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Abstract: The impact of variable speed limits (VSL) on the aggregate traffic flow behaviour is reflected in 
the quantitative model proposed in this paper. VSL are incorporated in a general second-order traffic flow 
model as an additional control component. The integrated motorway network traffic control problem is 
formulated as a constrained discrete-time optimal control problem which is solved very efficiently even for 
large-scale networks by a suitable feasible-direction algorithm. An illustrative example is presented under 
different control scenarios and it is shown that traffic flow efficiency can be substantially improved when 
VSL control measures are used, particularly in integration with coordinated ramp metering. 

 

1. INTRODUCTION 

In the last decades, motorways have become notorious sites 
of extensive traffic congestion, particularly in and around 
metropolitan areas. Traffic congestion degrades the available 
infrastructure in the sense of reducing the motorway 
throughput. Thus, the expensive motorway infrastructure is 
underutilised, ironically exactly at the times (peak hours) it is 
most urgently needed. The efficient, safe, and less polluting 
transportation of persons and goods on motorways calls for 
an optimal utilisation of the available infrastructure via 
suitable application of a variety of traffic control measures 
such as ramp metering, driver information, route guidance 
and variable speed limits (VSL). A number of approaches, 
including optimal control, expert systems, fuzzy systems, 
neural networks and feedback control, have been developed 
in the past for the design of related control strategies. In the 
present paper the optimal control approach is applied for 
optimal integrated ramp metering and VSL measures.  

Ramp metering aims at improving the traffic conditions by 
appropriately regulating the inflow from the on-ramps to the 
motorway mainstream. As the ramp storage space may be 
limited, but also due to equity considerations, ramp metering 
should be applied at multiple ramps (coordinated ramp 
metering) for maximum efficiency. Despite the induced ramp 
queue delays, the higher motorway throughput (and reduced 
mainstream delays) due to congestion avoidance may lead to 
shorter average travel times. Coordinated ramp metering with 
the use of optimal control has been extensively studied in the 
past (see Papageorgiou and Kotsialos, 2002; Papamichail et 
al., 2007, for related overviews). 

VSL installations are encountered in many countries around 
the world and their number is increasing at an accelerated 
pace. VSL are displayed on appropriate variable message 
signs in response to the prevailing traffic conditions. 

The main impact of VSL on traffic flow is deemed to be the 
reduction of the mean speed at undercritical densities; and the 
homogenisation of speeds, i.e., reduction of speed differences 
among vehicles and of mean speed differences among lanes. 

A main targeted result of VSL is enhanced traffic safety and, 
indeed, the selection of motorway stretches for VSL 
installations in several countries is guided by the frequency of 
registered accidents. Multi-year evaluations of the VSL 
impact on traffic safety indicate a reduction in accident 
numbers by as much as 20-30% after VSL installation. On 
the other hand, to the best of the authors' knowledge, there is 
no evaluation of the VSL impact of available installations 
that would demonstrate a consistent and measurable 
improvement of traffic flow efficiency, e.g., in the sense of 
reduced travel times. 

The design of pertinent control strategies that may increase 
traffic flow efficiency, calls for a sufficiently accurate 
description of the VSL impact on the aggregate 
(macroscopic) traffic conditions. There were very few 
investigations in the past regarding the precise impact of VSL 
on aggregate traffic flow behaviour, e.g., on the fundamental 
diagram (flow-density curve). The results reported by Zackor 
(1972) and summarised by Zackor (1991) were the basis for 
Cremer (1979) to propose a quantitative model for the VSL-
induced fundamental diagram change. However, it is quite 
likely that the increase of flow capacity suggested by Cremer 
(1979) is rather exaggerated. This VSL model was 
incorporated in a general dynamic model leading to an 
optimal control formulation (Cremer 1979; Alessandri et al., 
1998). However, a heuristically fixed control law was 
eventually used, due to the size of the problem, and its 
parameters were optimised. In other, more recent, research 
work (Hegyi et al., 2003), the assumed VSL impact was to 
merely replace the left part of the fundamental diagram by a 
straight line with slope corresponding to the displayed VSL. 
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Recently, the effect of VSL on the aggregate traffic flow 
behaviour (in form of the flow-density diagram) was 
investigated by Papageorgiou et al. (2007) on the basis of 
traffic data from a European motorway where a flow/speed 
threshold-based VSL control algorithm is currently used. The 
main findings of this investigation were: 

• Speed limits – when applied at undercritical densities – 
have the effect of decreasing the slope of the flow-density 
diagram. Moreover, the smaller the imposed speed limit, 
the larger the decrease in the slope of the flow-density 
diagram. This impact may be exploited in order to hold 
back traffic flow in order to retard the onset of congestion 
at downstream bottlenecks, as practiced, e.g., in Hegyi et 
al., 2003. 

• The VSL-affected flow-density curve crosses (at least for 
some VSL) the non-VSL curve, shifting the critical 
density to higher values in the flow-density diagram. This 
impact may be exploited in order to hold more vehicles in 
the motorway without falling in congestion. It may sound 
paradoxical, but these cross points may imply that the 
mean speed at overcritical densities is higher when a speed 
limit is imposed; this may happen due to the 
homogenisation effects mentioned earlier. 

• Regarding the potential increase of flow capacity, the data 
analysis was rather inconclusive, as a slight increase is 
indeed visible at some locations while at other locations no 
increase could be observed. In locations where VSL yield 
indeed a capacity increase, this may be exploited by a 
suitably designed control strategy for throughput increase. 

The identified impact of VSL on the aggregate traffic flow 
behaviour is reflected in the quantitative model proposed in 
the present paper. VSL are incorporated in a general second-
order traffic flow model (Section 2) as an additional control 
component leading to an accordingly extended optimal 
control formulation (Section 3). An illustrative example is 
discussed in Section 4 under different control scenarios and 
conclusions are summarised in Section 5. 

2. TRAFFIC FLOW MODELLING 

A macroscopic second-order traffic flow model is used in this 
study. The model was validated against real traffic data at 
several instances (Papageorgiou et al., 1990; Kotsialos et al., 
2002a) and was found to reproduce the real traffic conditions 
with remarkable accuracy for all traffic conditions. The 
model is included in the METANET motorway traffic flow 
simulator (Messmer and Papageorgiou, 1990) and is extended 
here to incorporate VSL control measures. 

The motorway network is represented by a directed graph 
whereby the links of the graph represent motorway stretches. 
Each motorway stretch has uniform characteristics, i.e., no 
on-/off-ramps and no major changes in geometry. The nodes 
of the graph are placed at locations where a major change in 
road geometry occurs, as well as at junctions, on-ramps and 
off-ramps. 

The macroscopic description of traffic flow implies the 
definition of adequate variables expressing the aggregate 
behaviour of traffic at certain times and locations. The time 
and space arguments are discretised. The discrete time step is 
denoted by T  (typically 10T s ). A motorway link m  is 
divided into mN  segments of equal length mL  (typically 

500mL m ) (Fig. 1). The traffic in each segment i  of link 
m  at discrete time t kT= , 0,1,...,k K= , where K  is the 
time horizon, is macroscopically characterised via the 
following variables: the traffic density ( ),m i kρ  (veh/km/lane) 
is the number of vehicles in segment i  of link m  at time 
t kT=  divided by mL  and by the number of lanes mλ ; the 
mean speed ( ),m i kν  (km/h) is the mean speed of the vehicles 
included in segment i  of link m  at time t kT= ; and the 
traffic volume or flow ( ),m iq k  (veh/h) is the number of 
vehicles leaving segment i  of link m  during the time period 

( ) ), 1kT k T+⎡⎣ , divided by T . 

The previously defined traffic variables are calculated for 
each segment i  of link m  at each time step k  by the 
following equations: 

( ) ( ) ( ) ( ), , , 1 ,1m i m i m i m i
m m

Tk k q k q k
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( ) ( )*
, ,f m m f m mv b k v b k=⎡ ⎤⎣ ⎦  (5) 

( ) ( ){ }*
, , 1 2 1cr m m cr m m mb k A b kρ ρ= + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (6) 

( ) ( ) ( )* 1m m m m m mb k E E b kα α= − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (7) 

where (1) is the conservation equation; (2) is the transport 
equation to be replaced in (1); (3) is an empirical dynamic 
mean speed equation where (4) must be replaced; τ  (a time 
constant), ν  (an anticipation constant), and κ  are model 
parameters which are equal for all the network links. Two 
further terms may be added to (3) for higher accuracy under 
certain conditions (Papageorgiou et al., 1990). 

 
Fig. 1. Discretised motorway link. 
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The original (non-VSL) model includes three link-specific 
constant parameters in the speed-density curve (4): the free 
speed *

,f mv , encountered at zero density ( , 0m jρ = ); the 
critical density *

,cr mρ  at which traffic flow is close to 
capacity, *

,cap mq ; and *
mα . To incorporate the VSL impact, 

these parameters are now rendered mb -dependent functions, 
where ( ) min, ,1m mb k b⎡ ⎤∈ ⎣ ⎦  is the VSL rate at link m  and 
period k , i.e., a control variable. As (5) reveals, mb  is equal 
to the VSL-induced ,f mv  divided by the non-VSL *

,f mv ; or, 
approximately, equal to the displayed VSL divided by the 
legal speed limit without VSL. If ( ) 1mb k = , no VSL is 
applied, else ( ) 1mb k < , while min,mb  is a minimum 
admissible VSL rate. Equations (6), (7) suggest that ,cr mρ  
and mα  are linear functions of mb , attaining their usual non-
VSL values for ( ) 1mb k = . The extended speed-density curve 
(4)-(7) was validated by use of traffic data (Kampitaki, 2008) 
and the related flow-density curves (resulting from a 
combination of (2) and (4) for specific VSL rates) are 
displayed in Fig. 2. Clearly, a capacity increase is observed at 
this specific location. More comprehensive investigations 
including locations without flow capacity increase are left for 
future work. All the other model parameter values used in 
this study are taken from a previous model calibration for a 
real motorway (Kotsialos et al., 2002a) and this, of course, 
may quantitatively affect the obtained results; however, the 
principal impact of VSL is the main subject of this work. 

For origin links, i.e., links that receive traffic demand od  and 
forward it into the motorway network, a simple queue model 
is used (Fig. 3). The outflow oq  of an origin link o  depends 
on the arriving demand, on the traffic conditions of the 
corresponding mainstream segment ( ,1μ ) and on the 
existence of ramp metering control measures. If ramp 
metering is applied, then the outflow ( )oq k  that leaves 
origin o  during period k , is a portion ( )or k  of the outflow 

( )ˆoq k  that would leave in absence of ramp metering. Thus, 
( ) min, ,1o or k r⎡ ⎤∈ ⎣ ⎦  is the metering rate for the origin link o , 

i.e., a control variable, where min,or  is a minimum admissible 
value. If ( ) 1or k = , no ramp metering is applied, else 

( ) 1or k < . The queuing model is described by the following 
conservation equation:  

( ) ( ) ( ) ( )1o o o ow k w k T d k q k+ = + −⎡ ⎤⎣ ⎦  (8) 

where ( )ow k  (veh) is the queue length in origin o  at time 
kT  and ( )od k  (veh/h) is the demand flow at o . The 
outflow ( )oq k  is determined as follows: 

( ) ( ) ( )ˆo o oq k r k q k=  (9) 

with 

( ) ( ) ( ){ },1 ,2ˆ ˆ ˆmin ,o o oq k q k q k=  (10) 

and 

( ) ( ) ( ),1ˆ /o o oq k d k w k T= +  (11) 

( ) ( )max ,1
,2

max ,

ˆ min 1,o o
cr

k
q k Q μ

μ

ρ ρ
ρ ρ

⎧ ⎫−⎪ ⎪= ⎨ ⎬
−⎪ ⎪⎩ ⎭

 (12) 

where oQ  (veh/h) is the on-ramp's flow capacity, i.e., the on-
ramp's maximum possible outflow under free-flow traffic 
conditions in the mainstream, and maxρ  (veh/km/lane) is the 
maximum density in the network. According to (10)-(12), the 
uncontrolled outflow ( )ˆoq k  is determined by the current 
origin demand if ( ) ( ),1 ,2ˆ ˆo oq k q k< ; else by the geometrical 
capacity oQ  if the mainstream density is undercritical, i.e., 

( ),1 ,crkμ μρ ρ< , or by the reduced capacity due to congestion 
of the mainstream if ( ),1 ,crkμ μρ ρ> . 

Motorway bifurcations and junctions (including on-ramps 
and off-ramps) are represented by nodes. Traffic enters a 
node n  through a number of input links and is distributed to 
the output links according to the following equations: 

( ) ( ),
n

n N
I

Q k q k
μμ

μ∈

= ∑  (13) 

( ) ( ) ( ),0
m

m n n nq k k Q k m Oβ= ∀ ∈  (14) 

where nI  is the set of links entering node n ; nO  is the set of 
links leaving n ; ( )nQ k  is the total traffic volume entering n  
at period k ; ( ),0mq k  is the traffic volume that leaves n  via 
outlink m ; and ( ) [ ]0,1m

n kβ ∈  is the portion of ( )nQ k  that 
leaves n  through link m  (turning rates). 

At a network node n , the upstream influence of the 
downstream-link density (e.g., in case of congestion 
spillback) has to be taken into account in the last segment of 
the incoming links (see (3) for mi N= ). This is provided via  

( ) ( ) ( )2
, 1 ,1 ,1/

m

n n

m N
O O

k k kμ μ
μ μ

ρ ρ ρ+
∈ ∈

= ∑ ∑  (15) 

where ( ), 1mm N kρ +  is the virtual density downstream of any 
entering link m  to be used in (3) for mi N=  and ( ),1 kμρ  is 
the density of the first segment of the leaving link μ . The 
quadratic form is used to account for the fact that congestion 

 
Fig. 2.  Fundamental diagrams for different VSL rates. 

 
Fig. 3.  The origin-link queue model. 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14086



 
 

     

 

on one leaving link may spill back into the entering link even 
if there is free flow in the other leaving links. 

Similarly, at a network node n  the downstream influence of 
the upstream-link speed has to be taken into account 
according to (3) for 1i = . The required upstream mean speed 
value is calculated from the flow-weighted average 

( ) ( ) ( ) ( ),0 , , ,/
n n

m N N N
I I

v k v k q k q k
μ μ μμ μ μ

μ μ∈ ∈

= ∑ ∑  (16) 

where ( ),0mv k  is the virtual speed upstream of any leaving 
link m  that is needed in (3) for 1i = . 

Combining the equations developed above, a nonlinear 
macroscopic discrete-time state-space model 

( ) ( ) ( ) ( ) ( ) 01 , , , 0k k k k+ = =⎡ ⎤⎣ ⎦x f x u d x x  (17) 

is obtained for the entire motorway network, where x  is the 
state vector, u  is the control vector and d  is the disturbance 
vector. The state vector consists of the densities ,m iρ  and the 
mean speeds ,m iv  of every segment i  of every link m  and 
the queues ow  of every origin o . The control vector consists 
of the VSL rates mb  of every link m  where VSL is applied 
and of the ramp metering rates or  of every origin o  that is 
metered. The disturbance vector consists of the demand od  at 
every origin o  and the turning rates m

nβ  at every bifurcation 
node n .  

3. THE OPTIMAL CONTROL PROBLEM 

The integrated motorway network traffic control problem is 
formulated as a discrete-time dynamic optimal control 
problem with constrained control variables over a given 
optimisation horizon PK , which is solved very efficiently 
even for large-scale networks by a suitable feasible-direction 
algorithm (Papageorgiou and Marinaki, 1995). This extended 
formulation and the solution algorithm are incorporated in an 
accordingly extended version of the open-loop optimal 
control tool AMOC (Advanced Motorway Optimal Control) 
(Kotsialos et al., 2002b) which is able to consider 
coordinated ramp metering, system-optimum route guidance, 
variable speed limits (using the introduced extension via (4)-
(7)) as well as integrated control combining all control 
measures.  

If only ramp metering and VSL are considered, the general 
discrete-time formulation of the optimal control problem is 
the following: Given disturbance predictions ( )kd , 

0,1,..., 1pk K= − , and the initial state ( )0 0=x x ; minimise 

[ ] ( ) ( ) ( )
1

0

, ,
PK

k

J K k k kϑ ϕ
−

=

= + ⎡ ⎤⎣ ⎦∑ x u d  (18) 

subject to (17) and the inequality constraints imposed on the 
ramp metering rates, ( )min, 1o or r k≤ ≤ , and the VSL rates, 

( )min, 1m mb b k≤ ≤ . 

The chosen cost criterion is the Total Time Spent (TTS) of all 
vehicles in the network (including the waiting time 
experienced in the ramp queues) which is a natural objective 
for the traffic systems considered. The maximum ramp queue 
constraints may be taken into account via the introduction of 
penalty terms in the cost criterion penalising queue lengths 
larger than max,ow , which is a pre-determined maximum 
admissible queue for origin o . Another penalty term may be 
added in order to suppress high-frequency oscillations of the 
optimal control trajectories. More precisely the cost criterion 
used as (18) is the following 
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 (19) 

where fα , bα  and wα  are weighting factors for the 
corresponding penalty terms. 

The solution determined by AMOC consists of the optimal 
ramp metering and VSL rate trajectories as well as the 
corresponding optimal state trajectory. It is interesting to note 
that the solution algorithm can be readily modified to account 
for control variables that change their value less frequently 
than the state variables. Moreover, for the VSL rates, 
common control variables can be considered for clusters of 
links. 

4. APPLICATION RESULTS 

4.1 The Test Motorway Axis 

For the purposes of this study, a hypothetical three-lane 
motorway axis of 4.5 km, sketched in Fig. 4, is considered. 
The mainstream is divided into four links (L1 to L4). There 
are two on-ramps (O1 and O2) on this motorway and one off-
ramp (D1) in-between. The trapezoidal demand profiles, 
shown in Fig. 5, are used for the two on-ramps while a 
constant demand of 4200 veh/h is considered for the 
mainstream flow. The exit rate, i.e., the percentage of the 
mainstream flow that leaves the motorway, at the off-ramp 
D1 is set to 5% and the model time step used is 10T = s. A 

Fig. 4. The test three-lane motorway axis with two on-ramps. Fig. 5. Trapezoidal demand profiles for the two on-ramps. 
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number of different scenarios are examined in the following, 
each for a time horizon of 2 hours.  

4.2 No-control Case 

When no control measures are applied, the resulting ramp 
queue, density and flow profiles for both merge areas are 
shown in Fig. 6. Mainstream congestion appears after 50 min 
in the merge area of the O2 on-ramp due to high flows 
arriving there; this leads to a visible gradual mainstream flow 
decrease (capacity drop). The created congestion travels 
upstream and reaches the merge area of the O1 on-ramp at 
around 1t =  hour, leading to a visible flow decrease there as 
well. In this scenario, the small queue (9 veh) formed at the 
O1 on-ramp is due to the reduction of the on-ramp's flow 
capacity caused by the mainstream congestion (see (12)). 

The resulting TTS is equal to 1204 veh·h. The TTS was 
calculated over the 2 hours of simulation depicted in the 
figures plus a cool-down period of 10 min with zero inflows, 
which was introduced in order to have equal traffic 
conditions on the stretch (empty network) at the end of the 
simulation and hence comparable TTS values for all 
investigated scenarios. 

4.3 Coordinated ramp metering 

AMOC is now applied for coordinated ramp metering with 
maximum admissible ramp queues equal to 50 veh. The ramp 
metering rates are allowed to change every 30 sec with a 
minimum admissible value equal to 0.05 in order to avoid 
ramp closure. The resulting TTS value is equal to 1172 veh·h, 
which is a 2.7% improvement compared to the no-control 
case. The related ramp queue, density and flow profiles for 
both merge areas are shown in Fig. 7. 

The optimal solution maintains the density and flow at the O2 
merge area as long as possible close to the critical and 
capacity value (5940 veh/h), respectively, so as to maximize 
the freeway exit flow (which leads to minimisation of TTS). 
To achieve this, ramp queues are created quasi-
simultaneously in both ramps. The congestion appearing at 

around 1.2t =  hours is unavoidable in view of the high 
involved demands and limited ramp storage. 

4.4 VSL control 

For the application of VSL control, the mainstream is divided 
into three clusters of links, each one with its own control 
variable. The first cluster comprises L1, the second cluster 
comprises L2 and L3 and the third cluster comprises L4, i.e. 
one control variable is used for both L2 and L3. The VSL 
rates are allowed to change every 300 sec with a minimum 
admissible value equal to 0.5. The resulting TTS value is 
equal to 741 veh·h, which is a 38.5% improvement compared 
to the no-control case. The related ramp queue, density and 
flow profiles for both merge areas are shown in Fig. 8 while 
the optimal VSL rate trajectories are shown in Fig. 9.  

The trajectory for the VSL rate of L4 is such that the highest 
possible flow and capacity value (around 6400 veh/h) is 
achieved at the merge area of the O2 on-ramp. After 1.0t =  
hours, the VSL rate of L1 switches gradually from 0.95 to 
0.5. As a result, the flow arriving in the bottleneck area 
downstream of the O2 on-ramp decreases temporarily, thus 
delaying the bottleneck activation and the resulting 
congestion. Note that this temporary flow decrease during the 
VSL-triggered traffic state transition is due to the fact that 
density in the new VSL-state is higher than in the previous 
one; thus, during this transition, the flow is temporarily 
reduced in order to "create" the higher density of the new 
VSL-state. Despite these measures, the congestion cannot be 
fully avoided but it is delayed compared to previous 
scenarios. 

4.5 Integrated control 

When both coordinated ramp metering and VSL control are 
applied, i.e. integrated control, TTS is reduced even more to 
673 veh·h, which is a 44.1% improvement compared to the 
no-control case. The related ramp queue, density and flow 
profiles for both merge areas are shown in Fig. 10 while the 
optimal VSL rate trajectories are shown in Fig. 11. 

Fig. 6. No-control case. Fig. 7. Coordinated ramp metering. 
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Once more the trajectory for the VSL rate of L4 is such that 
the highest possible flow and capacity value (around 6400 
veh/h) is achieved at the merge area of the O2 on-ramp while 
the ramp queues created in both ramps hold back traffic in 
order to avoid the congestion. In this case, no real VSL action 
is needed for L1 as ramp metering is sufficient to completely 
suppress the congestion formation. 

5. CONCLUSIONS 

A quantitative model for the impact of VSL on the aggregate 
traffic flow behaviour was proposed. VSL were incorporated 
in a general second-order traffic flow model as an additional 
control component leading to an accordingly extended 
optimal control formulation. An illustrative example was 
presented under different control scenarios. It was shown that 
traffic flow efficiency can be substantially improved when 
VSL control measures are used, particularly in integration 
with coordinated ramp metering. 

Due to various inherent uncertainties, the open-loop optimal 
solution delivered by optimal control approaches becomes 
suboptimal when directly applied to the motorway traffic 
process. However, the optimal results can be used in a rolling 
horizon mode or can be utilised to extract useful conclusions 
for the development of efficient feedback control strategies. 
This is left for future investigations. 
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