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Abstract: This paper considers discrete-time, uncertain PWA (piecewise affine) systems affected by 
parameter variations and bounded disturbances, where reachability technique based on polyhedral 
approach is developed and the robust control problems are investigated. Checking attainability and 
calculating the state space regions for which a robust control is assured despite the possible disturbance 
and the parameter variations is performed using a geometrical approach. A model predictive control law 
derived from a quadratic cost function minimization is further examined as an alternative sub-optimal 
approach for decreasing the computational load. The proposed technique is applied in simulation to a 
two-tank benchmark.  

 

1. INTRODUCTION 

Hybrid systems, including both continuous and discrete 
variables, are now of common use in many industrial 
applications, e.g. in control of mechanical systems, process 
control, automotive industry, power systems, aircraft and 
traffic control, since this formalism opens promising 
perspectives for optimisation of more and more complex 
systems. However this requires the use of sufficiently simple 
and tractable models, thus taking into account uncertainties 
related to model simplification and system knowledge, 
parameters variations depending on the operating modes and 
environment. 

Control robustness becomes mandatory, so that performances 
of the controlled system are preserved in spite of these 
different causes of uncertainty. Indeed, the parameters 
uncertainties or disturbances influences may cause severe 
practical problems and safety, attainability and robust control 
become interesting questions for researchers. In this 
direction, this paper examines a class of discrete-time 
uncertain Piecewise Affine (PWA) systems, where the 
uncertainties are coming from parameter variations and 
bounded disturbances. For this class of systems, some 
solutions to the above mentioned problems are already 
proposed in the literature. For example, in (Lin and Antsaklis, 
2003), an attainability checking that employs the predecessor 
operator, and a controller technique using finite automata and 
linear programming is presented. In (Necoara et al., 2004, 
Bemporad et al., 2003), a control technique based on 
minimizing the worst-case cost function (min-max problem) 
is proposed to solve the control problem. 

In (Thomas et al., 2006) an attainability checking based on 
polyhedral approach for PWA systems affected by bounded 
disturbances were presented, in the same direction this paper 
is based on a polyhedral approach enabling the elaboration of 
the state space regions for which a robust control exists 

which drives the plant to a desired behavior in despite of the 
parameter variations and the possible disturbances. The 
safety, reachability and attainability questions are examined 
through this framework and a robust Model Predictive 
Control (MPC) with quadratic cost function is presented as a 
fast suboptimal robust control. 

The paper is organized as follows. A brief description of 
PWA systems and the related class is given in Section 2. 
Section 3 develops the polyhedral approach which will 
elaborate the state space regions where reachability, safety 
and attainability questions can be assured. A fast and 
suboptimal robust control is then developed in Section 4 for 
the considered class. An application of the proposed 
technique to a two-tank benchmark is presented in Section 5. 
Finally the conclusions and some remarks are given in 
Section 6. 

2. UNCERTAIN PIECEWISE AFFINE SYSTEMS 

Piecewise affine systems are powerful tools for describing or 
approximating both nonlinear and hybrid systems, and 
represent a straightforward extension from linear to hybrid 
systems (Sontag, 1981). This paper focuses on the particular 
class of uncertain discrete-time piecewise affine systems 
subject to both parameter variation and bounded 
disturbances, defined as: 
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DdWUuXx ∈∈∈∈ kkkk w ,,,  denote the system state, the 
discretized control input, the uncertainty and the disturbance 
vector respectively at instant k  (for the i th model) with 

DWUX ,,,  assigned polytopes, and D  contains the origin. 
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{ }s
ii 1=χ  is the polyhedral coverage of the state and input 

spaces UX × , s being the number of subsystems. Each iχ  is 
given by: 
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Exact state measurement x  is supposed to be available.  

In this formalism, the existence of logical decision variables 
is taken into account by developing an affine model (1) for 
each possible combination in { }s,,1L . However the selection 
of { }si ,,1L∈  is valid only if the system of linear inequality 
constraints (2) are satisfied. 

Each subsystem iS  defined by the 6-uple 
( ),,,,,, iiiiii qQfCBA  { }sIi ,,1L=∈  is a component of the 
global hybrid system with I  the collection of all subsystems. 

,,,, nirnimninni ℜ∈ℜ∈ℜ∈ℜ∈ ××× fCBA  ( )mnxpi i +ℜ∈Q  and 
ipi ℜ∈q , where n , m , r  are respectively the dimension of 

state, input and disturbance vectors, and ip  is the number of 
hyperplanes defining the iχ  polyhedral. 

Taking into account uncertainty as it appears in (1), the 
following considers polytopic uncertainty in )(),( ww ii BA  

and )(wif  for every mode Ii ∈ . In general a polyhedral set 
can be represented either by a set of linear inequalities, or by 
its dual representation in terms of a convex hull of the 
vertices. In what it may concern the polytopic uncertainty the 
structure is defined as follows: 
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where 0≥jw  and 11 =∑ =
iv
j

jw . ( )ijijij fBA ,,  is the j-th 

vertex of the i-th model, iv  being the number of vertices. The 

matrices ( ))(),(),( www iii fBA  represents the model subject to 
uncertainty, described by the polytopic set 

{ }i
ijijij vjConvexHull ,,1),,,( L=fBA  for each mode Ii ∈ . 

The coefficients jw  are unknown and possibly time varying. 
In the following iν  will be assumed to be the same for each 
partition, noting i

si
νν

L1
max
=

= . The next results can be 

extended to the case with different iν . 

3. DIRECT REACHABILITY: A POLYHEDRAL 
APPROACH 

Let consider the region 1, >kkR , as a target region in the 
global state space X . This section considers the robust one-
step control region 1−kR  as the region in the state space for 
which there exist a feasible mode (1) and an admissible 
control signal able to drive the states from 1−kR  into kR  in 

one-step despite all allowable disturbances and parameter 
variations, i.e.: 

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

∈∀∈∀

∈++

++

∈⎥
⎦

⎤
⎢
⎣

⎡
∈∧∃∈

=

−−

−−

−−−−

−

−
−−

−

DdW

RdCf

uBxA

u
x

UuXx

R

11

11

1111

1

1
11

1

,

,)(

)()(:..

,

kk

kk
i

k
i

kk
i

kk
i

i
k

k
kk

k

w

w

wwts

i χ

 (4) 

In the following, the computation of this region 1−kR  is 
achieved through a polyhedral approach. 

Consider the global state space defined by the following 
constraints: 

{ }p
s

np
sss ℜ∈ℜ∈≤= × gFgxFX ,,:  (5) 

The control input is supposed to be bounded: 

{ }upmup ℜ∈ℜ∈≤= × nmnumU ,,:  (6) 

With disturbance given inside an assigned polytope 
Dd ∈−1k , with the target region XR ⊂k , defined by: 

{ }gFxR ≤= kk :  (7) 

In the first step, the effect of presence of disturbances is 
considered, for each valid model i  where { }si ,,1L∈ , this 
leading to the computation of the set: 

DCRR i
k

i
k −=ˆ  (8) 

where the subtraction is computed in the Minkowsky sense 
(exact geometric operation, based on the double 
representation of polyhedral domains). The set DCi  is the 
image of D  by the linear mapping: 

 dCdD in ff =ℜ→ )(,:  

The new polyhedral set i
kR̂  can be represented by a set of 

linear inequalities: 

{ }iii
k gxFxR ˆˆˆ ≤= , (9) 

In the second step, the effect of parameter variation is 
considered. For the system in the mode i  where { }si ,,1L∈  
and the j-th vertex of the polytopic model ( vj ≤≤1 ), and 
using the system evaluation (1), equation (9) can be rewritten 
as follows (where the disturbance effect is the one considered 
before): 
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Taking in account the i th model constraints and the global 
state space constraints, the following set can be introduced: 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10191



 
 

  

 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
≤⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

−

−
−

i
s

ijii

k

k

i
s

ijiiji

ij
k

q
g

fFg

u
x

Q
F

BFAF
T

ˆˆ
0

ˆˆ

1

1
1  (11) 

The maximal admissible region in the state space for mode i 
and j vertex is deduced from ij

k 1−T  : 
ij
k

ij
k 11 Pr~

−− = TR X  (12) 

Remark 1: The projection of polyhedral sets can be 
efficiently handled in a double representation (generators/ 
constraints) and related tools can be found as for example - 
POLYLIB (Wilde, 1994). 

For polytopic uncertain piecewise affine systems, the state 
space region 1−kR  under the i-th mode can be determined by 
(Lin and Antsaklis, 2002): 

ij
k

v

j

i
k 111

~
−

=
− = RR I  (13) 

With these sets constructed for each linear sub-model, the 
global one-step robust controllable region of the state space 
being able to drive the states into the region kR  in one-step 
despite all possible parameter variations and possible 
disturbances is thus given by: 

i
k

s

i
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− = RR U  (14) 

The procedure presented above can be repeated in a recursive 
way to find the domain for any limited N  steps horizon. 
Precautions have to be taken for the case where (14) is not 
leading to a convex set. In this case, the use of a suitable 
polytopic region included in the union (14) has to be found. 
Using a dynamic programming approach, after defining the 
target region Nk+R , the state space domain kR  can be 
recursively calculated, that includes all the states having a 
feasible control policy that can in N  steps derive the states to 

Nk+R  despite the parameter variation and the possible 
disturbances. 

Remark 2: Number of regions is less than Ns  depending on 
the infeasibility of the set of constraints (11) which may lead 
to empty regions. For PWA systems with many sub-models 
s  and for long horizon N , this may imply the exploration of 
a large number of regions (exponential complexity, Figure 1), 
even if those calculations are made off-line.  

Safety, a well-known geometric condition for a set to be safe 
(control invariant) is the following (Lin and Antsaklis, 2002): 

the set 1+kR  is safe if and only if kk RR ⊆+1  

Attainability, given a finite number of regions 
χRRR ×∈++ INkkk ),,,( 1 L , the attainability for this 

sequence of regions is equivalent to the following two 
different properties: 

1
2
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Nk RRR  1
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2
22 −+−+−+ NkNk

s
Nk RRR  

s
Nk 1−+R  2

1−+NkR  1
1−+NkR  

Nk +R  

 
Fig. 1. Complete regions exploration. 

1. the direct reachability from region jk +R  to 1++ jkR  for 
10 −≤≤ Nj , 

2. the safety (or control invariance) for region Nk+R . 

4. ROBUST MODEL PREDICTIVE CONTROL 

The min-max control technique is proposed in the literature 
as a robust control for such problems, which minimizes the 
maximum cost, to try to counteract the worst disturbance. 
This paper focuses on the model predictive control for PWA 
systems with quadratic cost function as a fast suboptimal 
robust solution. Model predictive control (MPC) has proved 
to efficiently control a wide range of applications in industry 
for non-hybrid and hybrid systems as well (Camacho and 
Bordons, 1999), (Bemporad and Morari, 1999a) (Schutter 
and Boom, 2004), and also used as robust control (Bemporad 
and Morari, 1999b). 

The control object for the closed-loop system is to exhibit 
certain desired behaviour despite the uncertainties. 
Specifically, given finite number of regions 
{ }NRRR ,,, 10 L  in the state space, the goal for the closed-
loop system trajectories is that starting from the given initial 
region 0R  goes through the sequence of finite number of 
regions NRRR ,,, 21 L  in the desired order and finally 
reach the final region NR . 

A compromise between the computation load and the system 
performance can be considered; as the object is to deliver the 
system states to the target region NR . The computation load 
can be decreased considering no switch between sub-models 
over the N  steps horizon (exploration according to Figure 
2). This technique will not grant the optimal system response 
but it insures the arriving to the desired region and leads to a 
lower complexity mechanism, while it may imply more 
conservatism. However this suboptimal construction appears 
to be convenient for many applications. 

s
Nk 2−+R  2

2−+ NkR  1
2−+ NkR

s
Nk 1−+R  2

1−+ NkR  1
+kR

Nk +R  

 
Fig. 2. Exploration with no switch over the N  steps. 

The model predictive control proposed here requires solving 
at each sampling time the following problem: 
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where ex  is the states reference, ΓΛ,  are the weighting 

diagonal matrices in the sense xxx T Λ=Λ
2 . 

Equation (15) is solved according to the following steps: 

 solve this quadratic problem for each possible dynamic 
sequence among the s sub-models, Fig. 2, excluding the 
non feasible sequences, 

 compute all the resulting costs, 
 retain the model with the lowest cost and the associated 

control sequence, 
 apply only the first value of this sequence and restart the 

procedure at the next sampling time. 

Remark 3: If the initial state kx  is included in the union of 

regions i
Nk−R  of different modes ( i ), the MPC technique 

can select a suboptimal solution among all feasible modes. 
The feasibility at instant k  implies feasibility at any instant 

1+k  to Nk + . The longest the prediction, the largest the 
feasible domain will be. 

5. APPLICATION 

Let consider as application of the previous theory the 
following benchmark consisting of two tanks (Figure 3), 
filled by pump acting on tank 1, continuously manipulated 
from 0 up to a maximum flow 1Q .  

One switching valve 12V  controls the flow between the 
tanks, this valve is assumed to be either completely opened or 
closed ( 0or  112 =V  respectively). The 2NV  manual valve 
controls the nominal outflow of the second tank. It is 
assumed in further simulations that the manual valves, 1NV  
is always closed and 2NV  is open. 

1h  

2h  
vh  

12V  

1NV  2NV  1NQ  

1212vQ  

1Q  

2NQ  

1 2 

 
Fig. 3. Two-tank benchmark. 

The liquid levels to be controlled are denoted 1h  and 2h  for 
each tank respectively. The conservation of mass in the tanks 
provides the following differential equations: 
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where the Qs denote the flows and A  is the cross-sectional 
area of each of the tanks. The Toricelli law defines the flows 
in the valves by following expressions: 
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where iS  represents the area of valves iV  and a is a constant 
depending on the liquid. From this, a simplified linear model 
can be obtained under the form: 
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where: 
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The Euler discretisation technique is used to further derive 
the discrete form : 
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where sT  is the sampling time, equal to 10 s. 

This benchmark can be considered as a piecewise affine 
system of form (1), with two subsystems (two modes), 
described as follows. For mode one which corresponds to 
valve 112 =V  (open), two vertices for the uncertainty 
description are considered: 
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For mode two which corresponds to valve 012 =V  (closed), 
two vertices for the uncertainty description are also 
considered: 
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The previous constraints have integrated limitations on the 
global state space: 
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and limitations on the control signal as well where 
[ ]'121 VQ=u . The target region, to which system states will 

be derived to, is defined by the following constraints: 
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A polytope for bounded disturbance is finally considered 
with: 
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The approach presented above is first applied to elaborate the 
region kR  in the state space which includes the states that 
can be derived in finite N  steps to Nk+R  despite both of 
disturbance and parameter variations. 

Figure 4 presents the feasible regions for 4=N  where 16 
regions are found according to the technique presented above 
(Fig. 1), and Figure 5 shows 72 feasible region for 7=N  
where there is 56 empty regions. 

The Multi-Parametric (MPT) toolbox (Kvasnica et al., 2004) 
was used to deal with the polyhedral operations; to find the 
intersection, deleting the redundant constraints, Minkowsky 

subtraction, projections and also plotting the polyhedral 
regions. 

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
0.1
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x1

x 2

Rf = R(k+4) 

R(k) includes 16 regions 

 
Fig. 4. 16 Regions for 4=N . 
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R(k) includes 72 feasible regions  

Rf = R(k+7)

 
Fig. 5. 72 Regions for 7=N . 

For 10=N  the regions evaluation is shown in Figure 6, 
where vertical axis corresponds to the sampling time (from 0  
to N ). Number of regions for 10=N  is 252 regions. 

 
Fig. 6. Regions evaluations for N = 10. 

The robust model predictive control presented above (15) is 
applied where the model of state evaluation is chosen to be 

the epicenter of the state matrix ( )21
2
1 ii AA +  for each 

mode, in order to remain in the middle of the two extreme 
vertices, since the current real matrix values are unknown 
(considering that the coefficients w  are unknown and 
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possibly time varying). The robust model predictive control 
is applied so many times, each with different initial states 
inside the region kR , and in each simulation a random 
uncertainty w  is applied, as well as a random disturbance is 
added to the system. 

The weighting diagonal terms in the cost function are chosen 
such that 2*1000 I=Λ  and 1=Γ , and the states reference is 

)2.0,5.0( . 

Figure 7 shows some results of robust MPC with 3=N  for 
extreme initial states inside kR  with both of random 
uncertainty and random disturbance, and as Figure 7 shows, 
all the states in kR  are derived in three steps ( 3=N ) to the 
desired region 3+kR  despite the parameter variations and the 
possible disturbance. 

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0.1

0.15

0.2

0.25

0.3

x1

x 2

8 feasible regions for  N=3 

Rf = R(k+3) 

 
Fig. 7. Robust MPC for different initial states, with 3=N . 

When talking about complexity, one has to mention that the 
convex regions computed here, i

k 1−R  as in (13), are obtained 
in a dual representation (extreme points/constraints), which 
does not represent a computational challenge as long as the 
number of vertices does not increase (there are polytopic 
regions with either 4 or 5 vertices). This fact is strongly 
related to the particular shape of the target region. In this 
case, neither the projections nor the difference of polyhedral 
regions should require an important computational effort, 
keeping in mind that those calculations are made off-line. 

Finally, in Figure 7 one can remark several state trajectories 
generated based on random uncertainty and random 
disturbance realizations validating any physical extreme 
combination of states. 

6. CONCLUSION 

This paper has examined a class of uncertain discrete-time 
piecewise affine systems with both of bounded disturbance 
and parameter variations, for which a polyhedral technique 
has been proposed to find the regions in the state space where 
a feasible mode and a robust control is assured to derive the 
system states to the desired region despite the parameter 

variation and the possible disturbance. Model predictive 
control technique has been proposed as a fast and suboptimal 
robust control for the considered problem. A validation for 
the proposed technique through a two tanks benchmark is 
presented. 
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