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Abstract: The purpose of this paper is to derive conditions for absolute stability as well
as existence of solutions for multivariable Lur’e-type feedback systems whose linear part is
expressed by a descriptor system. The nonlinearities are uncertain and satisfy multivariable
sector conditions, or a part of the nonlinearities satisfies a norm bounded condition. Thus, the
systems can be refered to as multivariable Lur’e-type descriptor systems. In the existing works
on Lur’e-type descriptor systems, the nonlinearities were assumed to be smooth or given as a set
of single-variable scalar functions, while in this paper, the smoothness assumption is relaxed and
multivariable vector-valued nonlinearities are considered. The obtained stability conditions are
described in terms of linear matrix inequalities, which are extensions of the authors’ previous
results on extended Popov criteria for multivariable Lur’e systems whose linear part is expressed
by a state-space equation.

1. INTRODUCTION

Nonlinear dynamical systems with algebraic constraints
are often appeared in control problems. As their model
representations, nonlinear descriptor equations are use-
ful and natural since they have much more flexibility in
describing nonlinear systems than state equations, that
is, they can simultaneously represent static constraints as
well as dynamical parts of systems, and preserve physical
parameters. Descriptor systems are referred to as semistate
equations or differential/algebraic systems, and their the-
ory were applicable to many physical systems ( Newcomb
[1981], Newcomb and Dziurla [1989], and Campbell et al.
[1999], etc. ).

In general, any autonomous nonlinear system with alge-
braic constraints can be represented by a feedback loop
(Fig. 1) composed of a linear descriptor system block and
a static nonlinear block if the descriptor variable includes
the system variable, its derivatives, all of the inputs and
outputs of all nonlinearities. When the static nonlinearity
is uncertain and satisfies a multivariable sector condition,
the feedback system represented by Fig. 1 can be consid-
ered as a multivariable Lur’e-type feedback system whose
linear part is a descriptor system. Let us refer to it as a
multivariable Lur’e-type descriptor system.

The absolute stability as well as the solvability of Lur’e-
type descriptor systems was considered by Yang et al.
[2007a,c,b], where the nonlinearities were assumed to be
smooth enough and specific absolute stability called gen-
eralized (or strongly) absolute stability was considerd. In
[Yang et al., 2007a,c], a quadratic Liapunov function was
used, which is often appeared in stability problems for
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Fig. 1. A Multivariable Lur’e-type Descriptor System

linear descriptor systems. In [Yang et al., 2007b], a Lur’e-
Postnikov type Liapunov function was introduced but the
nonlinearity was given as a set of single-variable scalar
functions. The smoothness assumption on the nonlinear-
ities arose from the existence condition of solutions of
general nonlinear descriptor systems [Hill and Mareels,
1990], [Müller, 1996, 1998], etc.

In the previous work by Wada et al. [2006], the authors
dealt with general non-smooth nonlinear descriptor sys-
tems and developed stability conditions as well as an
existence condition of solutions for any admissible initial
values. Furthermore, in the former works by Wada and
Ikeda [1993, 2004], the first two authors derived absolute
stability criteria for multivariable Lur’e systems whose
linear part is expressed by a state-space equation, where
the differentiability assumption on the nonlinearity was
relaxed and extensions of the Popov criterion was consid-
ered.

In this paper, based on the works by Wada et al. [2006],
Wada and Ikeda [2004], we derive conditions for absolute
stability as well as existence of solutions of multivariable
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Lur’e-type descriptor systems with a multivariable vector-
valued nonlinearity. The nonlinearity satisfies multivari-
able sector conditions, or a part of the nonlinearities
satisfies a norm bounded condition. The differentiability
assumption on the nonlinearity is relaxed. The obtained
stability conditions are described in terms of linear matrix
inequalities (LMIs), which are extensions of the former
results by Wada and Ikeda [2004] on extended Popov
criteria for multivariable Lur’e systems.

Notations and Matrix Properties

For an n × n singular matrix E satisfying rankE =
r < n, E+ denotes its pseudoinverse matrix. By using
full column rank matrices EL, ER ∈ Rn×r satisfying
E = ELET

R , the matrix E+ can be written as E+ =
ER(ET

RER)−1(ET
LEL)−1ET

L . Let U and V denote an n ×
(n − r) full column rank matrices whose column vectors
compose a basis of Null ET and NullE, respectively. Thus,
ET U = 0, EV = 0, ET

LU = 0, and ET
RV = 0 are satisfied.

‖ · ‖ denotes the Euclidean norm of a vector or its induced
matrix norm. λmax[·] denotes the maximum eigenvalue of
a symmetric matrix.

The function class K ( or referred to as CIP ) denotes
the families of continuous increasing, positive definite
functions from R+ = [0,∞) to R+.

2. MULTIVARIABLE LUR’E-TYPE DESCRIPTOR
SYSTEMS

Let us consider a nonlinear descriptor system
Eẋ = Ax + Bf(Cx), (1)

where x ∈ Rn is the descriptor variable, E and A are n×n
constant matrices, f : Rm → Rm is a continuous function,
B and C are appropriate dimensional constant matrices.

Another representation of (1) is a feedback system shown
in Fig. 1 with its linear part

Eẋ = Ax + Bw (1a)
y = Cx, (1b)

and with its static nonlinear block
w = f(y). (1c)

Let the matrix E be singular, that is, rankE , r < n. In
general, any autonomous nonlinear system with algebraic
constraints can be described in this form without solving
any algebraic equations nor calculating inverse functions if
the inputs and outputs of all the nonlinearities are included
in the elements of the descriptor variable.

We call this system a multivariable Lur’e-type descriptor
system (MLDS). Let us assume f(0) = 0. Then, the MLDS
(1) has the zero solution x(·) ≡ 0 as an equilibrium, and
its stability is discussed in this paper. If the equilibrium
under consideration is not the origin, then an appropriate
variable transformation can move the equilibrium to the
origin.

2.1 Decomposition of the Nonlinearity

Let η , Ex. Then, the variable η = Ex represents the
dynamical behavior of the system (1) since its derivative

η̇ appears in (1). Thus, the variable η = Ex plays a major
role in analizing stability of the nonlinear system (1) by
using a Liapunov function. For this reason, we decompose
the nonlinearity f(y) into the part depending only on Ex
and the residual part.

The output y of the linear part can be rewritten as
y = yd + yn,

yd = CE+Ex = CdEx,

yn = C(I − E+E)x = Cnx,

where Cd = CE+, Cn = C(I − E+E). Then, the nonlin-
earity f can be decomposed into

f(y) = f(yd + yn) = f(yd) + ψ(yd, yn), (2)

ψ(yd, yn) , f(yd + yn)− f(yd), (3)
where f(yd) = f(CdEx) depends only on Ex and ψ(yd, yn)
is its residual.

Therefore, the MLDS (1) can be expressed by
Eẋ = Ax + Bf(yd) + Bψ(yd, yn) (4a)

yd = CdEx, yn = Cnx, (4b)
or equivalently

Eẋ = Ax + Bf(CdEx) + Bψ(CdEx, Cnx). (4)
Remark 1. Let us define

xd = E+Ex

xn = x− xd = (I − E+E)x.

Then, xn ∈ NullE and xT
d xn = 0 since (E+E)T = E+E.

Thus, yd and yn can be expressed by the other forms
yd = Cxd, xd ∈ (NullE)⊥

yn = Cxn, xn ∈ NullE .

2.2 Uncertain Nonlinearities

In this paper, the nonlinearity f is assumed to be uncer-
tain, but satisfy some conditions. Let us introduce nonlin-
ear function classes.

Multivariable Sector Conditions
Let us define the spaces Y = {y = Cx : x ∈ Rn},
Yd = {yd = CdEx : x ∈ Rn} and Yn = {yn = Cnx :
x ∈ Rn} = {yn = Cxn : xn ∈ NullE}.
Class Sec[0 ∈ Yd] functions: We say that the nonlinearity
f satisfies the multivariable sector condition at the origin
yd = 0 in the space Yd and denote f ∈ Sec[0 ∈ Yd] if
there exists a positive definite matrix Kd such that for
any yd ∈ Yd, the inequality

{f(yd)}T K−1
d f(yd) ≤ yT

d f(yd), (5)
holds.

Class Sec[(yd, 0) ∈ Yd×Yn, Yn] functions: We say that the
nonlinearity f satisfies the multivariable sector condition
at each (yd, 0) ∈ Yd × Yn in the Yn direction and denote
f ∈ Sec[(yd, 0) ∈ Yd × Yn, Yn] if there exists a positive
definite matrix Kn such that for any yd ∈ Yd and any
yn ∈ Yn, the inequality

{f(yd + yn)− f(yd)}T K−1
n {f(yd + yn)− f(yd)}

≤ yT
n {f(yd + yn)− f(yd)}, (6)

holds.
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If f ∈ Sec[(yd, 0) ∈ Yd × Yn, Yn], then from (3), for
arbitrarily fixed yd ∈ Yd, ψ(yd, ·) satisfies multivariable
sector condition at the origin yn = 0 in the space Yn, that
is, for any yn ∈ Yn,

{ψ(yd, yn)}T K−1
n ψ(yd, yn) ≤ yT

n ψ(yd, yn). (7)

Class Sec[y ∈ Y, Yn] functions: We say that the nonlin-
earity f satisfies the multivariable sector condition at each
y ∈ Y in the Yn direction and denote f ∈ Sec[y ∈ Y, Yn]
if there exists a positive definite matrix Kn such that for
any y ∈ Y and any yn ∈ Yn, the inequality

{f(y + yn)− f(y)}T K−1
n {f(y + yn)− f(y)}

≤ yT
n {f(y + yn)− f(y)}, (8)

holds.

If f ∈ Sec[y ∈ Y, Yn], then f ∈ Sec[(yd, 0) ∈ Yd× Yn, Yn] is
satisfied.

Symmetric Nonlinear Functions
Class Sym functions: We say that the function f is
symmetric and denote f ∈ Sym if f satisfies the condition

grad
∫ 1

0

yT f(θy)dθ = f(y), ∀y ∈ Rm. (9)

This equality (9) holds under the condition that for any

i 6= k (i, k = 1, 2, . . . , m),
∂fi

∂yk
(·) is continuous and satisfies

the equality (Wada and Ikeda [1993, 2004])
∂fi

∂yk
(y) =

∂fk

∂yi
(y), ∀y ∈ Rm. (10)

That is, the off-diagonal elements of the Jacobian matrix
of f are symmetric.
Remark 2. In the equality (10), we do not assume the
existence of the diagonal elements of the Jacobian matrix
of f . This means that the continuous differentiability of f
is not required in the case when each component of f(y) is
a single-variable function fi(y) = fi(yi) (i = 1, 2, . . . , m),
that is, f(y) = [f1(y1) f2(y2) . . . fm(ym)]T .

If f 6∈ Sym, then let us define the functions

fs(y) = grad
∫ 1

0

yT f(θy)dθ, (11)

fr(y) = f(y)− fs(y), ∀y ∈ Rm, (12)
and we say that fs is the symmetric part of f and fr is
the unsymmetric part of f .

The symmetric property (9) or (11) is significant for
stability analysis since the equality (9) or (11) makes it
possible to derive stability conditions by using the Lur’e-
Postnicov type Liapunov function as stated in the next
section.

Norm Bounded Unsymmetric Parts
Class Nrbdd[γ] functions: We say that the function f
has the norm bounded unsymmetric part and denote f ∈
Nrbdd[γ] if

‖fr(y)‖ ≤ γ‖y‖, ∀y ∈ Rm (13)
for some constant γ > 0.

2.3 Absolute Stability of the MLDS

In this paper, we asuume that the descriptor equation (1)
holds at the initial moment t = 0, that is, all the solutions

x(·) of (1) must be continuous at the initial moment t = 0.
We say that an initial value is admissible if all the solutions
produced by the initial value are continuous at the initial
time t = 0.

Pre-multiplying (1) by UT , we obtain the nonlinear alge-
braic equation

UT [Ax + Bf(Cx)] = 0, (14)
since UT E = 0. This static constraint must be satisfied by
any solution x(t) of (1) for all t ≥ 0. Thus, any admissible
initial value must be satisfy the algebraic equation (14).

In the following definition, we assume that for any admis-
sible initial value x0 ∈ Rn, there exists a solution x(t) (
t ≥ 0 ) of (1) satisfying x(0) = x0.

Let Hi denotes an intersection of some of the above-defined
function classes for f , where H1 , Sym ∩ Sec[0 ∈ Yd] ∩
Sec[(yd, 0) ∈ Yd × Yn, Yn], and H2 , Sec[0 ∈ Yd] ∩
Sec[(yd, 0) ∈ Yd × Yn, Yn] ∩ Nrbdd[γ].

Definition 1. The MLDS (1) is said to be absolutely stable
with the function class Hi if for any f ∈ Hi, the equilibrium
x = 0 of (1) is globally asymptotically stable.

3. ABSOLUTE STABILITY CRITERIA

3.1 Stability Conditions

Let us give absolute stability conditions of the MLDS (1)
under the existence assumption of solutions of (1) for any
admissible initial value.

Case 1: Symmetric Nonlinearity ( H1 = Sym∩Sec[0 ∈ Yd]∩
Sec[(yd, 0) ∈ Yd × Yn, Yn] )

It is assumed that the nonlinearity f is symmetric and
satisfies the multivariable sector condition (5) at yd = 0
in Yd as well as (6) at each (yd, 0) ∈ Yd × Yn in the Yn

direction.
Theorem 1. (Case 1). The MLDS (1) is absolutely stable
with the function class H1 if there exist real numbers
q ∈ R, τ > 0, a matrix R ∈ R(n−r)×(n−r), and a
symmetric matrix P ∈ Rn×n satisfying xT ET PEx > 0
for Ex 6= 0 and the LMI

L1(q, τ, P, R) ,




Θ11 Θ12 Θ13

ΘT
12 Θ22 Θ23

ΘT
13 ΘT

23 −τK−1
n


 < 0, (15)

where
Θ11 = AT (PE + URV T ) + (PE + URV T )T A (16a)

Θ12 = (PE + URV T )T B +
1
2
(qA + E)T CT

d (16b)

Θ13 = (PE + URV T )T B +
τ

2
CT

n (16c)

Θ22 = −K−1
d +

q

2
(CdB + BT CT

d ) (16d)

Θ23 =
q

2
CdB. (16e)

Case 2: Asymmetric Nonlinearity ( H2 = Sec[0 ∈ Yd] ∩
Sec[(yd, 0) ∈ Yd × Yn, Yn] ∩ Nrbdd[γ] )

The difference of this case from Case 1 is the asymmet-
ricalness of f , that is, in this case we do not assume the
symmetricalness of f , but assume that fr is norm bounded.
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Theorem 2. (Case 2). The MLDS (1) is absolutely stable
with the function class H2 if there exist real numbers
q ∈ R, τ > 0, δ > 0, a matrix R ∈ R(n−r)×(n−r), and
a symmetric matrix P ∈ Rn×n satisfying xT ET PEx > 0
for Ex 6= 0 and the LMI
L2(q, τ, δ, P, R) ,


Θ11 + δγET CT
d CdE Θ12 Θ13 −γ

1
2 q

2
AT CT

d

ΘT
12 Θ22 Θ23 −γ

1
2 ΘT

23

ΘT
13 ΘT

23 −τK−1
n −γ

1
2 ΘT

23

−γ
1
2 q

2
CdA −γ

1
2 Θ23 −γ

1
2 Θ23 −δIm




< 0. (17)
Remark 3. If E is equal to the identity matrix I, then the
MLDS (1) is reduced to an unconstrained Lur’e systems.
In this case, the conditions in Theorems 1 and 2 are
also reduced to the absolute stability conditions for an
unconstrained Lur’e systems given by Wada and Ikeda
[2004] since U = V = 0, Cn = 0, and Kn = 0.

If we set γ = 0, then Case 2 and Theorem 2 reduce to Case
1 and Theorem 1, respectively. This means that Theorem 1
is a special case of Theorem 2. Thus, we give the proof of
Theorem 2.

Proof of Theorem 2: To prove Theorem 2, we introduce
the following lemma given as a stability condition for a
general nonlinear system

Eẋ = F(x), (18)
where x ∈ Rn is the descriptor variable, F : Rn → Rn is
a continuous function.
Lemma 1. (Wada et al. [2006]). Suppose that there exist
a continuously differentiable function V : Rn → R+

satisfying Vη(0) = 0, where Vη denotes the gradient of
V. Furthermore, suppose that there exist a continuous
function W : Rn−r ×Rn−r → R satisfying W(w1, 0) = 0
for any w1 ∈ Rn−r, and class K functions a, b, c, d : R+ →
R+ such that the following conditions (i)–(iii) hold.

(i) a(‖Ex‖) ≤ V(Ex) ≤ b(‖Ex‖) for ∀x ∈ Rn, and
a(γ) →∞ as γ →∞.

(ii) {Vη(Ex)}TF(x) + W (
V T x,UTF(x)

) ≤ −c(‖x‖) for
∀x ∈ Rn.

(iii) d(‖x‖)‖F(x)‖ ≤ c(‖x‖) for ∀x ∈ {x ∈ Rn : ‖Ex‖ <
ρη}, where ρη is some positive number.

Then the zero solution of the descriptor system (18) is
globally asymptotically stable.

Under the conditions of Theorem 2, we show that all the
assumptions of Lemma 1 are satisfied.

From (1) and (4), we set
F(x) = Ax + Bf(Cx)

= Ax + Bf(CdEx) + Bψ(CdEx, Cnx). (19)

Let us use the Lur’e-Postnikov type Liapunov function

V(Ex) = xT ET PEx + q

∫ 1

0

(CdEx)T f(θCdEx)dθ. (20)

Since (11) is satisfied and η = Ex, the gradient of V(η) is
calculated as

Vη(η) = gradV(η) = 2Pη + qCT
d {fs(Cdη)}. (21)

Thus, Vη(0) = 0 is satisfied.

Let us define the function W as
W (

V T x,UTF(x)
)

= 2
(
V T x

)T
RT UTF(x)

= 2xT (URV T )T {Ax + B(fd + ψ)}, (22)
where we abbreviated f(CdEx) and ψ(CdEx, Cnx) to fd

and ψ, respectively. Then, for any w1 ∈ Rn−r, W(w1, 0) =
0 is satisfied.

To prove (i), we use the inequality
0 ≤ yT

d f(yd) ≤ yT
d Kdyd, ∀yd ∈ Yd, (23)

which is derived from the sector condition (5).

If q ≥ 0, then by using the inequality (23) to the second
term of the right hand side of (20), we obtain the inequality

xT ET PEx ≤ V(Ex)

≤ xT ET PEx + q

∫ 1

0

θ(CdEx)T KdCdExdθ

= xT ET
(
P +

q

2
CT

d KdCd

)
Ex. (24)

Thus, there exists a class K functions a and b satisfying (i)
since xT ET PEx > 0 for Ex 6= 0. In the case when q < 0,
the proof is left to the appendix.

From (21) and (22), the left hand side (LHS) of the
inequality in (ii) is written as

LHS of (ii) = {Vη(Ex)}TF(x) +W (
V T x,UTF(x)

)

= xT {AT (PE + URV T ) + (PE + URV T )T A}x
+ 2xT {(PE + URV )T B(fd + ψ)}
+ q(fd − fr)T Cd{Ax + B(fd + ψ)}, (25)

where the abbreviation fr = fr(CdEx) and the relation
fs(CdEx) = fd − fr are used.

Applying the S-procedure [Aizerman and Gantmacher,
1964, Boyd et al., 1994] with the sector conditions (5), (7),
and the norm bounded condition (13) to (25), we have the
inequality

LHS of (ii) ≤
xT {AT (PE + URV T ) + (PE + URV T )T A}x
+ 2xT {(PE + URV )T B(fd + ψ)}
+ q(fd − fr)T Cd{Ax + B(fd + ψ)}
+ (CdEx)T fd − fT

d K−1
d fd

+ τ{(Cnx)T ψ − ψT K−1
n ψ}

+ δ{γ‖CdEx‖2 − γ−1‖fr‖2}. (26)
The LMI (17) condition ensures the negative definiteness
of the right hand side of (26). Thus (ii) in Lemma 1 is
satisfied.

From (19), we have
‖F(x)‖ ≤ ‖A‖‖x‖

+ ‖B‖(λmax[Kd]‖CdE‖+ λmax[Kn]‖Cn‖)‖x‖, (27)
since the sector conditions (5) and (7) yield the inequalities

‖f(CdEx)‖ ≤ λmax[Kd]‖CdE‖‖x‖,
‖ψ(CdEx, Cnx)‖ ≤ λmax[Kn]‖Cn‖‖x‖. (28)

Thus, (iii) in Lemma 1 is satisfied.

Therefore, for q ≥ 0, the assumptions of Lemma 1 are
satisfied and the MLDS (1) or (4) is absolutely stable with
the function class H2. ¤
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3.2 Conditions for Existence and Absolute Stability

In the previous section, the existence of solutions of (1) is
assumed, while in this section we give a theorem to ensure
the absolute stability as well as the existence of solutions
for any admissible initial value.

Let us define the function class H3 , Sec[0 ∈ Yd] ∩
Sec[y ∈ Y, Yn] ∩ Nrbdd[γ]. The existence and absolute
stability theorem for (1) is stated for this function class
H3. It is noted that H2 ⊂ H3 since Sec[(yd, 0) ∈ Yd ×
Yn, Yn] ⊂ Sec[y ∈ Y, Yn].
Theorem 3. In the MLDS (1), let f be an arbitrary func-
tion in the class H3. Suppose that the assumptions of
Theorem 2 are satisfied. Then, for any admissible initial
value x0 ∈ Rn, there exists a solution x(·) ( t ≥ 0 ) of the
MLDS (1), and (1) is absolutely stable with the function
class H3.

Proof: Let us recall the results given in the previous work
Wada et al. [2006], which ensure the stability as well as the
existence of solutions for non-smooth nonlinear descriptor
systems.
Lemma 2. (Wada et al. [2006]). In Lemma 1, suppose that
there exists a square matrix R ∈ R(n−r)×(n−r) and
the function W is chosen as W (

V T x,UTF(x)
)

=

2
(
V T x

)T
RT UTF(x). Furthermore, in addition to the as-

sumptions of Lemma 1, suppose that d(ρ) →∞ as ρ →∞,
and the following (iv) hold.

(iv) For any x ∈ Rn and any ∆ ∈ Rn−r \ {0},
UTF(x + V ∆) 6= UTF(x).

Then, for any admissible initial value x0 ∈ Rn, there exists
a solution x(·) ( t ≥ 0 ) of the descriptor system (18), and
the zero solution of (18) is globally asymptotically stable.

From the proof of Theorem 2, the conditions (i)–(iii) with
d(ρ) → ∞ as ρ → ∞ are satisfied under the assumptions
of Theorem 2. Thus, we investigate the condition (iv) in
Lemma 2 for the MLDS (1). From (19), we have for any
x ∈ Rn and any ∆ ∈ Rn−r \ {0},

UTF(x + V ∆)− UTF(x)
= UT AV ∆ + UT B{f(Cx + CnV ∆)− f(Cx)}, (29)

where we have used the relation CnV ∆ = CV ∆. Let
us assume that the sector condition (8) is satisfied, that
is, f ∈ Sec[y ∈ Y, Yn]. Then, pre-multiplying (29) by
2∆T V T V RT , we obtain
− 2‖RV T V ∆‖‖UTF(x + V ∆)− UTF(x)‖
≤ 2∆T V T V RT {UTF(x + V ∆)− UTF(x)}
≤ [∆T V T {f(Cx + CnV ∆)− f(Cx)}T ]

·

 AT URV T + (URV T )T A (URV T )T B +

τ

2
CT

n

BT URV T +
τ

2
Cn −τK−1

n




·
[

V ∆
f(Cx + CnV ∆)− f(Cx)

]
. (30)

If the LMI (17) is satisfied, then the right hand side of
the above inequality is negative for ∆ 6= 0, which can
be obtained by pre-multiplying and post-multiplying the
LMI (17) by [∆T V T 0T {f(Cx + CnV ∆) − f(Cx)}T 0T ]
and its transpose, respectively. Thus, if the LMI (17) is

satisfied and f ∈ Sec[y ∈ Y, Yn], then (iv) is satisfied. This
completes the proof. ¤

4. A NUMERICAL EXAMPLE

As an application of Theorem 1, we consider a maximiza-
tion sector problem.

Let the matrix Kd in the sector condition (5) be written
as

Kd = µKd0, (31)
where Kd0 is a given positive definite matrix and µ > 0
is a parameter scaling the sector. For a given MLDS (1),
we consider the problem to find the maximum parameter
µ = µmax which satisfies the assumptions of Theorem 1
for (31) 1 . Thus, for any parameter value 0 < µ ≤ µmax,
the absolute stability of (1) with the function class H1 is
ensured.

Let the MLDS (1) be given with the coefficient matrices

E =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 , A =



−5 −1 −3 1
0 −3 3 0
0 −4 −5 0
−1 −2 −3 1


 ,

B =




1 0
0 0.9
0 1
0 0


 , C =

[
1 1 0 0
0 0 1 1

]
,

and the nonlinearity f ∈ H1, where the matrix Kd in (5)
satisfies (31), and Kd0, Kn are given as

Kd0 =
[

1.48 0.18
0.18 0.98

]
, Kn =

[
1 0.1

0.1 0.5

]
.

Then, the matrices E+, Cd, Cn, U , and V are calculated
as

E+ =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 , Cd =

[
1 1 0 0
0 0 1 0

]
, Cn =

[
1 0 0 0
0 0 0 1

]
,

U = V = [ 0 0 0 1 ]T .

Solving this problem by using the well-known software
package LMITOOL in SCILAB [Nikoukhah et al., 1995],
we obtain the maximum µmax = 1.38.

5. CONCLUSIONS

Sufficient conditions for absolute stability of multivariable
Lur’e-type descriptor systems with multivariable sector
bounded nonlinearities have been derived. Since the vari-
able Ex represents the dynamical behavior of the system,
we have decomposed the output of the linear system into
the part yd ∈ Yd depending only on Ex and the residual
part yn ∈ Yn in the NullE direction. With this decom-
position, we have assumed that the nonlinearity shoud
satisfy both of the multivariable sector conditions in the Yd

direction and in the Yn direction, and have introduced the
Lur’e-Postnikov type Liapunov function depending only
on Ex, which has enabled us to derive LMI conditions for
absolute stability by applying S-procedure with the sector
conditions.
1 This problem is motivated by the work [Šiljak and Stipanovic,
2000].
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Appendix A.

Proof of Theorem 2 in the case when q < 0

All the proof for q ≥ 0 except the satisfaction of (i) in
Lemma 1 are valid for q < 0. Thus, here we show that

the sector condition (5) and the LMI (17) ensure (i) in
Lemma 1 in the case when q < 0.

By applying the inequality (23) derived from the sector
condition (5) to the Liapunov function (20), we obtain for
any q < 0,

V(Ex) ≥ xT ET PEx + q

∫ 1

0

θ(CdEx)T KdCdExdθ

= xT ET
(
P +

q

2
CT

d KdCd

)
Ex. (A.1)

Thus, if the last quadratic form of (A.1) is positive for
Ex 6= 0, then (i) in Lemma 1 is satisfied. To prove this,
let us introduce the matrices Ã(α) = A + αBKdCdE and
P̃ (α) = P +

αq

2
CT

d KdCd for 0 ≤ α ≤ 1. The last quadratic

form of (A.1) is written as xT ET P̃ (1)Ex.

When α = 0, from the assumptions of Theorem 2, the
inequalities
xT ET P̃ (0)Ex > 0, for Ex 6= 0 (A.2)

{Ã(0)}T {P̃ (0)E + URV T }+ {P̃ (0)E + URV T }T Ã(0) < 0
(A.3)

hold since Ã(0) = A and P̃ (0) = P .

Pre-multiplying and post-multiplying the LMI (17) by[
In αET CT

d Kd 0 0
]

( 0 ≤ α ≤ 1 ) and its transpose,
respectively, we obtain the matrix inequality
{Ã(α)}T {P̃ (α)E + URV T }+ {P̃ (α)E + URV T }T Ã(α)
+ δγET CT

d CdE + α(1− α)ET CdKdCdE < 0. (A.4)

Since EL, ER are n×r full column rank matrices and V is
an n×(n−r) full column rank matrix satisfying ELET

R = E
and V T ER = 0, for any ζc ∈ Rr and any α ∈ [0, 1], pre-
multiplying and post-multiplying (A.4) by (ERζc)T and its
transpose ERζc, respectively, we can derive the inequality

ζT
c ET

R{Ã(α)}T P̃ (α)EERζc < 0. (A.5)

Thus, the r× r matrix ET
R{Ã(α)}T P̃ (α)EER is nonsingu-

lar and
rankÃ(α) = rankP̃ (α) = r ∀α ∈ [0, 1]. (A.6)

On the other hand, we assume that there exist α0 ∈ (0, 1]
and x1 ∈ Rn such that Ex1 6= 0 and xT

1 ET P̃ (α0)Ex1 ≤ 0.
Then, from (A.2) and the continuity of xT

1 ET P̃ (α)Ex1

with respect to α, there exists α1 ∈ (0, α0) such that

xT
1 ET P̃ (α1)Ex = 0. (A.7)

Since ET
RV = 0 implies that the matrix [ER V ] is

nonsingular, there exist ζc1 ∈ Rr and ζn1 ∈ Rn−r

satisfying x1 = ERζc1+V ζn1. From EV = 0 and Ex1 6= 0,
we have 0 6= Ex1 = EERζc1. Substituting Ex1 = EERζc1

to (A.7), we obtain

ζT
c1E

T
RET P̃ (α1)EERζc1 = 0. (A.8)

Since ζc1 6= 0 and rankE = rankER = r, we have
rankP̃ (α1) < r. This contradicts (A.6). Therefore, for any
α ∈ [0, 1] and any x ∈ Rn satisfying Ex 6= 0, we obtain
xT ET P̃ (α)Ex > 0, and thus, for α = 1, xT ET P̃ (1)Ex >
0. Consequently, (i) in Lemma 1 is satisfied. ¤
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