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Abstract: This paper proposes an off-line state-space control methodology for enhancing the robustness of 
multivariable Model Predictive Control (MPC) through the convex optimization of the Youla parameter. The Youla 
parameter-based optimization strategy allows convex specifications in closed-loop representation, focusing on the 
robustification of an initial controller using LMIs (Linear Matrix Inequalities) techniques. It is well established that 
such kind of robustification improves among others robustness towards unstructured uncertainties, however modifying 
the robustness of the initial controller towards system polytopic uncertainties. On the other hand, these polytopic 
uncertainties are not straightforward to deal with, imposing non-convex specifications in the Youla parameter. To 
overcome these difficulties, a novel structure is presented, including an additional convex condition on the Youla 
parameter to preserve robustness of the initial controller towards system polytopic uncertainties while managing the 
compromise with robust stability under unstructured uncertainties for the nominal controlled system. The potential of 
the developed robustified multivariable MPC controller is further illustrated in simulation on a stirred tank reactor. 

 

1. INTRODUCTION 

Studies on the robustness of Model Predictive Control (MPC) 
laws have developed significantly in recent years (Kothare et 
al., 1996; Goulart and Kerrigan, 2007; Camacho and 
Bordons, 2004). However, many of them are on-line 
strategies, for which the computational load may become a 
limitation factor, sometimes inducing a loss of performance. 
In order to extend the applicability of robust MPC to large 
scale systems and fast processes, methods have been 
elaborated which compute off-line a set of controllers, while 
leaving on-line only the selection of current controller (Wan 
and Kothare, 2003; Lee and Kouvaritakis, 2006). Other off-
line methods can be found in (Rossiter, 2003; Rodriguez and 
Dumur, 2005), the last one dealing with the transfer function 
formalism applied to SISO systems, which generalization to 
the multivariable case appears to be complicated. 

This paper proposes a unified off-line methodology 
elaborating a unique robustified controller which guarantees 
robust stability of uncertain systems. As a starting point, an 
initial stabilizing multivariable controller with specified 
robustness properties towards polytopic uncertainties is 
considered. It is further robustified towards unstructured 
uncertainties through the convex optimization of the Youla 
parameter, leading to the minimisation of a H∞ norm solved 
with Linear Matrix Inequality (LMI) tools (Stoica et al., 
2007). However this robustification modifies the robustness 
of the initial controller towards system polytopic 
uncertainties. The purpose of the proposed new structure is 
thus to preserve robustness under polytopic uncertainties by 
adding supplementary stability conditions to the previous 
LMI, in order to guarantee the robust stability on the entire 
domain. Since the considered uncertainty domain is chosen as 
a convex polytope, this involves checking stability of the 
controlled system only for the vertices of the polytope 
(Kothare et al., 1996). The developed strategy overcomes the 

fact that polytopic uncertainties impose non-convex 
specifications in the Youla parameter, and results in 
managing the compromise between robustness under 
unstructured uncertainties and robustness towards polytopic 
uncertainties. One of the advantages of this robustification 
technique, completely formulated in the state-space 
framework, comes from the fact that it can handle very easily 
both SISO and multivariable systems. 

This paper is organized as follows. Section 2 reminds the 
main steps leading to the design of an initial MIMO MPC in 
state-space formalism. The theoretical background required 
to formulate the robustification strategy via the Youla 
parametrization is presented in Section 3. Section 4 provides 
the main result, the elaboration through a state-space 
description of a robustified controller under both unstructured 
and polytopic uncertainties. This control strategy is applied in 
Section 5 to the control of a stirred tank reactor. Finally, 
some concluding remarks are presented in Section 6. 

2. MODEL PREDICTIVE CONTROL DESIGN 

This section focuses on the state-space procedure leading to 
the elaboration of the multivariable MPC law. Consider the 
following discrete time LTI (Linear Time Invariant) system 
(1) with m inputs and p outputs, with the system matrices 

nn×∈ RA , mn×∈ RB , np×∈ RC , the system states x , the 
control input vector u  and the system output vector y . 
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The elimination of steady-state errors is further achieved by 
adding an integral action on the control signal: 

)()1()( kkk uuu ∆+−=  (2) 
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leading to the extended state-space formulation: 
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The control signals )(ku∆  result from the minimization of 
the following quadratic objective function with the weighting 
matrices JQ~  and JR~  and the setpoint ry : 
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assuming that the future control increments )( ik +∆u  are 
zero for uNi ≥  and using the same output prediction horizons 

1N , 2N  and control horizons uN  for all input/output 
transfers. The predicted output vector can be written as: 
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where the state estimate )(ˆ kx  is derived from the observer: 

)](ˆ)([)()(ˆ)1(ˆ kkkkk eeeeee xCyKuBxAx −+∆+=+  (6) 

The observer gain K  is designed through a classical method 
of eigenvectors, arbitrarily placing the eigenvalues of 

ee CKA −  in a stable region, as detailed in (Magni, 2002). 

In order to obtain the control signals, the matrix formalism 
described in (Maciejowski, 2001) is used leading to (7), with 
the same control gain matrix L  and the same setpoint pre-
filter rF  (Fig. 5) as in (Stoica et al., 2007). 

)(ˆ)()( 2 kNkk err xLyFu −+=∆  (7) 

3. YOULA PARAMETRIZATION BACKGROUND 

This section examines a technique that improves the 
robustness of the previous MIMO MPC law in terms of the 
Youla-Kucera parameter, also called Q parameter. It is 
proved in the literature (Boyd and Barratt, 1991; 
Maciejowski, 1989) that any stabilizing controller can be 
represented by a particular state-space feedback controller 
coupled with an observer and a Youla parameter. This part 
focuses on the main steps leading to the multivariable Q 
parameter that robustifies the MPC law described in 
Section 2. 

3.1  Stabilizing control law 

Starting from an initial controller, the class of all stabilizing 
controllers can be obtained via the Youla parametrization. 
The first step considers an additional input vector u′  and 
output vector y′  with a zero transfer between them (Fig. 1). 

Next step is the addition of the Youla parameter between y′  
and u′  without restricting closed-loop stability. In this case, 
the transfer from u  to y  remains unchanged. As a result, the 
closed-loop function between w  and z  is linearly 
parametrized by the Q parameter, allowing convex 
specifications (Boyd and Barratt, 1991): 
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with zwzw TTT
zw 211211 ,,  depending on the considered 

input/output ( zw / ). 
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Fig. 1. Family of stabilizing controllers 

3.2  Robust stability under unstructured uncertainties 

Practical applications always deal with neglected dynamics 
and potential disturbances, so that robustness towards 
unstructured uncertainties u∆  must be addressed (Fig. 2). 

 
u∆  

z  w zwT
 

Fig.  2.  Unstructured uncertainty 

According to the small gain theorem (Maciejowski, 1989; 
Zhou et al., 1996), robustness under unstructured uncer-
tainties is maximized formulating a ∞H  norm minimization: 
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T
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where the transfer zwT  also contains the weighting terms 
included to accomplish the desired robustness requirements. 

The following theorem (see (Boyd et al., 1994) for proof) 
formulates the previous ∞H  norm minimization. 

Theorem 1 (Clement and Duc, 2000; Boyd et al., 1994). A 
discrete time system ),,,( clclclcl DCBA  in the state-space 
formalism is stable and admits a ∞H  norm lower than γ  iff: 
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where the notation ‘ 0f ’/‘ 0p ’ denotes respectively a 
strictly positive/negative definite matrix. The expression (10) 
can be transformed into a LMI, which decision variables are 

1X , γ  and the Q parameter included in the closed-loop 
matrices, as shown in (Clement and Duc, 2000; Scherer, 
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2000). As a result, the optimization problem is formulated as 
the minimization of γ  under this LMI constraint. 

3.3  Robust stability under polytopic uncertainties 

The aim of this part is to guarantee robust stability for 
systems under polytopic uncertainties. Let us consider the 
following time-varying system, as a generalization of the 
polytopic system described in (Kothare et al., 1996): 

⎩
⎨
⎧

=
+=+

)()()(
)()()()()1(

kkk
kkkkk

xCy
uBxAx

 (11) 

where [ ] ΩCBA ∈)()()( kkk  (Fig.3), denoted by: 

[ ] [ ] [ ]{ }lll CBACBACBAΩ ,,,Co 222111 L=  (12) 

with Co  the notation for the convex hull defined by vertices 
[ ]iii CBA . This means that if [ ] ΩCBA ∈ , then 
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Fig. 3. Polytopic uncertainty representation with 6=l  

As Ω  is a polytope, thus a convex set, guaranteeing the 
stability of (11) on the entire space Ω  is equivalent to 
guarantee the stability for all the vertices of the polytope 
(Kothare et al., 1996). 

In this multi-model case, the transfer from w  to z  has the 
expression (13). The difficulty appears due to the presence of 
the non-zero transfer 

zw
T22 . It can be noticed easily that if 

022 =
zw

T  (Fig. 1), then the expression (13) is reduced to 
(8). Theorem 2 contains a significant related result. 
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Theorem 2. The transfer zwT  given in (13) exists and is 
stable if the transfer 1

22 )(~ −−=
zw

QTIT  exists and is stable. 

Sketch of proof: Looking at the state-space form of the 
transfers

zwzwzw
TQTTTTzw 211211

~
+=  and T~ , it appears that 

they have the same evolution matrix and implicitly the same 
eigenvalues. Thus T~  stable implies that zwT  is stable.         

Q
T~  zw

T22  
 

Fig. 4. Block diagram of T~  

Checking stability of T~  for each vertex of the polytope leads 
to a non-convex problem. However if 

zw
T22  is stable, the 

small gain theorem (Fig.4) can be applied to T~ , leading to a 
conservative solution: 

If 122 <
∞zw

QT  then T~  is stable (14) 

The submultiplicative property of the ∞H  norm provides 
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≤

zwzw
TQQT 2222 , which implies that 122 <
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is satisfied if: 
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T

Q
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Condition (15) can be transformed into a LMI which is 
further added to the ∞H  norm minimization of Section 3.2 in 
order to guarantee the robust stability under polytopic 
uncertainties on the entire uncertain domain. 

Hence, the expressions (9) and (15) guarantee robust stability 
under both unstructured and polytopic uncertainties. 

4. OFF-LINE ROBUSTIFICATION PROCEDURE 

The robustification strategy based on the Q parameter 
developed in Section 3 is now applied to an initial stabilizing 
MIMO MPC from Section 2. To shorten the presentation, it 
will be considered in the following only maximization of 
robustness under additive unstructured uncertainties. This 
maximization is equivalent to the minimization of 

∞zbT  
(Fig. 5), which will be solved using LMIs techniques. On the 
other hand, when dealing with polytopic uncertainties, the 
following situation can appear: the initial stabilizing MIMO 
controller can loose its stability property in some regions of 
the polytopic domain after robustification towards 
unstructured uncertainties (as the result of the optimization 
compromise); this aspect is the key motivation of the paper. 
Therefore supplementary stability conditions have to be 
added in order to guarantee robust stability on the entire 
validity domain, even if the consequence can be a decrease of 
robustness under unstructured uncertainties for the nominal 
controlled system. As mentioned in Section 3, guaranteeing 
robust stability under polytopic uncertainties will add other 
LMIs to the previous optimization problem. The result will 
be a necessary compromise between both robustness aspects. 

4.1  Stabilizing control law 

Consider the LTI discrete time MIMO system (3) (Fig. 5). 
Using additional inputs u′  and outputs y′  (Boyd and 
Barratt, 1991), the control law (7) applied to this system is: 

)()(ˆ)()( 2 kkNkk err uxLyFu ′−−+=∆  (16) 

with the following observer: 

)]()(ˆ)([)()(ˆ)1(ˆ kkkkkk eeeeee bxCyKuBxAx +−+∆+=+  (17) 

To calculate the closed-loop transfer, the initial state-space 
form (3) is then extended by adding the prediction error: 

)(ˆ)()( kkk ee xxε −=  (18) 
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Only the terms related to )(kb  are considered in the 
following, as they are part of the minimization process: 
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with LBAA ee −=1 , ee KCAA −=2 , LBA e=3 . 

According to the theory given in 3.1, the Youla parameter 
can be added to robustify the initial controller, since the 
transfer between )(ky′  and )(ku′  is zero (without 
measurement noise, the output y′  depends only on )(kε , 
which is independent from )(kex  and )(ku′ ). All these state-
space equations lead to the diagram of Fig. 5. 
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Fig. 5. Stabilizing MPC using Youla parametrization 

4.2  Robust stability under unstructured uncertainties 

Next step is the definition of the weighting as a high-pass 
filter with the following state-space representation: 
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with ww nn ×∈ RA , mnw×∈ RB , wnp×∈ RC  and mp×∈ RD . 
Including the uW  weighting, a new extended state-space 
description can be emphasized: 
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As described in Section 3.2, a multivariable Youla parameter 
is added for robustification purposes. Since ∞ℜ∈ HQ , a sub-
optimal solution is to consider for each input/output transfer a 
finite-dimensional subspace generated by an orthonormal 

base of discrete stable transfer functions such as polynomial 
or Finite Impulse Response (FIR) filters: 
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A state-space representation of this Youla parameter can be 
obtained using a fixed pair ),( QQ BA , thus only the variable 
pair ),( QQ DC  must be designed (Clement and Duc, 2000): 
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Adding the Q parameter leads to the state-space formulation: 
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This closed-loop state-space formulation ),,,( clclclcl DCBA  
is the crucial point of the robustification method. Using the 
result of Theorem 1, the expression (10) can be transformed 
into a first LMI. Finally, the robustification under additive 
unstructured uncertainties can be transformed into (27), 
where 1LMI  is the inequality (26) from (Stoica et al., 2007): 

γ
1

min
LMI

 (27) 

4.3  Robust stability under polytopic uncertainties 

This subsection describes the robustification methodology in 
the case of polytopic uncertain systems (11). The procedure 
is the following: firstly an initial stabilizing controller is 
developed for the nominal plant, and is further robustified 
under unstructured uncertainties based on the Q parameter. 
To overcome the case for which the polytopic system con-
trolled by this robustified controller may become unstable, 
the procedure described in Section 3.3 is applied to guarantee 
the stability for every vertex of the polytopic domain. 

Using Theorem 1, the expression (15) can be rewritten as: 
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with )max( iεε =  and 
∞

=
zb

T ii 22/1ε , where 
zb

T i22  is the 
transfer 

zb
T22  of the ith input/output channel. The expression 

(28) is a LMI having 2X , QC , and QD  as decision variables. 
In order to guarantee the robust stability under both additive 
unstructured and polytopic uncertainties, a sub-optimal 
solution is to verify (29), where 2LMI  is the inequality (28). 
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5. EXAMPLE 

This section focuses on the results obtained while applying 
the previous robustification methodology to an academic 
example consisting into a simplified multivariable model of a 
stirred tank reactor. Let us consider as nominal system, the 
transfer function formulation (Camacho and Bordons, 2004): 
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with the effluent concentration 1Y , the reactor temperature 
2Y ,  the feed flow rate 1U  and the coolant flow 2U . An 

equivalent discretized (with a sampling period 
03.0=eT minute) state-space representation ),,( 000 CBA of 

the nominal system (1) is obtained with: 
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To find an initial stabilizing MPC (called MPC0) for the 
nominal system, an integral action is first added, leading to 
an extended model belonging to 6R . The same tuning 
parameters 11 =N , 32 =N , 2=uN  are chosen for all outputs 
and control signals, and the same weights 

112

~
+−

=
NNJ IQ  and 

uNJ IR 05.0~
= , as in (Camacho and Bordons, 2004). 

It is now considered that the nominal system is affected by 
high frequency neglected dynamics that can be represented as 
additive unstructured uncertainties. The previous initial 
controller is thus robustified, providing a controller (called 
MPC1) which will guarantee the stability robustness under 
additive unstructured uncertainties. Following the procedure 
described in Section 4.2, the state-space representation of the 
following weighting uW  is considered: 

( )3.0/)7.01(,3.0/)7.01()( 111 −−− −−= qqdiagquW  (31) 

Solving the optimization problem (27) provides a 
multivariable Youla parameter of a chosen order 40=Qn . 
Analyzing the singular values before robustification (MPC0) 
and after robustification under additive unstructured 
uncertainties (MPC1) from Fig. 6a, we can remark that the 

∞H  norm (which is the greatest value of the maximal 

singular values) has been reduced using MPC1. Therefore the 
robust stability for the nominal system with respect to 
additive unstructured uncertainties is improved. 

 
Fig 6. a. Singular values of zbT  (with the nominal system) 
before and after robustification (left); b. Maximal singular 
values of 

zb
T22  transfer (right) 

The next part refers to the robustification under polytopic 
uncertainties. Let consider that the polytopic system (11) 
where the matrix { }4321 ,,,Co AAAAΩA =∈  has the 
following explicit form: 

( ))1(9277.0),1(9048.0,9418.0,9580.0)( 12 αα ++=diagkA (32) 

with ];[ 111 ααα ∈ , ];[ 222 ααα ∈  and 3.01 −=α , 0 2 =α , 
06.0;03.0 21 == αα . This leads to the next vertices of Ω : 

( ))1(9277.0),1(9048.0,9418.0,9580.0 121 αα ++= diagA , 
( ))1(9277.0),1(9048.0,9418.0,9580.0 122 αα ++= diagA , 
( ))1(9277.0),1(9048.0,9418.0,9580.0 123 αα ++= diagA , 
( ))1(9277.0),1(9048.0,9418.0,9580.0 124 αα ++= diagA . 

The nominal system corresponds to 021 == αα . 

It can be proved that the closed-loop of the polytopic 
uncertain system with the initial controller MPC0 is stable for 
all vertices, but that MPC1 destabilizes the polytopic system 
(32) for 3A , since there exists an eigenvalue with a magni-
tude of 1.0083. This difficulty justifies the design of the 
robustified controller MPC2 that will guarantee the robust-
ness towards polytopic uncertainties. In order to find MPC2, 
it can be noticed in Fig. 6b that the maximum of the transfer 

∞zb
T22  is dB16−  that corresponds to 3.6=ε  from (28). 

With the controller MPC2, a stable closed-loop with the 
polytopic system (32) is obtained, even if the robust stability 
for the nominal system is decreased in comparison with the 
result obtained with MPC1 for the nominal system (Fig. 6a). 
Indeed, a compromise is achieved: with MPC2 the robustness 
under unstructured uncertainties is less improved compared 
to MPC1 (still remaining in acceptable limits), but the 
robustness under polytopic uncertainties is satisfied. Fig. 7a 
shows the maximal singular values of the Q parameter 
obtained with MPC1 and MPC2. Notice that using MPC2 the 

∞H  norm of the Youla parameter is decreased in order to 
satisfy 122 <

∞zb
QT , guaranteeing the robust stability under 

the considered polytopic uncertainties. 

The size of the optimization problem (27) is determined by 
var,1n  scalar decision variables: 
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1)1(5.0)1222)((

)5.032(5.0 22
var,1

+++++++++

+++++=

pmnnnmnmn

nmnpnnpn

www

wQQ  (33) 

The addition of LMI (28) increases this number var,1n  by 
)1(5.0 +QQ pnpn  which corresponds to 2X , leading to the 

following number of scalar decision variables: 

1)1(5.0)1222)((

)132(22
var,2

+++++++++

+++++=

pmnnnmnmn

nmnpnnpn

www

wQQ  (34) 

It should be noticed that the number of scalar decision 
variables (34) can be reduced to (33) using the relaxation 
condition: 2X  equals to the part of 1X  in (10) which 
multiplies the Q parameter. 

Finally, a high-frequency neglected dynamics is considered 
acting on the 1u  actuator, so that the 11 / uy  transfer corres-
ponds to )]07.01)(7.01/[(1 ss ++ . As shown in Fig. 7b, this 
neglected dynamics destabilizes the initial controller MPC0, 
but it is also illustrated that the robustified controllers MPC1 
and MPC2 remain stable. Figure 7b also shows the coupling 
influence of the considered neglected dynamics on 2y . In 
Fig. 8 the same neglected dynamics is acting on 3A  and here 
only MPC2 remains stable. 

 
Fig. 7. a Singular values of Q parameter(left), b.  Influence of 
a neglected dynamics on 11 / uy  transfer (right) 

 
Fig. 8. Influence in A3 of a neglected dynamics on A3 

As mentioned in previous sections, the proposed 
methodology guarantees the robustness towards neglected 
dynamics acting only on the nominal system. The problem of 
guaranteeing explicitly the robustness towards neglected 
dynamics for the entire polytopic domain is a non-convex 
problem for which solutions have to be found. 

6. CONCLUSIONS 

This paper has presented a complete methodology which 
enables robustifying an initial multivariable MPC controller 
in state-space formalism using the Youla parameter 
framework, formulated as a convex optimization problem 

solved with LMIs tools. The major advantage consists in 
managing the compromise between robust stability under 
unstructured uncertainties for a nominal system and the 
robust stability under polytopic uncertainties for an entire 
variation domain, considered as a polytopic domain enclosing 
the nominal system. Therefore this method can ensure with 
only one robustified controller robustness under polytopic 
uncertainties, with a trade-off that may decrease (within 
acceptable limits) the robust stability under unstructured 
uncertainties for the nominal system. 

Perspectives mainly focus on the possibility of finding a 
solution for the non-convex problem of the stability robust-
ness for all the vertices of the polytopic uncertain domain. 
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