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Abstract: Typically the energy management problem of a hybrid vehicle is formulated as an
optimization problem, where the optimal power split between the prime mover and the secondary
power converter is calculated off line based on a given driving cycle and solved numerically
with dynamic programming techniques. An important constraint is that the energy level of
the secondary power source at the end is the same as in the beginning. In real live the future
driving cycle is not known a priori, making it difficult to calculate the exact optimal power
split beforehand. To arrive at a practical real time control algorithm, a sub-optimal control
law can be applied, where the end-point constraint is replaced by a term in the cost function
that accounts for the change in energy; in case of a hybrid electric vehicle it represents the
fuel equivalence of the stored reversible energy. In this paper it is reasoned that the reversible
energy contains also kinetic and potential energy of the vehicle as well as energy stored in the
secondary power source. By feedback control of the state of energy of the secondary power
source, the amount of stored energy can be kept on a trajectory, such that the total amount
of reversible energy remains constant. Kinetic and potential energy is proportional with vehicle
mass, therefore this trajectory is adaptive to vehicle loading. In this paper simulations of an
on-line strategy are included that show fuel consumption improvements of a distribution truck,
close to those obtained with dynamic programming, validating the reasoning.

1. INTRODUCTION

Hybridization of drive-trains is an often proposed method
for fuel consumption reduction in vehicles. A hybrid ve-
hicle contains two power converters instead of one. Main
advantage of hybrid vehicles is that kinetic energy can be
recovered and stored, such that it can be used at a later,
more convenient, time to propel the vehicle. The use of
the stored energy is governed by the energy management
strategy (EMS).

EMS for hybrid drive-trains are control algorithms that
split the power request between the two power converters.
During the past years, several contributions have been
made regarding energy management of hybrid vehicles,
see, e.g., Sciarretta and Guzzella [2007] for an overview.
One of the possibilities to arrive at a real time algorithm
is to express the stored battery energy in an equiva-
lent amount of fuel, see Guzzella and Sciarretta, [2005,
pages 199-201], Rodatz et al. [2005], Johnson et al. [2000],
Lin et al. [2003] and Koot et al. [2005]. In these strategies
changes in properties of the vehicle have not been included.

This paper considers aspects that are particularly relevant
for trucks. Trucks differ from passenger cars in the large
variability in vehicle mass; a truck can be loaded or
unloaded changing its mass by a factor of 2 − 2.5 for
distribution trucks. The main contribution of this paper
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is an EMS that includes the vehicle kinetic and potential
energy and therefore is adaptive to vehicle mass.

The paper is organized as follows; first a hybrid vehicle
model will be discussed, secondly an EMS is suggested,
in the third part the proposed strategy is evaluated in a
simulation environment, finally conclusions are included.

2. VEHICLE MODEL

The vehicle considered in this paper is a medium duty,
parallel hybrid electric, distribution truck. The use of
a distribution truck is characterized by frequent start-
stop behavior. The prime mover of the truck is a diesel
engine, while the secondary power converter is an electric
machine supplied by a battery pack as storage device. The
diesel engine has a maximum power of 136 kW, and the
maximum power of the electric machine is 44 kW. The
lithium-ion battery used has a maximum capacity of 9 MJ.

The topology of the drive-train components in a parallel
hybrid configuration can be schematically viewed in Fig. 1.
The rotating speed of the electric machine is equal to the
engine speed. The driver of the truck can pose a power
request. The vehicle model takes into account the vehicle
longitudinal dynamics, the diesel engine, electric machine
and battery.
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Fig. 1. Drive train topology.

2.1 Vehicle Longitudinal Dynamics

The longitudinal vehicle dynamics are modeled with a
single body.

Tp + Ts =

(

Frl + m
dv

dt

)

Re (1)

Frl = c2v
2 + c1v + c0 (2)

Here m is the effective vehicle mass, including the inertia
of the rotating parts, Re the effective rolling radius of the
wheels, Tp is the torque delivered by the engine, Ts is the
torque delivered by the electric machine and Frl is the
road load force of the vehicle. It is assumed that the road
load force of the vehicle Frl is described by a second order
function of the vehicle speed v. The parameters can be
derived during coast down measurements and are related
to aerodynamic drag c2 and roll and friction losses c1, c0.

The gear shift strategy of the vehicle is not considerate;
the gear and clutch position are set a priori, thereby
prescribing the engine and electric machine speed ω.
The dependence of rolling resistance to vehicle mass is
neglected.

2.2 Diesel Engine

The engine is modeled by a non-linear static map, see
Fig. 2, relating the engine torque Tp and rotational speed
ω to fuel rate. For any engine speed ω there is a maximum
torque that can be delivered, shown by the maximum
torque line. The Drag Torque line shows the drag torque
Tdrag the engine consumes during coasting. Using the ex-
haust brake this torque can be increased, see the Exhaust
Brake Torque line. Normally the exhaust brake is applied
going down hill to prevent the normal brake system from
overheating.

2.3 Electric Machine

The electric machine is also modeled by a non-linear static
map, relating the electric machine torque Ts and rotational
speed ω to a conversion efficiency, see Fig. 3. The electric
machine can work both as a motor and as a generator.
At low rotational speeds the electric machine is limited
by maximum torque, while at higher speeds the electric
machine is limited by maximum power.

2.4 Battery

A battery has losses during charging and discharging.
The losses during charging (≈ 20%) differ from the losses
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Fig. 4. Battery Efficiency Characteristic.

during discharging (≈ 10%). The battery is described with
a power based model, see Fig. 4. Thermal and transient
effects are not considerated. The only state variable in the
battery model is the energy Ee(t). This is calculated by
integrating the power flow Pb, which is defined as:

Ee(Ps, t) = Ee(0) +

τ
∫

0

Pb(Ps, t)dt (3)

The state of energy SOE of the battery can be defined
as the ratio between the current stored energy level Ee(t)
and the maximum storage capacity of the battery Eemax.

SOE =
Ee

Eemax

(4)
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3. ENERGY MANAGEMENT

The topology of the drive-train considered is depicted in
Fig. 1. Here Preq is the power request of the driver. It is
assumed Preq takes into account all vehicle and drive-train
losses, including aerodynamic drag, rolling and friction
losses. Pp is the power delivered by the prime mover, while
Ps is the power delivered, or recuperated, by the secondary
power converter. The total delivered power equals the
requested power:

Preq = Pp + Ps (5)

In practice the power converters are limited in power by
a maximum value. The prime mover and the secondary
power converter are characterized by non-linear functions
of the vehicle operating conditions, e.g. shaft speed and
delivered power. In case of a combustion engine as prime
mover, energy recuperation is impossible.

The energy management has the freedom to split the
power request over the prime mover and the secondary
power converter. The power delivered by the secondary
power converter can be defined as the control variable
x = Ps in the energy management control problem. The
consumed energy of the prime mover Ef as well as the
consumed energy of the secondary power converter Ee,
can be calculated by integrating the consumed powers Pf

and Pb over the elapsed time.

Ef =

tf
∫

0

Pf (x, t)dt (6)

Ee =

tf
∫

0

Pb(x, t)dt (7)

Objective of the energy management is to minimize the
total energy consumption of the vehicle by adjusting the
power split ratio x in an optimal way in time.

J(x, tf ) = Ef + Ee (8)

min
x

J(x, tf ) = min
x





tf
∫

0

Pf (x, t)dt +

tf
∫

0

Pb(x, t)dt



 (9)

To make a “fair” comparison with a conventional drive
train, SOE of the secondary power source Ee(t) is equal
at the end of the cycle to the energy level at the beginning.
This is often referred to as the end-point constraint.

SOE(0) = SOE(tf ) →

tf
∫

0

Pb(x, t)dt = 0 so,

min
x

J(x, tf ) = min
x





tf
∫

0

Pf (x, t)dt





sub





tf
∫

0

Pb(x, t)dt = 0



 (10)

To minimize the function J(x, tf ) subject to the end-point
constraint, the method of Lagrange multipliers can be
applied.

min
x,λ

J̄(x, tf ) = min
x,λ





tf
∫

0

Pf (x, t)dt + λ

tf
∫

0

Pb(x, t)dt





(11)

Here λ is a Lagrange multiplier. The Lagrange multiplier
has a physical interpretation, it represents the relative
incremental cost of the prime mover and secondary power
converter. The minimization can be obtained by solving
(11) for x and λ.

Choosing a certain driving cycle Dynamic Programming
(DP) techniques can compute the optimal λ and x(t)
for this particular driving cycle. Note that the achievable
fuel consumption reduction is drive cycle dependent, as is
the optimal trajectory. The exact future driving cycle is
not known in advance, and therefore λopt is not known
either. One way to deal with this is to replace λ by a
term in the cost function that expresses the stored energy
in a fuel equivalence value s(t), that is controlled by the
EMS. This will simplify the optimization problem (11) to
an optimization only depending on the vehicular param-
eters at the current time. These strategies are often re-
ferred to as Equivalent Consumption Minimization Strate-
gies (ECMS), see, e.g., Guzzella and Sciarretta, [2005,
pages 199-201].

It was already stated that the drive-train component char-
acteristics are non-linear functions of the vehicle operating
conditions. It can be expected that s will vary under
different conditions. If the initial s is chosen too high the
battery will over charge over the long run, while a too small
s will deplete the battery. To prevent the secondary power
source from depleting or overcharging , several algorithms
are suggested to adapt s in real time for the current driving
conditions, see Guzzella and Sciarretta, [2005, pages 199-
201], Koot et al. [2005], Rodatz et al. [2005] or Sciarretta
and Guzzella [2007]. In Koot et al. [2005] the equivalence
factor is chosen to be an affine function of the current state
of energy, with proportional feedback gain K.

s(t) = s0 + K (Ee0 − Ee(t)) (12)

Here Ee(t) is the current state of energy, and Ee0 forms
a set-point for the battery state of energy, K will control
Ee(t) towards Ee0. s0 and K can be tuned for a certain
drive cycle and vehicle configuration, and than show
energy consumption rates very close to those obtained with
DP. However in simulations it can be noticed that λopt, for
charge sustainability, will vary substantially for different
vehicle masses, see Fig. A.1 and A.2. A larger vehicle mass
requires a higher power demand. The characteristics of
the engine, motor and battery are a function of the power
flowing through the devices; therefore the vehicle mass has
influence on the optimal fuel equivalence factor s.

In Rodatz et al. [2005] it is correctly observed that the
vehicle itself, like the battery, is a reversible energy storage
system; therefore we propose to include the kinetic and
potential energy in the reversible energy. In real time it
is possible to calculate the current kinetic and potential
energy of the vehicle (the vehicle mass can be estimated
with an observer). It makes use of the fact that the kinetic
and potential energy is proportional with the vehicle mass
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at a certain velocity, in this way the control algorithm will
be adaptive to vehicle loading.

Not all kinetic and potential energy can be recovered, a
part of it will be dissipated during braking. Nevertheless,
assuming an average deceleration rate â, it is possible to
make an estimation of the amount of brake power required
P̂br, to stop the vehicle from a current velocity v0(t).

P̂br(t, τ) = (mâ + mg sin α̂) v̂(t, τ) (13)

Here v̂(t, τ) is the expected velocity path, m is the vehicle
mass, g is the gravitational constant, and α̂ is the expected
road angle. The “hat” indicates variables estimated.

We believe the constant deceleration assumption can be
justified, as the braking behavior of trucks is better pre-
dictable than that of passenger cars. During deceleration,
part of the deceleration will be due to the aerodynamic
drag force and the rolling resistance of the tires, forces
lumped in the road load force Frl, see (2). For the expected
velocity path v̂(τ), the power losses due to road load
forces during the deceleration is described by a third order
polynomial of the expected velocity path v̂(t, τ).

P̂rl(t, τ) = Frl(t, τ)v̂(t, τ) (14)

= c2v̂(t, τ)3 + c1v̂(t, τ)2 + c0v̂(t, τ) (15)

The expected additional required brake power is given by
the difference between the required brake power P̂br(t, τ)

and the road load power P̂rl(t, τ) and possibly the engine

drag power P̂drag, when the clutch is engaged. This brake
power is delivered by the generator until the maximum
generator power Pgenmax is reached, the rest of the brake
power is absorbed by the brake system. The expected
recoverable brake power in time P̂r(t, τ) can be calculated.

P̂r(t, τ) = max(0,min(Pgenmax, P̂br − P̂rl − P̂drag))

(16)

The expected future recoverable electric energy Êr(t) can

be estimated by integrating P̂r(t, τ) over the estimated
stop time t̂stop, hereby not exceeding the maximum bat-
tery capacity Ecap.

Êr(t) = min







t̂stop
∫

0

P̂r(t, τ)dτ, Ecap






(17)

Êr(t) can be included in (12), leading to:

s(t) = s0 + K
[(

Ee0 − Êr(t)
)

− Ee(t)
]

(18)

In this EMS, the battery set-point Ee0 is adjusted by the
future recoverable energy Êr. Feedback gain K controls
the battery state of energy towards the adaptive set-point
(Ee0 − Êr). The advantage is that the control algorithm
allows for deeper discharge when the vehicle drives faster,
drives uphill or has a larger mass. For Ee0 a value close to
the maximum capacity of the battery can be chosen.

4. SIMULATION RESULTS

4.1 Drive Cycle

The Federal Test Procedure-75 (FTP-75) for city cycle
testing is considered, see SAE J1506 [2002]. Fig. 5 shows
the FTP-75 drive cycle with several start-stop movements.
Based upon the vehicle mass, road load properties, aerody-
namic drag and rolling resistance, the required drive power
Preq to follow the drive cycle velocities can be calculated.
One remark can be made; it is now required that a loaded
truck drives exactly the same speed profile as the empty
truck, while in practice a driver will accept that a loaded
truck accelerates slower.
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Fig. 5. FTP-75 Drive Cycle.

4.2 Base-Line Vehicle

To illustrate the fuel reduction potential of a hybrid
drive-train, it can be compared with a base line vehicle,
which uses only the combustion engine of section 2.2 for
propulsion, so Ps = 0. The fuel consumption of the empty
and loaded base line truck can be seen in Table A.1.

4.3 Dynamic Programming

The non-linear optimization problem (11) for the hybrid
truck of section 2, can be solved with DP techniques. The
results are shown in Table A.1, and Fig. A.3 and A.6.
Fig. A.3 shows the optimal trajectory of SOE over the
FTP-75 cycle. Results of the empty and loaded truck are
shown, clearly vehicle mass has influence on the optimal
trajectory. Fig. A.6 shows the Lagrange multiplier λopt,
if the truck is loaded, λopt becomes smaller. The fuel
reduction potential of the empty hybrid truck is 14.5 %,
while for the fully loaded truck it is 10.4 %. The reduction
potential of the loaded truck is lower than the empty
truck, as the electric machine power is relatively small
and therefore the part of the kinetic energy that can be
recovered is limited. The DP results form a benchmark for
the proposed real time control strategy.

4.4 On-line EMS

To illustrate the value of including the recoverable energy
in the EMS, both feedback algorithm (12) and (18) are
simulated. Based upon real life driving behavior, the
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expected deceleration rate â used in the simulations was
0.7 m/s2. The control settings for both (12) and (18) are
Ee0 = 50%, s0 = 2.7 and K = 10−6. Note that this is not
necessarily the optimal setting for (18). Furthermore the
end-point constraint of (10) is not fulfilled. The ∆SOE
is expressed in an equivalent amount of fuel, using λopt

derived with DP and a diesel heating value of 43 MJ/kg.
The fuel potential results are shown in Table A.1, the
equivalent fuel consumption is placed between brackets.
The adaptive feedback algorithm shows a fuel reduction
that is better than with feedback without adaptation and
is close to the optimum obtained with DP.

Fig. A.4 and A.5 show the SOE trajectory obtained with
the EMS. The optimal trajectory is better followed when
Er is included, in particular with the loaded truck at time
interval the point in the cycle where the speed is 90 km/hr.
Fig. A.4 and A.5 show the fuel equivalence value s. In
case Er = 0, Fig. A.7 is a inverted and scaled version
of Fig. A.4. The average adapted equivalence value s is
smaller for the loaded truck, in agreement with Fig. A.6.

5. CONCLUSIONS

In this paper the future recoverable energy is estimated
assuming the vehicle will decelerate by a certain aver-
age deceleration. Using the future recoverable energy, an
adaptive battery state of energy set-point is determined.
A feedback loop is added to control the battery state
of energy towards the set-point and prevent the battery
from depleting. Simulations show that the new control law
obtains a performance, at different vehicle masses, close to
the optimum obtained with DP.

The EMS can be made adaptive to driver behavior by
adjusting the deceleration rate in real time. Verification
of the control algorithm is scheduled on the Eindhoven
University of Technology chassis dynamometer.
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Appendix A. TABLES AND FIGURES

Table A.1. Fuel Consumption Results

Simulation Results

Strategy Fuel cons. [g] [1/100 km] reduction [%]

Empty truck 9000 kg

BL 3373 22.8 -

DP 2860 19.3 14.5

RT 2959 (2955) 20.0 (20.0) 12.3 (12.4)

RT-ADAPT 2930 (2947) 19.8 (19.9) 13.1 (12.6)

Loaded truck 18000 kg

BL 5753 39.4 -

DP 5156 35.4 10.4

RT 5209 (5172) 35.7 (35.4) 9.5 (10.1)

RT-ADAPT 5165 (5166) 35.4 (35.4) 10.2 (10.2)

BL=Base Line vehicle, DP are the dynamic programming
results, RT are the results of the feedback loop without
the recoverable energy estimation, and RT-ADAPT are
the results of the proposed on-line energy management
strategy.
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Fig. A.1. SOE during FTP-75 cycle for an empty truck.
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Fig. A.2. SOE during FTP-75 cycle for a loaded truck.
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Fig. A.3. Optimal SOE during FTP-75 cycle for an empty
and a loaded truck.
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Fig. A.4. On-line results without recoverable energy esti-
mation; SOE during FTP-75 cycle for an empty and
a loaded truck.
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Fig. A.5. On-line results with recoverable energy estima-
tion; SOE during FTP-75 cycle for an empty and a
loaded truck.
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Fig. A.6. λopt during FTP-75 cycle for an empty and a
loaded truck.
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Fig. A.7. On-line results without recoverable energy esti-
mation; s during FTP-75 cycle for an empty and a
loaded truck.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
1.5

2

2.5

3

3.5

4

4.5

Time [s]

F
u
e
l 
E

q
u
iv

a
le

n
c
e
 V

a
lu

e
  

s
  

[−
]

 On−line Results with Estimated Recoverable Energy E
r

 

 

Empty Truck (9 ton)

Loaded Truck (18 ton)

Fig. A.8. On-line results with recoverable energy estima-
tion; s during FTP-75 cycle for an empty and a loaded
truck.
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