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Abstract: In this paper, recent Eigenstructure Assignment (EA) algorithms are implemented
to provide dynamic control of a Lynx helicopter in the hover, using the ideal eigenstructure
derived by Clarke et al. [2003b]. First, a state-feedback controller is presented to demonstrate
that the target eigenstructure is consistent with the kinematics of a helicopter, and that the
closed-loop system meets the UK Ministry of Defence Defence Standard 00-970 requirements
for Level 1 handling qualities. The EA algorithm for semi-proper systems presented by Pomfret
et al. [2005] is then employed to demonstrate its efficacy and to allow comparison with the
state-feedback case. Finally, the gain suppression methods from Pomfret and Clarke [2005] are
used to introduce structure to a controller without affecting its performance.
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1. INTRODUCTION

Despite much recent work into nonlinear control design
methodologies, these have not enjoyed widespread adop-
tion in many areas of industry. Indeed the design of heli-
copter flight control systems often still relies on iterating
single-input, single-output ‘loop-at-a-time’ linear control
design techniques [Pomfret, 2006]. There remains, there-
fore, a clear need for the development of linear techniques
which can provide an efficient replacement for such prac-
tices without requiring a radical change in the way in which
the control problem is addressed.

Eigenstructure assignment is ideally suited to helicopter
flight control because the handling qualities requirements
of the UK UK Ministry of Defence Defence Standard
00-970 (Def.Stan.00-970) [Pitkin, 1989], and to a lesser
extent the US ADS 33, are readily converted into re-
strictions on pole locations and modal coupling [Clarke
et al., 2003b]. Additionally, recent algorithmic develop-
ments [Griffin, 1997, Clarke et al., 2003a, Pomfret et al.,
2005, Pomfret and Clarke, 2005] have resulted in improved
‘visibility’ during the EA process, leading to a more in-
tuitive connection between the various design parameters
and the performance of the closed-loop system; such vis-
ibility is an essential part of any algorithm designed to
replace ‘loop-at-a-time’ techniques.

The aim of this paper is to demonstrate, by means
of design examples, the power and practicality of the
ideal eigenstructure and EA algorithms mentioned above.
Firstly, the state-feedback results of Griffin [1997] are
replicated for a Lynx helicopter in the hover. However,
state feedback is not a practical proposition for the control
of rotorcraft, because velocity information is very difficult
to measure directly to a suitable degree of accuracy, es-
pecially at low speed. Instead, accelerometers are often
⋆ This work was supported in part by AgustaWestland.

employed as part of an Inertial Measurement Unit (IMU).
These provide information about linear movements in the
body frame, but effectively measure not states but state
derivatives.

It is therefore demonstrated next that state-feedback per-
formance is achievable using a controller which does not
have access directly to state information, but instead has
access to a combination of states and state derivatives.
This information takes the form of two sensed body ac-
celerations and an earth-relative vertical velocity signal
from a radar altimeter, and the methods developed by
Pomfret et al. [2005] are employed to assign the desired
eigenstructure.

Finally, a controller is synthesised that has access to all
three IMU accelerometer signals and the earth-relative
vertical velocity signal. This controller has more available
Degrees of Freedom (DoF) than are required for complete
eigenvalue and right-eigenvector assignment, and this ex-
tra design freedom is exploited by using the methods pre-
sented by Pomfret and Clarke [2005] to introduce structure
to the controller. Once again it will be shown that the
performance of the structured controller is identical to that
of the original state-feedback example.

It should be noted that although EA gives no explicit
robustness guarantees, several methods exist for trading
off the desired eigenstructure for robustness improvements
prior to assignment exist [e.g. Ensor and Davies, 2000,
Griffin, 1997].

2. NOMENCLATURE

ḣ Earth-relative vertical velocity
λn, vn Eigenvalue and associated right eigenvector
Λd, Λa Diagonal sets of desired and achieved eigenvalues
A, B, C, D State-variable system, input, output and di-

rect transmission matrices
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Vd, Va Sets of desired and achieved right eigenvectors,
ordered to be consistent with Λd and Λa

φ, θ, ψ Body angles (roll, pitch and yaw)
θ0, θt Collective pitch and tail rotor pitch command

inputs
x, y State vector and output vector
A1, B1 Lateral and longitudinal cyclic pitch command

inputs
p, q, r Body angular rates (roll, pitch and yaw)
u, v, w Body-relative perturbation velocities (longitudi-

nal, lateral and vertical/heave)

3. A STATE FEEDBACK CONTROL LAW

Griffin [1997] developed a state-feedback control law for
an 8th-order (reduced) model of a Lynx helicopter in
hover. Information about the linear model used can be
found in Appendix A. The results, reproduced here as
Figures 1 to 3, are exactly those obtained by Griffin and
are included in order to demonstrate the compliance of
the ideal eigenstructure with the Def.Stan.00-970 and to
provide a comparison with the results obtained using other
algorithms.

The target eigenstructure is that presented by Clarke et al.
[2003b], and the reader is referred there for more details
of its derivation. The eigenvalues assigned to the system
are listed in Table 1, with the subscripts on the eigenvalue
names indicating the states which their associated modes
should predominantly be coupled.

λp λv λq λu λw λr

−1.5 ± j1.6 −0.004 −1.5 ± j1.6 −0.002 −0.33 −1.75

Table 1. Desired Eigenvalue Locations

The desired eigenvectors (rounded to 2dp. for compact-
ness) are given in Box 1.

x = [v p φ u q θ w r]
T

Λd = diag
([

λp λ̄p λv λq λ̄q λu λw λr

])

Vd =





















−0.31 + 0.33j −0.31 − 0.33j −1
−0.31− 0.33j −0.31 + 0.33j 0

1 1 0 · · ·
0 0 0
0 0 0
0 0 0 · · ·
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0

· · · 0 0 0 0 0
0.31 − 0.33j 0.31 + 0.33j 1 0 0
−0.31 − 0.33j −0.31 + 0.33j 0 0 0

· · · 1 1 0 0 0
0 0 0 1 0
0 0 0 0 1





















Box 1: Desired Eigenvectors for Level 1 Def.Stan.00-970
Handling Qualities in Hover [from Clarke et al., 2003b]

The gain matrix, generated using standard state-feedback
EA techniques [see Moore, 1976], is:

y = [u v w p q r φ θ]
T







A1

B1

θ0
θt






=







−0.0013 0.0004 −0.0001 0.0525
0.0008 0 −0.0001 −0.0398 . . .
0.0001 0 0 0
0.0001 0.0011 0.0004 −0.0576

−0.0361 −0.0002 −0.0383 −0.0034
. . . 0.0743 0.0058 −0.0015 0.2450

0.0007 −0.0002 0.0062 −0.0052
0.0154 0.1911 −0.0807 0.0103






y

It can be seen that all the gains in this controller are small,
with the largest being less than 0.25.

The achieved eigenvectors are given below, and have the
same state and mode order as the ideal eigenvectors in
Box 1 for ease of comparison. Again the entries have been
rounded to 2dp. for compactness.

Va =





















−1.09 + 0.98j −1.09 − 0.98j −1
−1.50− 1.60j −1.50 + 1.60j 0

1 1 0 · · ·
−0.15 + 0.00j −0.15 − 0.00j 0
−0.01− 0.07j −0.01 + 0.07j 0
0.03 + 0.02j 0.03 − 0.02j 0 · · ·
−0.01 + 0.00j −0.01 − 0.00j 0
−0.06− 0.04j −0.06 + 0.04j 0

−0.14 + 0.01j −0.14− 0.01j 0 0 −0.06
0.00 + 0.05j 0.00 − 0.05j 0 0 0.04

· · · −0.02 − 0.02j −0.02 + 0.02j 0 0 −0.06
1.29 − 0.76j 1.29 + 0.76j 1 0 −0.02
−1.50 − 1.60j −1.50 + 1.60j 0 0 −0.03

· · · 1 1 0 0 −0.02
0.01 + 0.01j 0.01 − 0.01j 0 1 0
−0.06 − 0.03j −0.06 + 0.03j 0 0 1
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Fig. 1. Longitudinal and lateral responses of the state
feedback controller [from Griffin, 1997]

Figure 1 shows the response of the helicopter’s roll attitude
φ to a one-second lateral pulse input on the cyclic pitch
stick, and of its pitch attitude θ to a one-second longitudi-
nal pulse input on the cyclic pitch stick. In each case the
response is superimposed upon a template representing
the Def.Stan.00-970 requirements for Level 1 handling
qualities in the attentive flight phase [derived from Clarke
et al., 2003b, Figure 1].
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Fig. 2. On- and off-axis attitude responses to lateral and
longitudinal stick [from Griffin, 1997]
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Fig. 3. Yaw and heave responses for the state feedback
controller [from Griffin, 1997]

Figure 2 shows the cross-coupling between the roll and
pitch attitudes when performing the same manoeuvres.
The level of cross-coupling is negligible, due to the as-
signment of all right-eigenvectors and the close alignment
of the allowable subspaces with the desired eigenvectors
(indicating that the design requirements closely match the
kinematics of the plant).

Finally, Figure 3 shows the yaw rate response (r) to the
application of a one-second pulse applied to the tail rotor
pitch, and the heave velocity response (w) to a step in the
main rotor collective pitch.

4. A PSEUDO-STATE FEEDBACK EQUIVALENT

The states available in the original model [Griffin, 1997]
are the longitudinal, lateral and vertical velocities u, v and
w; the roll, pitch and yaw angular rates p, q and r; and
the pitch and roll angles φ and θ. Direct measurement of
velocities to a sufficient degree of accuracy is not practical
though, and as a consequence either output-feedback tech-
niques (which display inferior performance due to reduced
DoF), or state reconstruction using observer-based tech-

niques (which reduces design visibility and inevitably in-
creases the system complexity) are traditionally required.

The alternative ‘pseudo-state feedback’ technique of Pom-
fret et al. [2005] instead uses measurements of state deriva-
tives, in this case accelerations, to re-formulate the system
into a semi-proper one (ie. one with a nonzero direct
transmission matrix) with as many outputs as states. This
allows assignment of a complete set of right-eigenvectors
from the same allowable subspaces as in the state feed-
back case, and hence retains the performance of the state
feedback controller without reducing visibility or adding
complexity.

For his output-feedback control law examples, Griffin
assumed that the velocity states were unmeasurable, but
that vertical speed in the inertial frame (ḣ) could be

measured. He also showed that ḣ was equivalent in the
hover to

ḣ ≈ [0.057 0.057 −1]

[

u
v
w

]

Although there is no need to do so, for the purposes of
demonstrating the flexibility of the pseudo-state feedback
technique it will be assumed that ḣ is measured as above,
and also that the longitudinal and lateral accelerations u̇
and v̇ are measured.

Since u̇ and v̇ are state derivatives, it is necessary to re-
form the output matrix and the direct transmission matrix
such that if

y =
[

ḣ u̇ v̇ p q r φ θ
]T

x = [u v w p q r φ θ]
T

u = [A1 B1 θ0 θt]
T

then

y = Cx + Du

which is achieved by setting

C =





















0.057 0.057 −1 0 0 0 0 0
a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7 a1,8

a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7 a2,8

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1





















D =





















0 0 0 0
b1,1 b1,2 b1,3 b1,4

b2,1 b2,2 b2,3 b2,4

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0





















where ai,j and bi,j are the corresponding elements of the
system matrix A and input matrix B, respectively.

The gain matrix, produced using the techniques from
Pomfret et al. [2005] and the same desired eigenstructure
as the state-feedback case above, is
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K =







0.0005 0.0237 −0.0123 0.0536
−0.0002 −0.0198 −0.0005 −0.0336 . . .
−0.0001 −0.0027 −0.0001 0.0009
−0.0008 −0.0308 −0.0344 −0.0255

−0.0356 −0.0088 −0.0001 0.1199
. . . 0.0673 0.0045 −0.0001 0.1411

−0.0003 −0.0004 0.0066 −0.0191
−0.0161 0.1623 0.0252 −0.1548







and it can be seen that the gains are of the same order
of magnitude as in the state-feedback case, and are still
acceptably small.

Figures 4 to 6 show the responses of the helicopter and
pseudo-state feedback controller, and mirror directly Fig-
ures 1 to 3.
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Fig. 4. Longitudinal and lateral responses of the pseudo-
state feedback controller
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Fig. 5. On- and off-axis attitude responses to lateral and
longitudinal stick

The achieved eigenvector set is shown below, and can
be seen to be identical to that obtained using the state-
feedback approach above.
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Fig. 6. Yaw and heave responses for the pseudo-state
feedback controller

Va =





















−1.09 + 0.98j −1.09 − 0.98j −1
−1.50− 1.60j −1.50 + 1.60j 0

1 1 0 · · ·
−0.15 + 0.00j −0.15 − 0.00j 0
−0.01− 0.07j −0.01 + 0.07j 0
0.03 + 0.02j 0.03 − 0.02j 0 · · ·
−0.01 + 0.00j −0.01 − 0.00j 0
−0.06− 0.04j −0.06 + 0.04j 0

−0.14 + 0.01j −0.14− 0.01j 0 0 −0.06
0.00 + 0.05j 0.00 − 0.05j 0 0 0.04

· · · −0.02 − 0.02j −0.02 + 0.02j 0 0 −0.06
1.29 − 0.76j 1.29 + 0.76j 1 0 −0.02
−1.50 − 1.60j −1.50 + 1.60j 0 0 −0.03

· · · 1 1 0 0 −0.02
0.01 + 0.01j 0.01 − 0.01j 0 1 0
−0.06 − 0.03j −0.06 + 0.03j 0 0 1





















The power of the pseudo-state feedback technique is
clearly demonstrated. It may be seen that the performance
of the state-feedback controller is retained by a controller
which is practicable and uses only measurable quantities.

5. A STRUCTURED CONTROLLER

If a controller is synthesised using an output vector that
consists of all three body accelerations in addition to
a radar altimeter signal, the resulting gain matrix will
possess more DoF than are required for complete pole
assignment and the assignment of the full set of right
eigenvectors.

Such a controller is easily generated using the same algo-
rithmic approach as used above. The general formula for
the gain matrix [Pomfret et al., 2005] is

K = SV−1C† (I + DN)
−1

+ Y
(

I − CC†
)

(I + DN)
−1

where the matrix V is the set of achieved right eigenvec-
tors, the matrices S and N are generated as part of the
assignment process, and Y is a matrix of free parameters.

The minimum Frobenius norm controller, generated by
setting Y = 0, is:
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y =
[

ḣ u̇ v̇ ẇ p q r φ θ
]T

u =







0.0028 0.0245 −0.0086 −0.0069 0.0512
−0.0052 −0.0216 −0.0088 0.0154 −0.0280 . . .
0.0010 −0.0022 0.0017 −0.0034 −0.0003
−0.0009 −0.0308 −0.0346 0.0003 −0.0254

−0.0331 −0.0057 −0.0088 0.1208
. . . 0.0618 −0.0023 0.0193 0.1391

0.0010 0.0011 0.0023 −0.0187
−0.0162 0.1622 0.0256 −0.1549






y

It can be seen that the gains of this controller are ex-
tremely small.

Using the gain suppression techniques of Pomfret and
Clarke [2005], it is theoretically possible now to reduce up
to four of the gain matrix entries above to zero, without
affecting the assigned eigenstructure. For the purposes
of illustration, three of the four gains linking the radar
altimeter to the inputs will be suppressed, leaving only
the link between the altimeter and the collective pitch
input. This involves finding a gain matrix K subject to
the constraint that

U vecK = 0

where the vec operator converts a matrix into a vector
by stacking its columns. The permutation matrix U has
exactly one nonzero element per row, the location of which
corresponds to an entry in the gain vector that is to be
suppressed. In this case then, U can be formulated as

U =

[

1 0 0 0 · · · 0 0 0
0 1 0 0 · · · 0 0 0
0 0 0 1 · · · 0 0 0

]

Applying this permutation matrix with the algorithm from
Pomfret and Clarke [2005] yields the following gain matrix,
whose entries can once again be seen to be very small:

K =







0 0.0235 −0.0132 0.0016 0.0542
0 −0.0197 −0.0002 −0.0006 −0.0338 . . .

0.0037 −0.0012 0.0062 −0.0117 −0.0033
0 −0.0305 −0.0331 −0.0025 −0.0264

−0.0361 −0.0095 0.0019 0.1197
. . . 0.0675 0.0047 −0.0009 0.1412

0.0039 0.0048 −0.0082 −0.0176
−0.0152 0.1634 0.0221 −0.1545







It can clearly be seen that the only coupling from the radar
altimeter output (the first column of the gain matrix) is to
the collective pitch input. There is still one further degree
of freedom remaining after this assignment, so one more
gain matrix entry could be suppressed if required.

The set of achieved eigenvectors is once more identical to
that of the state-feedback controller, and the performance
is consequently also the same. In order to avoid excessive
repetition, evidence of this is presented only in the form of
Figure 7, which may be compared with Figures 1 and 4.

6. CONCLUSIONS

It has been seen that the algorithm presented by Pomfret
et al. [2005] provides a suitable mechanism for the design
of controllers for helicopters. In particular, by feeding back
state derivatives via accelerometers, a helicopter has been
controlled in the hover using pseudo-state feedback tech-
niques; without this acceleration feedback, Griffin [1997]
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Fig. 7. Longitudinal and lateral responses of the structured
controller

resorted to output feedback, with inevitably inferior re-
sults.

A further pseudo-state feedback design, having more DoF
than are required for complete pole placement, has been
subjected to the structural imposition techniques of Pom-
fret and Clarke [2005]. These techniques have been found
to perform well.
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Appendix A. HELICOPTER MODEL

The helicopter model used in this paper was generated
from an 11-state nonlinear simulation of a Lynx helicopter,
trimmed in the hover and linearised. The resulting linear
model underwent a model reduction procedure to remove
the uncontrollable rotor flapping modes, and the heading
integration mode was truncated, to leave the 8th order
system used here. In addition, the state order was changed
for the sake of compatibility with the desired eigenvector
set presented in Box 1, and scaling factors have been
applied to the states in order to non-dimensionalise them
as far as possible - complementary scalings have therefore
been applied to the input and output matrices at every
stage.

Since the implications of these scalings and re-orderings
are rather complex, the reader is referred to Griffin [1997]
for full details, and a full model will not be presented here.
However, it is informative to note the original open-loop
pole locations as

{−9.30,−1.95, 0.27− 0.35i, 0.27 + 0.35i, . . .

−0.26 − 0.50i,−0.26 + 0.50i,−0.30,−0.34}

and hence that the helicopter is open-loop unstable. The
associated eigenvectors, in the same mode order as above,
and the same state order as the ideal eigenvector set in
Box 1, are

V =





















−0.07 −0.25 0.90 0.90
−0.97 −0.21 −0.02 + 0.06i −0.02− 0.06i
0.11 0.11 0.08 + 0.10i 0.08 − 0.10i · · ·
0 0.63 0.13 + 0.35i 0.13 − 0.35i

−0.10 −0.62 0.02 + 0.00i 0.02 − 0.00i
0.01 0.32 0.03 − 0.05i 0.03 + 0.05i · · ·
0 0.02 0.04 + 0.04i 0.04 − 0.04i

−0.17 −0.01 0.10 − 0.07i 0.10 + 0.07i

0.91 0.91 −0.64 −0.61
−0.05− 0.06i −0.05 + 0.06i −0.05 −0.05

· · · −0.07 + 0.14i −0.07− 0.14i 0.05 0.05
−0.05− 0.33i −0.05 + 0.33i −0.44 −0.40
0.02 − 0.01i 0.02 + 0.01i −0.02 −0.02

· · · −0.05− 0.02i −0.05 + 0.02i −0.04 −0.04
0.04 + 0.01i 0.04 − 0.01i 0.14 −0.44
−0.02− 0.17i −0.02 + 0.17i 0.61 0.52





















and these demonstrate that a high degree of cross-coupling
is present open-loop.
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