as a benchmark since it is non-
monotonic.

The neuro-fuzzy network topology used in the experiment
has been with one input and the argument x of the above
function has been used to feed it. The network input has been
associated with three fuzzy labels defined by Gaussian
membership functions with initial values of the parameters

1A B Cσ σ σ= = = , 0.5Ac = − , 0.2Bc = and 1Cc = . Small
random initial values have been generated for the weight
coefficients ijkf .

The obtained results are presented on Fig. 2 and Fig. 3. As it
can be seen from Fig. 2, the learning error converges rapidly
towards close to zero values.

Fig. 2. Online learning of a decaying sinusoidal function.
The approximated function is plotted with dashed line, the
output of the FNN with SMC learning algorithm is plotted
with solid line on the same plot. The error is separately
plotted with solid line.

Fig. 3 illustrates the changes that occurred in the membership
functions which initial shapes and locations are shown with
dashed lines and those at the end of the learning period – with
solid lines.

As it can be seen, the fuzzy rule-based neural network has an
adaptive behaviour by adjusting itself to track the function

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12797

presented. The implementation of the sliding mode concept
has introduced speed-up in network learning and after a small
period of time the network error is very small.

Fig. 3. Changes in the shapes and locations of the Gaussian
membership functions associated with the input of the neuro-
fuzzy network during the approximation of decaying
sinusoidal function. Initial values are presented with dashed
lines.

4. CONCLUSIONS

In this paper a new learning algorithm has been proposed for
fuzzy rule-based neural networks with scalar output which
robustly drives the learning error to zero in finite time. The
weights adaptation scheme is based on sliding mode control
concept and it represents a simple, yet robust, mechanism for
guaranteeing finite time reachability of zero learning error
condition. The convergence of the algorithm has been
analyzed and simulation results have been presented to show
its effectiveness. In contrast with off-line learning algorithms,
the algorithm proposed can be used to train the network as it
interacts with the external environment.

5. ACKNOWLEDGEMENTS

The work of A. V. Topalov and N. G. Shakev was supported
by the Ministry of Education and Science of Bulgaria
Research Fund Project BY-TH-108/2005. The work of O.
Kaynak was supported in part by the Bogazici University
Research Fund Project 03A202 and in part by the TUBITAK
Project 100E042.

REFERENCES

Aliev, R.A., B. Fazlollahi and R.M. Vahidov (2001). Genetic
algorithm-based learning of fuzzy neural networks. Part
I: Feed-forward fuzzy neural networks. Fuzzy Sets Syst.,
vol. 118, no. 3, pp. 351-358.

Farag W.A., V.H. Quintana and G. Lambert-Torres (1998). A
genetic-based neuro-fuzzy approach for modeling and
control of dynamic systems. IEEE Trans. Neural
Networks, vol.9, pp. 756-767.

Kosmatopoulos E.B., M.M. Polycarpou, M.A. Christodoulou
and P.A. Ioannou (1995). High-order neural network

structures for identification of dynamical systems. IEEE
Trans. on Neural Networks, vol. 6, no. 2, pp.431-442.

Lin C.T. and C.S. George Lee (1996). Neural Fuzzy Systems.
Englewood Cliffs, NJ.

Lin F.-J., R.F. Fung and R.-J. Wai (1998). Comparison of
sliding mode and fuzzy neural network control for
motor-toggle servomechanism. IEEE/ASME Trans.
Mechatron., vol. 3, pp. 302-318.

Lin F.-J, K.-K Shyu and R.-J. Wai (2001). Recurrent-fuzzy-
neural-network sliding-mode controlled motor-toggle
servomechanism. IEEE/ASME Trans. Mechatron., vol. 6,
no. 4, pp. 453-466.

Narendra K.S. and K. Parthasarathy (1990). Identification
and control of dynamical systems using neural networks.
IEEE Trans. Neural Networks, no. 1, pp. 4-27.

Parma G.G., B.R. Menezes and A.P. Braga (1998). Sliding
mode algorithm for training multilayer artificial neural
networks. Electronics Letters, vol. 34, no. 1, pp. 97-98.

Rumelhart D., D. Hinton and G. Williams (1986). Learning
internal representations by error propagation, In: Parallel
Distributed Processing. 1, D. Rumelhart and F.
McClelland eds., pp. 318-362. Cambridge, MA, MIT
Press.

Shakev N.G., A.V. Topalov and O. Kaynak (2003). Sliding
mode algorithm for on-line learning in analog multilayer
feedforward neural networks. In: Artificial Neural
Networks and Neural Information Processing. Lecture
Notes in Computer Science vol. 2714, pp. 1064-1072.
Springer-Verlag.

Suykens J.A.K, J. Vandewalle and B. De Moor (1999). Lur’e
systems with multilayer perceptron and recurrent neural
networks: absolute stability and dissipativity. IEEE
Trans. on Automatc Control, vol. 44, pp. 770-774.

Wang L.X. (1997). A course in Fuzzy Systems and Control.
Prentice-Hall, Englewood Cliffs, NJ.

Wang W.Y., T.T. Lee, C.L. Liu and C.H. Wang (1997).
Function approximation using fuzzy neural networks
with robust learning algorithm. IEEE Trans. Systems,
Man, and Cybernetics – Part B, vol. 27, pp. 740-747.

Wu S.Q. and M.J. Er (2000). Dynamic fuzzy neural networks
– a novel approach to function approximation. IEEE
Trans. on Systems, Man and Cybernetics, Part B, vol.
30, pp. 358-364.

Yu S., X. Yu and Z. Man (2004). A fuzzy neural network
approximator with fast terminal sliding mode and its
applications. Fuzzy Sets and Systems, vol. 148, pp. 469-
486.

Utkin V. I. (1992). Sliding Modes in Control Optimization,
Springer-Verlag, New York.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12798

