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Abstract: A new, variable structure systems theory based, algorithm has been developed for on-line 
training of fuzzy-neural networks. Such computationally intelligent structures are widely used for 
modeling, identification and control of nonlinear dynamic systems. The algorithm is applicable to fuzzy 
rule-based neural nets of Takagi-Sugeno-Kang type with a scalar output. Its convergence is established and 
the conditions are given. Differently from other similar approaches which are limited to the adaptation of 
the parameters of the network defuzzification part only, the proposed algorithm tunes also the parameters 
of the implemented membership functions. The zero level set of the learning error variable is considered as 
a sliding surface in the space of network learning parameters. The effectiveness of the proposed algorithm 
is shown when applied to on-line learning of nonlinear functions approximation. 

 

1. INTRODUCTION 

During the last decade the concept of incorporating fuzzy 
logic into neural network has emerged and has become a 
popular research area (Farag et al., 1998), (Lin et al., 1998), 
(Lin et al., 2001), (Wang, 1997). Fuzzy neural networks 
(FNN) combine the advantages of both techniques. They are 
capable to deal with fuzzy reasoning when working with 
imprecise information (Wang, 1997) and possess the learning 
ability of neural networks as well (Narendra et al., 1990). 
Like the fuzzy systems and neural networks, FNNs have been 
proven to be universal approximators too (Lin et al., 1996). A 
fuzzy neural network can be considered as a fuzzy system 
that can be trained in similar way like the neural networks 
are. The typical approach of building FNNs is to implement 
standard neural networks which are designed to approximate 
a fuzzy system through their structure. Such structures are 
also known as fuzzy rule-based neural networks or neuro-
fuzzy networks. The investigations carried out during the last 
years are showing that FNN can be very successfully applied 
for modelling and control of complex systems (Wang et al., 
1997), (Wu et al., 2000).    

Despite of the existing variety of learning algorithms used for 
training of FNN, they can be mainly classified into two 
groups: 1) gradient descent type algorithms that include 
computation of partial derivatives or sensitivity functions; 
they can be also viewed as different variants of the well 
known backpropagation learning algorithm (Rumelhart et al., 
1986), and 2) algorithms based on evolutionary computations 
with genetic algorithms (GAs) being the most widely used 

among them (Aliev et al., 2001). When considering the 
application of FNN structures in different adaptive schemes 
where on-line learning is required the existing methods have 
some major drawbacks among which in particular are (i) the 
difficulty to obtain analytical pertaining to the convergence 
and stability of the learning schemes and (ii) the slow 
convergence speed. Recent investigations on neural and 
neuro-fuzzy networks control applications have begun to 
address stability issues more rigorously. Research in this area 
has been split over two main directions. It has been shown in 
several works that Lyapunov approach can be directly 
implemented to obtain robust training algorithms for 
continuous-time neural networks (Kosmatopoulos et al., 
1995), (Suykens et al., 1999). Another proposed way to 
design a robust learning scheme is to utilize the Variable 
Structure Systems (VSS) theory in constructing the parameter 
adaptation mechanism of the NNs and FNNs (Parma et al., 
1998), (Yu et al., 2004). The results obtained in this direction 
(Shakev et al., 2003) have shown that the convergence of the 
learning strategies can be significantly improved. Such 
intelligent systems exhibit the robustness and invariance 
properties inherited from Variable Structure Control (VSC) 
technique while still maintaining good approximation 
capability and flexibility. 

The new on-line learning method for neuro-fuzzy networks, 
suggested in the current investigation, controls the error 
dynamics. The latter is defined as a difference between the 
current and the desired output signal of the fuzzy rule-based 
neural network and it is described using a differential 
equation. Differently from the gradient-based learning 
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methods which aim to minimize an error function, here the 
learning parameters are tuned by the proposed algorithm in a 
way to enforce the error to satisfy this stable equation.  

The present work consists of four sections. Section 2 presents 
the developed new method for parametric adaptation of fuzzy 
rule-based neural networks with a scalar output using the 
Sliding Mode Control (SMC) theory. The results from 
simulations are shown in section 3. Finally, section 4 
summarizes the obtained results. 

2. THE SLIDING MODE LEARNING  

2.1 The Neuro-Fuzzy Network 

A neuro-fuzzy network with three inputs and one output will 
be considered for simplicity (see Fig. 1). The obtained results 
can be generalized for any number of network inputs. The 
incoming signals are fuzzyfied by using Gaussian 
membership functions.  The input signals ( )1x t , ( )2x t  and 

( )3x t  are associated accordingly with I , J  and K  
numbers of fuzzy labels which are determined by their 
corresponding membership functions µ . Then the total 
number of the fuzzy if-then rules will be I J K× × .  

 

Fig. 1. The fuzzy-neural network 

A fuzzy if-then rule base of Takagi-Sugeno type is used 
where the fuzzy sets are included in the premise part only. In 
this case the corresponding rule ijkR  can be expressed as: 

:ijkR   if 1x  is iA  and 2x  is jB  and 3x  is kC  

then 1 2 3ijk i j k ijkf a x b x c x d= + + +            (1) 

where 1,...,i I= ; 1,...,j J= ; 1,...,k K= .  

It is further assumed that the output of each fuzzy if-then rule 
consists of a constant ijkd only (i.e. iа , jb  and kc  are all 

equal to zero and ijk ijkf d= ) which is a widely used 
simplification. 

The Gaussian membership function is described by two 
parameters – the center c  and the distribution σ  which are 
among the tunable parameters of the fuzzy-neural structure. 

The strength of the rule ijkR  is obtained as a T-norm of the 
membership functions in the premise part (by using a 
multiplication operator): 

                  ( ) ( ) ( )1 2 3i j kijk A B CW x x xµ µ µ=                    (2) 

The output signal of the fuzzy-neural network ( )y t  is 
calculated as a weighted average of the output of each rule: 
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In the above expression ( )1iA xµ , ( )2jB xµ  and ( )3kC xµ  are 

the Gaussian membership functions of the inputs 1x , 2x   and 

3x  respectively and have the following appearance:  
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Therefore (2) can be rewritten also as follows 

( ) ( ) ( )
22 2

21 3

2 2 2exp ji k

i j k

BA C
ijk

A B C

x cx c x c
W

σ σ σ

⎡ ⎤−− −⎢ ⎥= − − −⎢ ⎥
⎢ ⎥⎣ ⎦

    (5) 

After the normalization of (3) the output signal of the neuro-
fuzzy network will acquire the following form: 

                              
1 1 1

( )
I J K

ijk ijk
i j k

y t f W
= = =

= ∑∑∑                 (6) 

where ijkW  is the normalized value of the output signal of the 

neuron ijk  from the second hidden layer of the network: 
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2.2 Initial Assumptions 

The following vectors have been specified: 

( ) ( ) ( ) ( )1 2 3
T

X t x t x t x t= ⎡ ⎤⎣ ⎦ – vector of the time varying 

input signals; 

( ) ( ) ( ) ( ) ( ) ( )111 112 211... ... ...
T

ijk IJKW t W t W t W t W t W t⎡ ⎤= ⎣ ⎦ – 

vector of the output signals of the neurons from the second 
hidden layer; 

1 2
... ...

i I

T

A A A A Aσ σ σ σ σ⎡ ⎤= ⎣ ⎦ – vector of the parameters 

defining the distribution of the Gaussian membership 
functions relevant to the first input of the network;  

 
1 2

... ...
j J

T

B B B B Bσ σ σ σ σ⎡ ⎤= ⎣ ⎦ – vector of the parameters 

defining the distribution of the Gaussian membership 
functions relevant to the second input of the neuro-fuzzy 
network;  

  
1 2

... ...
k K

T

C C C C Cσ σ σ σ σ⎡ ⎤= ⎣ ⎦ – vector of the parameters 

defining the distribution of the Gaussian membership 
functions relevant to the third input of the neuro-fuzzy 
network;   

 
1 2

... ...
i I

T

A A A A Ac c c c c⎡ ⎤= ⎣ ⎦  – vector of the parameters 

defining the centers of the Gaussian membership functions 
relevant to the first network input;  

 
1 2

... ...
j J

T

B B B B Bc c c c c⎡ ⎤= ⎣ ⎦ – vector of the parameters 

defining the centers of the Gaussian membership functions 
relevant to the second network input;   

 
1 2

... ...
k K

T

C C C C Cc c c c c⎡ ⎤= ⎣ ⎦ – vector of the parameters 

defining the centers of the Gaussian membership functions 
relevant to the third network input;    

( ) ( ) ( ) ( ) ( ) ( ) ( )111 112 211 212... ... ...ijk IJKf t f t f t f t f t f t f t⎡ ⎤= ⎣ ⎦  - 

vector of the time variable weight coefficients of the 
connections between the neurons from the second hidden 
layer and the output neuron (node) of the fuzzy rule-based 
neural network.  

The following assumptions have been used in this 
investigation:  

Both, the input signals ( )1x t , ( )2x t  and ( )3x t , and their 

time derivatives ( )1x t& , ( )2x t&  and ( )3x t&  will be 
considered bounded:   

( )1 xx t B≤ , ( )2 xx t B≤ , ( )3 xx t B t≤ ∀             (8) 

( )1 xx t B≤ && , ( )2 xx t B≤ && , ( )3 xx t B t≤ ∀&&             (9) 

where xB  and xB&  are known positive constants. 

The parameters of the Gaussian membership functions are 
also bounded as follows: 

A B
σ

σ ≤ ; B B
σ

σ ≤ ; C B
σ

σ ≤ ; 

A cc B≤ ; B cc B≤ ; C cc B≤                  (10) 

where Bσ  and cB  are known positive constants. 

It follows then from (5) and (7) that the normalized value of 
the output signals of the neurons from the second hidden 
layer will be also bounded: 

ijk WW B≤                                    (11) 

where the positive constant WB  is bounded by the following 
inequality: 

( )2

2exp 3 x c
W

B B
B

Bσ

⎡ ⎤−
≤ −⎢ ⎥

⎢ ⎥⎣ ⎦
                     (12) 

It is also assumed that the elements of the vector ( )f t  are 
bounded at each moment of time t  by a given known 
positive constant fB . 

( )ijk ff t B≤                                   (13) 

The scalar signal ( )dy t  represents the time-varying desired 

output of the neural network. It will be assumed that ( )dy t  

and ( )dy t&  are bounded signals, i.e., 

( )
dd yy t B≤ , ( )

dd yy t B t≤ ∀&&        (14) 

where 
dyB  and 

dyB &  are positive constants. 

2.3 The Sliding Mode Learning Algorithm 

Let us define the learning error of the fuzzy-neural network 
as the difference between the network’s current output ( )y t  

and its desired value ( )dy t :  
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  ( ) ( ) ( )de t y t y t= −                            (15) 

Using the theory of Sliding Mode Control of Variable 
Structure Systems (Utkin, 1992) the zero value of the 
learning error coordinate ( )e t  can be defined as time-
varying sliding surface, i.e.,  

( )( ) ( ) ( ) ( ) 0ds e t e t y t y t= = − =                (16) 

Condition (16) guarantees that the output ( )y t  of the neuro-
fuzzy network coincides with the desired output signal 

( )dy t  for all time ht t> , where ht  is the hitting time of 

0e = .  

Definition: A sliding motion will have place on a sliding 
manifold ( )( ) ( ) 0s e t e t= =  after a time ht , if the 

condition ( ) ( ) ( ) ( ) 0s t s t e t e t= <& &  is satisfied for all t  in 
some nontrivial semi-open subinterval of time of the form 
[ ) ( ), ,h ht t t⊂ −∞ .  

It is desired to devise a dynamical feedback adaptation 
mechanism, or online learning algorithm for the neuro-fuzzy 
network parameters such that the sliding mode condition of 
the above definition is enforced. 

Theorem: If the learning algorithm for the parameters of the 
membership functions with a Gaussian distribution is chosen 
respectively as: 
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s
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s s
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3k kC Cs x c= − ; 
1 2

...
K

T

C C C Cs s s s⎡ ⎤= ⎣ ⎦  (22) 

and the adaptation of the connection weights between the 
second hidden layer and the output layer of the neuro-fuzzy 
network is chosen as follows: 

( )ijk
ijk T

W
f sign e

W W
α= −&                          (23)  

with                    111 112 ...T
IJKW W W W⎡ ⎤= ⎣ ⎦                   (24) 

where α  is a sufficiently large positive number satisfying 
the inequality 

( )
( )

2 1
1 4 1

r f ydW W

q fW W

nB B B nB B
nB B B nB

α
+ +

>
− +

&                   (25) 

where n I J K= × × ,  

then, given an arbitrary initial condition ( )0е , the learning 

error ( )е t  will converge to zero during a finite time. 

Proof: Consider the following Lyapunov function candidate: 

 ( )( ) ( )21
2

V e t e t=                             (26) 

The time derivative of  ( )( )V e t  is given by 
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It can be easily shown that 
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Then ( )( )V e t&  can be further expressed as follows:  

3 3 3

2 2ijk ijk ijk ijk ijk ijk ijk ijk d
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V e f W f W K W W K y
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⎩
∑∑∑ ∑∑∑& & &&  
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W f W AA BB CC y
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i

i

ijk ijk A
i j k A

Ae sign e W f x sign eα σ α
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                      (31) 

where ijkr  and ijkq  are defined as follows: 

1 2 3
i j k

ijk
A B C

A B Cr x x x
σ σ σ

= + +& & &                         (32) 

   
2 2 2

i j k

ijk
A B C

A B Cq
σ σ σ

= + +                             (33) 

ijk rr B≤ ,  ijk qq B≤                                 (34) 

and the positive constants rB  and qB  are bounded by the 
following inequalities: 

23 x c
r x

B BB B
Bσ

+
≤ &

,   
33 x c

q
B BB

Bσ

+
≤                   (35) 

The inequality (31) means that the controlled trajectories of 
the learning error ( )e t  converge to zero in a stable manner. 

3. APPLICATION TO ONLINE LEARNING OF 
NONLINEAR FUNCTION 

In order to demonstrate the functionality of the proposed 
learning algorithm a simulation experiment has been carried 
out in the Matlab/Simulink programming environment. A 
fuzzy rule-based neural network has been trained with the 
proposed SMC based algorithm to approximate the function: 

   10( ) sin(3 )
x

F x e x
−

=                         (36) 

The latter is commonly used as a benchmark since it is non-
monotonic.  

The neuro-fuzzy network topology used in the experiment 
has been with one input and the argument x  of the above 
function has been used to feed it. The network input has been 
associated with three fuzzy labels defined by Gaussian 
membership functions with initial values of the parameters 

1A B Cσ σ σ= = = , 0.5Ac = − , 0.2Bc =  and 1Cc = . Small 
random initial values have been generated for the weight 
coefficients ijkf . 

The obtained results are presented on Fig. 2 and Fig. 3. As it 
can be seen from Fig. 2, the learning error converges rapidly 
towards close to zero values.  

 

Fig. 2.  Online learning of a decaying sinusoidal function. 
The approximated function is plotted with dashed line, the 
output of the FNN with SMC learning algorithm is plotted 
with solid line on the same plot. The error is separately 
plotted with solid line.  

Fig. 3 illustrates the changes that occurred in the membership 
functions which initial shapes and locations are shown with 
dashed lines and those at the end of the learning period – with 
solid lines.  

As it can be seen, the fuzzy rule-based neural network has an 
adaptive behaviour by adjusting itself to track the function 
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presented. The implementation of the sliding mode concept 
has introduced speed-up in network learning and after a small 
period of time the network error is very small. 

 

Fig. 3.  Changes in the shapes and locations of the Gaussian 
membership functions associated with the input of the neuro-
fuzzy network during the approximation of decaying 
sinusoidal function. Initial values are presented with dashed 
lines.  

4. CONCLUSIONS 

In this paper a new learning algorithm has been proposed for 
fuzzy rule-based neural networks with scalar output which 
robustly drives the learning error to zero in finite time. The 
weights adaptation scheme is based on sliding mode control 
concept and it represents a simple, yet robust, mechanism for 
guaranteeing finite time reachability of zero learning error 
condition. The convergence of the algorithm has been 
analyzed and simulation results have been presented to show 
its effectiveness. In contrast with off-line learning algorithms, 
the algorithm proposed can be used to train the network as it 
interacts with the external environment.  
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