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Abstract: Modern fire-rescue turntable ladders are constructed in a lightweight mode to
increase their maximum operation velocities, maximum length, and outreach respectively. Hence,
the ladder has a limited stiffness and will be more and more subject to oscillations of deflection
along with dominant overtones. This paper deals with the active oscillation damping of such
ladders. A new feedforward and feedback control strategy is applied. The feedforward control is
calculated through system inversion of a multi-body system utilizing its differentially flatness.
The design of the feedback is based on partial differential equations (PDE) describing a Euler–
Bernoulli model of a beam with a concentrated point mass at the end. The modal representation
of the system is constructed based on the analytical form of the eigenfunctions. For active
oscillation damping by feedback without a dynamical observer the ladder was equipped with a
gyroscope additionally to strain gauges. Due to computational efforts and measurement noise a
reduced state vector is disposed for stabilization. The proposed control approach allows damping
the fundamental oscillation as well as the first dominant overtone and asymptotically stabilizing
the system around the reference trajectory. Measurement results from the IVECO DLK 55 CS
fire-rescue turntable ladder validate the good performance of the control.

Keywords: differentially flatness; system inversion; modal transform; distributed-parameter
system; oscillation damping.

1. INTRODUCTION

In this paper a new control strategy for active damping
of a fire-rescue turntable ladder is presented. Lightweight
construction is applied to modern turntable ladders such
as the IVECO DLK 55 CS (Fig. 1) in order to increase
its maximum operation speeds, maximum ladder’s length,
and its horizontal outreach. Hence the ladder has a very
limited stiffness and will be more and more subject to
oscillations along with dominant overtones. The IVECO
DLK 55 CS turntable ladder is characterized by a maxi-
mum extension of the ladder set extension of L = 53.2 m
and a maximum outreach of 22 m (at min. ϕA = 68 ◦)
respectively. The erection angle covers a space of ϕA =
[−12 ◦ . . . 75 ◦]. In the vertical plane the ladder is driven
by hydraulic cylinders, which provide a maximum angular
velocity of the erection angle ϕ̇A = 3 ◦

/s. The cage has a
maximal loading of 300 kg, which corresponds to three fire
fighters with full equipment.

In the proposed paper we shell use different mathemati-
cal models for feedforward and feedback design. For the
feedforward loop the differential equations of motion are
derived by applying the Lagrangian formalism (Banerjee
[2005], deWit:96)). The dynamics of the hydraulic actu-
ators are approximated by a 1st–order transfer function.
The design of the feedforward loop is formulated based
on simplifications of this dynamical model. An Euler-
Bernoulli model of a beam with a point mass at the
end is considered by Kharitonov et al. [2007]. Based on
the analytical eigenfunctions the modal description of the
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Fig. 1. turntable ladder: IVECO Magirus DLK 55 CS
(approach angle ϕA ≈ 68 ◦, ladder length L = 53.2 m)

plant is constructed, but considering only the first and
the second mode. On this basis a feedback law is derived.
This Ansatz is enhanced to different ladder’s lengths. The
plant is equipped with gyroscopes in addition to the strain
gauges. Hence an observer is unnecessary because all states
are determined by solving a system of algebraic equations
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Fig. 2. Discrete fast fourier transform of a step response
with a length of L = 53.2 m

of the two measurement systems. The control concept has
been applied to a IVECO DLK 55 CS fire–rescue turntable
ladder. The ladder is driven with a micro controller work-
ing with fix-point arithmetic. Though computational costs
have to be taken into account during the development of
the control concept.

In recent years the task of active oscillation damping
of turntable ladders with the length up to 30 m was
considered in some works. In Lambeck and Sawodny
[2007], Lambeck et al. [2006], Sawodny et al. [2002] a
trajectory tracking control based on a dynamic model of
the ladder and decentralized control strategy has been
developed. In these works the information about the
system state is limited to the erecting angle and the strain
gauges at a point close to the hub. By using these signals,
a feedback was designed within framework of a multi-
body system model. The designed controller is able to
reduce effectively the swaying concerning the fundamental
oscillation, but it cannot damp undesirable high–frequency
oscillations (overtones), which become large especially for
large lengths of the ladder.

In Zuyev and Sawodny [2005] the turntable ladder was
considered as a flexible manipulator model with passive
joints based on the Euler–Bernoulli beam concept. The
feedback design is based on the Galerkin approximation.
In Zuyev and Sawodny [2006, 2007] a similar approach
is applied on a Timoshenko model of a beam. For the
realization of the designed feedback law it is proposed to
use the dynamical observer needing more computational
power of a micro controller.

In the paper an overview on the control structure is given
in section 2. Section 2.1 and 2.2 deal with the details of
the control design. In section 2.1 a mathematical model
of the ladder is derived and the feedforward control is for-
mulated based on ordinary differential equations (ODE).
The calculation of the feedback by using partial differential
equations (PDE), which describe a Euler–Bernoulli model
of a beam, is presented in section 2.2. Measurement results
of the IVECO DLK 55 CS fire–rescue turntable ladder are
obtained and analyzed in section 3. In Section 4 concluding
remarks are given and aspects of future work are discussed.

2. CONTROL STRATEGY

The control consists of a feedforward and a feedback loop.
The structure is presented in Fig. 3. The feedforward con-
trol is designed within the framework of a multi-body sys-
tem model utilizing a flatness based approach for system
inversion. The reference input to the closed loop system is
ẏref (t), which is the signal coming from the hand lever of

-
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Fig. 3. Scheme of the control structure

the operator. Therefore a trajectory generator is needed
to provide feasible reference trajectories

(
zref (t)

)
. The

stabilizing feedback is dimensioned with pole placement on
the modal state space description of the Euler–Bernoulli
model of a beam. The states (x1(t), x3(t)) of the system
(amplitudes of the two modes) are constructed by solv-
ing a system of algebraic equations by utilizing the two
measurements (m1(t),m2(t)).

Due to the fact that the ladder can be extended to different
lengths the parameters of the ladder have to be updated
in every time step (e. g. stiffness, eigenfrequencies and
damping coefficients of the dominant modes, et cetera).
Fortunately the ladder’s length is changing very slowly, so
it can be considered as a parameter. The time variance
of the system can be neglected for the controller design,
because all the parameters depend on the length of the
ladder. But a gain scheduling depending on the ladder’s
length is necessary to obtain a good performance within
the whole range.

Although the oscillation of deflection will be considered in
the vertical plane, the action of gravity on the concentrated
mass is neglected. Since the mathematical model is linear
for small angles and the steady state solution taking
into account the action of gravity and the prestressing
of the ladder can be always subtracted for the task of
stabilization.

2.1 Feedforward Control

Multi-Body Model The dynamic model of the turntable
ladder can be derived by using the Lagrange formalism on
a multi-body system with elasticity and damper-elements
(Fig. 4), where the ladder set together with the cage and
the vehicle are approximated by two equivalent masses
(mh . . . vehicle,ml . . . ladder and cage) and the arm elas-
ticity is approximated by spring-damper elements. Thus
the ladder is considered as a massless leaf spring with
the length L, the stiffness coefficient cv, the damping
coefficient dv, and at the end of it the point mass ml.
The deflection at the end of the ladder is named vz. The
turntable ladder has some more degrees of freedom such
as the turning motion of the hub (ϕR), but as mentioned
before the focus of the paper is on the motion in the
vertical plane.

0 = mlv̈z (t) + mlLϕ̈A (t) + dv v̇z (t) + cvvz (t) +

+
(Lϕ̇R (t) + v̇y (t))2

2L
sin
(

2ϕA (t) +
2
L

vz (t)
)

︸ ︷︷ ︸
pR(t)

(1)

Even though the Coriolis-force does not bother during
the controller design, the effect of the rotary motion on
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Fig. 4. Multi-body system model with elastic degree of
freedom as model for feedforward control design

the erecting motion is neglected (pR(t) ≡ 0), because the
rotary motion is quiet slowly (ϕ̇R � 1) and this axis is
actively damped by a separate controller (v̇z � 1) as well.
For the sake of less computational costs this simplification
is quiet convenient.

The dynamics of the actuators is approximated by 1st–
order transfer function, because there is a subsidiary flow
control of the cylinders’ hydraulics. The nonlinear dc gain
depending on the erecting angle kA (ϕA) is determined
from the construction.

ϕ̈A = − 1
τA

ϕ̇A +
kA (ϕA)

τA
u (2)

By choosing the state vector as

x (t) = [ ϕA (t) ϕ̇A (t) vz (t) v̇z (t) ]T

the following state space is the result

ẋ = f (x) + g (x) u

=


x2

− 1
τA

x2

x4
L

τA
x2 −

cv

ml
x3 −

dv

ml
x4

+


0
kA (x1)

τA
0

−LkA (x1)
τA

u(3a)

y = h (x) = x1 + arctan
(x3

L

)
(3b)

Model Inversion To invert the model mentioned in (3a)
a differentially flat output with the relative degree r = n
has to be found. The relative degree r is defined by the
following conditions:

LgL
i
fh (x) = 0 ∀i = 0, . . . , r − 2

LgL
r−1
f h (x) 6= 0 ∀x ∈ Rn (4)

The differential operator Lf represents the Lie derivative
of the argument along the vector field f and Lg along
the vector field g respectively. The real output mentioned
in (3b) has a relative degree of r = 2. Thus y is not a
differentially flat output, because the system is of 4th–
order. But the deflection proportional to the ladder’s
length is very small. If we assume vz/L � 1 a new output

ỹ = h̃ (x) = x1 + x3/L with the relative degree of r = 4 is
obtained. The difference between the control output and
the differentially flat output are negligible. By using the
Byrnes-Isidori normal form
S̄ : ỹ = z1, ż1 = z2, . . . , żr−1 = zr

żr =
[
Lr

fh + LgL
r−1
f hu

]
◦ φ−1 (z) = a (z) + b (z) u

the system comes up in the form

z1 = x1 + L−1x3 (5a)

z2 = x2 + L−1x4 (5b)

z3 =− cv

m1L
x3 (5c)

z4 =− cv

m1L
x4 (5d)

ż4 =− cv

τAm2
1L

(m1Lx2 − τAcvx3 −m1LkAu) . (5e)

Via a diffeomorph state transform
z = φ (x) , zi = φi (x) = Li−1

f h (x) i = 1, . . . , r

the model can be inverted with respect to the differentially
flat output. The new control input is defined as n-th
derivative with respect to the time of the differentially flat
output

ν = ż4 = ỹ(IV )

and so the control signal u is determined by

u =
−a (z) + ν

b (z)

u =
1

cvk̃A (z1, z3)
(cvz2 + cvτAz3 + mlz4 + τAmlν) . (6)

By the model inversion we obtain a chain of four integra-
tors (system’s order) with the input ν and the differentially
flat output ỹ = z1.

2.2 Feedback Control

Applying the feedforward control law (6) with feasible
trajectories for ν and z accordingly the load sway will be
much less compared to an uncontrolled motion. But for the
reason of model mismatches and assumptions, which have
been made in the design, the load sway is not eliminated
totally. Perturbances such as wind and people moving or
working on the platform of course cannot be compensated
by feedforward control. So a feedback loop is needfully to
stabilize the system around the reference trajectories to
ensure a minimum of load sway.

Euler–Bernoulli model The mathematical model of the
two-body system (ladder and cage) corresponds to a hy-
brid system consisting of a distributed as well as a lumped
parameter system due to the concentrated mass at the end
of the ladder (Fig. 5). It leads to the boundary conditions
which have to obey the dynamics of this concentrated
mass.

The ladder is driven by a control torque M(t) at its end
z = 0. L is the length of the ladder, ϕA(t) corresponds to
the angle between the moving axis Oz and the horizontal
direction, w(z, t) is the deflection from the center line of
the beam describing the ladder. Mp and Jp are the mass
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Fig. 5. Euler–Bernoulli beam with a point mass at the end
as model for feedback control design

and moment of inertia of the cage with respect to its center
of mass. Assuming that the angular velocity ϕ̇A(t) is small
and neglecting Coriolis–forces, the ladder concerning the
distributed part of the plant can be described as the Euler–
Bernoulli beam (Moallem et al. [2000], Wit et al. [1996])
by the following partial differential equation

EI
∂4w(z, t)

∂z4
+ ρS

∂2 [ϕA(t)z + w(z, t)]
∂t2

= 0,

z ∈ (0, L), t > 0, (7)
where E is the Young’s modulus, I is the moment of inertia
of the cross section, ρ is defined as the density, and S is
the cross section area of the ladder. These parameters were
evaluated through experimental identifications. The major
effects could be reproduced by simulations of the ladder
as a single flexible link. All except ρ are varying with the
length of the ladder. But the ladder’s length is changing
very slowly, therefore the feedback can be derived as if the
ladder had a constant length. The calculations just need
to be repeated for every change in the ladder’s length. The
boundary conditions at the end z = 0 of the beam have
the following form (fixed end)

w(0, t) = 0, t > 0, (8)
∂w(0, t)

∂z
= 0, t > 0. (9)

The boundary conditions at the end z = L describing the
connection between the distributed and lumped parts of
the plant can be written as follows (Aoustin et al. [1997],
Moallem et al. [2000])

−EI
∂2w(L, t)

∂z2
=Jp

d2

dt2

(
ϕA(t) +

∂w(L, t)
∂z

)
, t > 0,(10)

EI
∂3w(L, t)

∂z3
=Mp

d2

dt2

(
ϕA(t)L + w(L, t)

)
, t > 0.(11)

The terms in the right part describe the moment and force
provided by the moving concentrated mass, respectively.
Introducing the new depending value

V (z, t) ∆= ϕA(t)z + w(z, t),
the system equation (7) together with the boundary con-
ditions (8)–(11) take the form

EI
∂4V (z, t)

∂z4
+ ρS

∂2V (z, t)
∂t2

=0, (12)

V (0, t)=0, (13)
∂V (0, t)

∂z
=ϕA(t), (14)

−EI
∂2V (L, t)

∂z2
=Jp

d2

dt2

(
∂V (L, t)

∂z

)
, (15)

EI
∂3V (L, t)

∂z3
=Mp

d2V (L, t)
dt2

. (16)

For the simplicity, in this paper the control input u(t) is
introduced as follows

u(t) ∆= ϕA(t) =
∂V (0, t)

∂z
. (17)

The dynamics of the drive mechanism will not be taken
into account here, although the actual hub torque at the
end z = 0 of the beam is to be calculated by

M(t) = Jh
d2ϕA(t)

dt2
− EI

∂2w(0, t)
∂z2

, (18)

where Jh is the hub inertia.

Feedback Design Via a modal transform of the sys-
tem in (13)–(16), which will be presented in detail
by Kharitonov et al. [2007], one obtains

d2V ∗
k (t)

dt2
+ ω2

kV ∗
k (t) =

(
ω2

kf∗k −
f

(IV )∗
k

η

)
u(t). (19)

where η
∆= ρS/EI, f∗k and f

(IV )∗
k are series expansions in

the basis of eigenfunctions (Zk0), and ωi are the circular
frequencies corresponding to the eigenvalues λi. All these
parameters depend on the ladder’s length.

The task of stabilization will be considered. Further the
equilibrium V (z, t) ≡ 0 ∀z ∈ [0, L] will be treated as
the operating point without loss of generality. For the
technical implementation of the feedback law one proposes
to develop a feedback based only on the first two modes.
Indeed, the limiting frequency provided by the hydraulic
cylinders is 3 Hz but the frequency corresponding to the
third mode is higher especially for shorter ladder’s lengths.
If we consider the first two dominant modes the state
values will be introduced as follows

x1(t)
∆= V ∗

1 (t), x2(t)
∆= ẋ1(t) = V̇ ∗

1 (t),

x3(t)
∆= V ∗

2 (t), x4(t)
∆= ẋ3(t) = V̇ ∗

2 (t).

Even so internal damping is neglected in the Euler–
Bernoulli model of beam, it can be observed in reality.
Through experimental measurements the damping coeffi-
cients of the two first modes (D1, D2) have been identified
and (19) was augmented respectively. The system descrip-
tion in the state space takes the form
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 ẋ1

ẋ2

ẋ3

ẋ4

=

 0 1 0 0
−ω1

2 −2D1ω1 0 0
0 0 0 1
0 0 −ω2

2 −2D2ω1


︸ ︷︷ ︸

∆
=A

 x1

x2

x3

x4

+

+



0

ω1
2f∗1 −

f
(IV )∗
1

η
0

ω2
2f∗2 −

f
(IV )∗
2

η


︸ ︷︷ ︸

∆
=B

u(t). (20)

In order to be able to stabilize the plant state values must
be available for a feedback. For this the necessary state
values can be obtained by a Luenberger–type observer
or measured by some sensors. The IVECO DLK 55 CS
turntable ladder was equipped with strain gauges located
at the point z = z1 providing

m1(t) =
∂2w(z1, t)

∂z2
=

∂2V (z1, t)
∂z2

and a gyroscope located at z = z2 sensing

m2(t) =
∂2V (z2, t)

∂z∂t
.

If only two dominant modes are taken into account, the
values to be measured can be represented as follows

m1(t) =
∂2V (z1, t)

∂z2
= x̂1(t)Z ′′

10(z1) + x̂3(t)Z ′′
20(z1),

m2(t) =
∂2V (z2, t)

∂z∂t
= x̂2(t)Z ′

10(z2) + x̂4(t)Z ′
20(z2).

In order to evaluate all state values one needs additional
information. These can be obtained as follows (the gauge
signal m1(t) is assumed to be sufficient smooth)

dm1(t)
dt

=
∂3V (z1, t)

∂z2∂t
= x̂2(t)Z ′′

10(z1) + x̂4(t)Z ′′
20(z1),

t∫
0

m2(τ)dτ =
∂V (z2, t)

∂z
= x̂1(t)Z ′

10(z2) + x̂3(t)Z ′
20(z2).

The estimates of the state values can be obtained in this
case as a solution of the following system of linear algebraic
equationZ ′′

10(z1) 0 Z ′′
20(z1) 0

0 Z ′
10(z2) 0 Z ′

20(z2)
0 Z ′′

10(z1) 0 Z ′′
20(z1)

Z ′
10(z2) 0 Z ′

20(z2) 0


 x̂1(t)

x̂2(t)
x̂3(t)
x̂4(t)

=

=


m1(t)
m2(t)

dm1(t)/dt
t∫

0

m2(τ)dτ

. (21)

From the numerical point of view it is evident, the points
for measurements z1 and z2 must be chosen in such a
way, that the condition number with respect to inversion
of the system matrix (21) becomes small. Obviously in

the system matrix (21) the states x̂1 and x̂3 are not
interdependent with the x̂2 and x̂4. For computational
efforts and measurement noise a reduced state vector is
introduced

x(t) = [ x̂1(t) x̂3(t) ]T .

So a system of linear algebraic equation of 2nd–order
follows. The states can be calculated by[

x̂1(t)
x̂3(t)

]
=
[

Z ′′
10(z1) Z ′′

20(z1)
Z ′

10(z2) Z ′
20(z2)

]−1


m1(t)

t∫
0

m2(τ)dτ

. (22)

Using only two estimates of the state values the state
feedback can be realized as

ufb(t) = K [ x̂1(t) x̂2(t) x̂3(t) x̂4(t) ]T ,

with K = [ k1(t) 0 k3(t) 0 ]
where the controller gain matrix K can be constructed by
standard means, e. g. by means of pole placement along
the root locus of the matrix (A−BK). The asymptotic
stability of the equilibrium is assured, since the Kalman
controllability criterion for the system (20) with its pa-
rameters is satisfied through all lengths of the ladder, i. e.

det
[
B AB A2B A3B

]
= b2

2b
2
4

[
ω4

1 + ω4
2 +

(
4D2

1 + 4D2
2 − 2

)
ω2

1ω2
2 . . .

. . .− 4D1D2

(
ω3

1ω2 + ω1ω
3
2

) ]
6= 0 ∀ L.

3. MEASUREMENT RESULTS

In this section we present experimental results, which
could be achieved with the proposed control strategy. In
the experiment the ladder has been erected from 66.5 ◦ to
71 ◦ and lowered again without any controller in action.
Afterward (t > 119 s) the same motion was repeated with
the proposed active oscillation damping. The ladder has a
length of 53.2 m.

Figure 6 shows the angular position of the ladder’s tip. The
solid line is the reference trajectory of the differentially
flat output (z1,ref = ỹref ≈ yref ) and dash–dotted line
is the sensed position

(
z1 = ϕA + vzL

−1, vz(t) ≡ w(L, t)
)
.

So, the ladder is damped within half the periodic time of
the first mode. The overshoot is about 0.3 m of deflection
at the end of the ladder (see Fig. 7). In general there
is a reduction of approximately 40 % compared to the
uncontrolled motion. The oscillations are damped during
motion and very low residual load sway is achieved as well.

The time response of the two dominant modes presented
in Fig. 8 reveals that the amplitudes of the second mode
can be slightly higher with the controller in action. This is
because the feedforward control excites higher amplitudes,
which is due to the fact that multiple modes were not taken
into account during the design. But obviously, both modes
are damped actively by the stabilizing feedback.

4. CONCLUSION

In this paper a control approach for erecting motion of
a fire–rescue turntable ladder was presented. A model
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Fig. 8. Estimated states (x̂1, x̂3) of the two dominant
modes

inversion based on a differentially flat output for feedfor-
ward control is applied to a simple linear model of the
ladder. The feedback loop is designed on Euler–Bernoulli
model of a beam with a concentrated mass at the end.
Based on the analytical form of the eigenfunctions the
modal description of the plant was derived. The control
law is realized on a micro controller system with fix-point
arithmetic and limited computational power. Therefore

only two state values were constructed from a algebraic
equation taking the two measurements into account. The
controller gain was calculated by the means of pole place-
ment. The properties of the ladder depending on its length
are taken into account as parameters and are updated in
every time step of the micro controller system. In contrast
to earlier works the proposed approach can be used for
ladders with length over 30 m and it is adaptive to varying
ladder lengths without additional requirements on a micro
controller. At the present moment the proposed approach
is verified at the IVECO DLK 55 CS turntable ladder.
For future work the non-linear dynamics of the hydraulic
cylinders will be taken into account more precisely and the
feedforward control will be derived within the framework
of the Euler–Bernoulli model of a beam.
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