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Abstract: In applications where mobile robots are used to track non-cooperative moving objects
it is often required that not only the position but also the velocity of the moving target can be
measured. In this paper, we consider a problem in 2D where the tracking robots are equipped
only with vision and position sensors and are unable to measure target velocity directly. Instead,
two separate observers for target velocity are proposed and shown to stabilize the two tracking
controls used by the robots. To evaluate the observers, results from simulations with observer
based velocity estimates are compared to corresponding results where the velocity estimates are
given by the standard Extended Kalman Filter algorithm.

1. INTRODUCTION

The problem of designing motion controls for mobile
robots following either a leader or a moving target is
well studied. In Kumar et al. (2002) for instance, leader-
following formation controls based on a unicycle model
are proposed. Other related work, based on the same
model, can be found in Beard et al. (2003); Egerstedt
and Hu (2001); Kang et al. (2004); Tanner et al. (2004);
Sastry et al. (2003); Pappas et al. (2005). A common
assumption in much of the work done in this area is that
the velocity of the leader/target is directly accessible to
the followers, either because the leader robot has some
means of communicating its velocity to its followers or
because a central processing unit can compute the target
velocity using measurements from a distributed network
of sensors and send the information back to the individual
robots. In many robotic systems this is not the case
and a reoccurring problem in robot control is therefore
to estimate the velocity of a neighbor using only local
sensor data. For example, image based velocity estimation
has been subject to much attention within the field of
computer vision. Lately, the problem of velocity estimation
has received renewed topicality in the development of
intelligent safety and navigation system in the automotive
industry, described for instance by Chang et al. (2004).

In this paper we consider a leader-follower system where
the follower is equipped only with range sensors (for
instance IR) and a vision system. No radio communication
between the leader and the follower is possible. The
goal of the follower is to track the moving leader with
a fixed relative distance and bearing angle. Depending
on the desired bearing angle, the motion of the follower
is decided by one of two control algorithms presented
in Section 3. In both algorithms, and in many similar
algorithms in literature, the velocity of the target/leader
is required as input. The fact that the estimated speed
needs to be incorporated into the robot’s own motion
control makes the velocity estimation more critical. It is

well-known that with this sort of feedback in the system,
direct computation of the target speed using unfiltered
measurements on distance and bearing angle tend to
increase measurement errors and induce instability in the
system. The standard method for dealing with noisy data
in nonlinear systems is Extended Kalman Filtering (EKF).
In this paper we, instead, use the fact that the considered
system is locally observable and we solve the problem of
stabilizing the leader-follower controls by, for each of the
two control algorithms, designing a separate observer for
target velocity that stabilizes the system.

The paper is organized as follows. In Section 2 and 3
we describe the system and the control algorithms. In
Section 4 we treat the subject of target velocity estimation
and state the main results on stability. In Section 5
the theoretical results are verified in simulations and,
for comparison, the performances of the observer based
control algorithms are compared to the corresponding
results given by EKF. Finally, in Section 6, the results
are discussed and evaluated.

2. THE SYSTEM

In the application studied in this paper, the objective is to
control the velocity, v, and angular velocity, ω, of a mobile
robot so that it will follow a moving target with a given
distance, d0, and bearing angle, β0. In the paper we only
treat the case with one tracking robot, but the results can
easily be extended to multi-agent systems. The robot is
assumed to have unicycle dynamics, i.e., it can be modeled
as

ẋ = v cos φ

ẏ = v sinφ (1)

φ̇ = ω.

The mathematical model for the target is not specified, but
it is assumed that the target has a well defined orientation
and that the motion of the target is restricted to be along
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the axis of orientation. It is also assumed that the motion
of the target is smooth and that the velocity and angular
velocity are bounded.
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Fig. 1. Mobile robot tracking a moving target.

In order to navigate, the robot completely relies on in-
formation obtained from its sensors. In this case, the
tracking robot is assumed to be equipped with on-board
range sensors, making it possible to measure relative angle
and distance to target, and a vision system that enables
visual estimation of the difference in orientation between
the tracking robot and the target. Orientation estimation
based on camera images is a well studied area in computer
vision/robotics (see for instance DeMenthon and Davis
(1995), Ekvall (2007)) and the reader is therefore referred
to literature for further details on this topic.

Let d and β denote the actual distance and bearing angle
to target, as measured by the sensors, in oppose to d0

and β0 which denote the desired values on d and β. Then
the tracking errors can be defined to be ∆d = d − d0,
∆β = β − β0 and γ = φ − φT , where γ is the difference
in orientation between the tracking robot and the target.
The error dynamics for the system are obtained by taking
the time derivatives of the tracking errors. By using the
connection between global and relative coordinates it is
possible to express the error dynamics as a function of
angles and distances.

∆ḋ =−v cos(∆β + β0) + vT cos(∆β + γ + β0)

γ̇ = ω − ωT (2)

∆β̇ =−ω + v sin(∆β+β0)−vT sin(∆β+γ+β0)
d0+∆d

In the equations above, vT and ωT denote the velocity
and angular velocity of the target. The objective of the
tracking control is to drive the robot as close as possible
to the desired state where the tracking errors equals zero,
or in other words to stabilize the system (2) in (∆d =
0, γ = 0,∆β = 0).

3. TRACKING CONTROL

We assume for this application that the desired distance
between the tracking robot and the moving target is
d0 > 0 and that the desired bearing angle to target is
β0 ∈ [0, π

2 ] rad. (the case β0 ∈ [−π
2 , 0] can of course be

treated equivalently). To obtain the desired tracking for
the whole range of possible values of β0 we use the two
different control algorithms proposed by Gustavi and Hu

(2006). For the serial case (β0 ∈ [0, π
2 )) we use a simple

proportional controller

v =
c0d cos (β − β0)− c0d0 + vT cos (γ + β0)

cos(β0)

ω =
c0d sin(β)− c0d0 sin(β0)− vT sin(γ)

d0 cos(β0)
, (3)

where c0 > 0. The derivation of (3) is quite straightforward
and intuitive and the result is a robust control that globally
drives ∆d and ∆β to zero. However, there is no upper
bound on the magnitude of the control actions as β0

approaches π/2. Parallel tracking (β0 = π
2 ) is generally

more difficult to achieve than serial tracking since it has to
be at least partially based on a prediction on the motion
of the target. For the parallel case we use the following
control

v = vT + c1(d− d0) cos(β)− c2(β − β0)

ω = c3(β − β0)− c4(d0 − d sin(β))− c5γ, (4)

where c2 ≥ 0, cj > 0, j = 1, 3, 4, 5. Because of the
different approach, parallel tracking is more sensitive to
noise than serial tracking. Also, the velocity of the tracking
robot must constantly be adjusted depending on the
curvature of the trajectory, even if the velocity of the target
is constant. With control (4), c2 = 0 gives sufficiently good
tracking if ωT ≈ 0. With more challenging trajectories,
stability may be increased by setting c2 > 0.

Implementation of the control algorithms above requires
access to measurements or estimates of d, β, γ, and vT . If
the true value of vT is known, both control algorithms can
be shown to stabilize the system (2). In fact, for the serial
tracking control (3), access to an estimate of the target
speed, vT , is not necessary for stability, the control is
stable even if vT is set to zero (see Gustavi and Hu (2006)).
However, setting vT = 0 results in a static positioning error
relative the target, so even a rough estimate of the speed
of the target could significantly improve performance of
the tracking control. For the parallel tracking control (4),
a good estimate of the target speed is essential in case the
true vT is not known.

4. ESTIMATION OF TARGET SPEED

There exist a number of methods that could be used to
obtain an estimate of vT based on sensor output. The
most commonly used method for nonlinear systems, such
as the one at hand, is probably Extended Kalman Filtering
(EKF). EKF is an ad hoc extension of the linear Kalman
filter. It is well documented and often gives a good result,
but it is not guaranteed to converge and is known to
fail sometimes. In this paper we therefore suggest another
approach, based on the observability of the system. We
show that it is possible to construct observers for target
velocity that stabilize the system (2). If a sufficiently good
observer can be found, this method for velocity estimation
is very efficient as it requires a minimum of computations.
In Section 4.2 we propose two observers and state some
results on stability, but for comparison we first review the
EKF algorithm, and show how it can be applied to this
problem.
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4.1 State Estimation using EKF

In order to use the EKF algorithm to estimate the velocity
of a moving target, vT , the system equations (2) have to
be modified and expressed in discrete time and vT must be
considered as an extra state variable. On the other hand,
the state variable γ in (2) is directly measurable by the
robot’s vision system and not depending on any of the
other state variables so it can be considered as a known
input to the system. Thus, the modified system (2) now
has three state variables; ∆d, ∆β and vT . The system
equations for ∆d and ∆β are known from (2), but the
time dependency of vT is unknown and therefore modeled
as white noise with standard variation b. With

ξ1,i = ∆βi + β0

ξ2,i = ∆βi + β0 + u3,i,

the discrete time system equations for the modified system
can be written as

∆di = ∆di−1 + ∆t(−u1,i cos ξ1,i + vT,i−1 cos ξ2,i)

∆βi = ∆βi−1 + ∆t(−u2,i + u1,i sin ξ1,i−vT,i−1 sin ξ2,i

d0+∆di−1
)

vT,i = vT,i−1 + bwi,

with output

z1,i = ∆di−1 + c1ν1,i

z2,i = ∆βi−1 + c2ν2,i

and control input

u1,i = vi

u2,i = ωi

u3,i = γi.

In the above equations, w, ν1 and ν2 represent normalized
white noise. The control input u3 = γ is assumed to be
measurable, while u1 = v, and u2 = ω are computed
from the tracking control using measured output from the
system and the latest estimate of vT .

After adapting the system to the required mathematical
form, the EKF algorithm can be applied to obtain the
desired state estimates (see for instance Anderson and
Moore (1979)). The EKF algorithm is not guaranteed
to converge, and in this case simulations show that the
problem is ill-conditioned. The Kalman gain easily grows
to cause large fluctuations in the estimated state vector.
Analyzability of the system is complicated by the fact
that the control input, u, is implicitly depending on the
current state of the system, so the underlying reason for
the stability problem is hard to trace. To improve the
behavior of the filter, the Kalman gain was multiplied by
a factor 0.05. The introduction of a constant factor < 1
improved robustness significantly, but unfortunately also
caused an increased convergence time.

4.2 Observer Based Estimation of Target Velocity

If either (3) or (4) is plugged into (2) and vT is considered
as an extra state variable, then one can easily show that

the augmented system is locally observable if ∆d, γ and
∆β are considered as output. Thus, it is at least possible
to design a local, possibly even global, observer for vT ,
provided that some assumptions can be made on the target
dynamics.

We first consider the case β0 ∈ [0, π
2 ). We know that it is at

least possible to design a local observer, but in this case our
aim is to design a nonlocal and reduced dimension observer
that, together with tracking control (3), stabilizes the
error dynamics (2). We propose the following dynamical
equation for the observer (with cz1 > 0):

ż1 = cz1 cos(γ + β0)(d cos(β − β0)− d0). (5)

Theorem 1. Suppose the motion of the target satisfies the
following condition:

vT (t) ≥ v0 > 0, v̇T (t) ∈ L2[0,∞), ωT (t) ∈ L2[0,∞).
Then, using control (3) in the system (2) with vT replaced
by the observer (5) and c2

0 > cz1/d0, we have as t → ∞
globally

∆d → 0, ∆β → 0.

Further more, γ → 0 from almost everywhere.

Proof. Let the desired position coordinates of the track-
ing robot be denoted (x0, y0) and define

xe = x0 − xT

ye = y0 − yT

∆z1 = z1 − vT ,

where (xT , yT ) are the coordinates of the target. Then,
after plugging in the control (3), where vT is replaced by
z1, the error dynamics (2) can be rewritten as

ẋe =−c0xe + ∆z1 cos φT

ẏe =−c0ye + ∆z1 sinφT

∆ż1 =−cz1 cos(γ + β0)[xe cos(φ + β0) (6)

+ye sin(φ + β0)]− v̇T

γ̇ = ω − ωT .

Now let

x̄e = sinφT xe − cos φT ye

ȳe = cos φT xe + sinφT ye.

Expressed in new coordinates, system (6) becomes

˙̄xe =−c0x̄e + ωT ȳe

˙̄ye =−c0ȳe + ∆z1 − ωT x̄e (7)

∆ż1 = cz1(
sin(2γ+2β0)

2 x̄e − cos2(γ + β0)ȳe)− v̇T

γ̇ =
c0

d0 cos(β0)
(x̄e cos γ + ȳe sin γ − vT sin γ)− ωT .

The system is defined on R3 × S1. When setting ωT =
0, v̇T = 0, there are two equilibria for the system:

(x̄e, ȳe,∆z1, γ) = (0, 0, 0, 0) and

(x̄e, ȳe,∆z, γ) = (0, 0, 0, π),
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provided that we define γ to be in the interval (−π, π].
It is easy to show that the first equilibrium is locally
exponentially stable and the second one is unstable. We
shall now show that the domain of attraction for the first
equilibrium is R3 × S1\{0, 0, 0} × {π}.

Let us first treat γ(t) as a time-varying function in the
first three equations of (7). Define the Lyapunov function

V = L(x̄e)2 + (ȳe −
1
c0

∆z1)2 +
1
c2
0

(∆z1)2,

where L > 0 is a constant. If L is chosen to be suffi-
ciently large, it is possible to show that V̇ ≤ 0 and that
(x̄e(t), ȳe(t),∆z1(t)) will converge to zero exponentially if,
for some constant a > 0,∫ t

0

cos2(γ(s) + β0)ds ≥ at (8)

when t is sufficiently large.

Letting V̇ = 0 implies that x̄e(t) = 0, c0ȳe(t) = ∆z1(t)
and cos(γ(t) + β0)∆z1(t) = 0. Suppose ∆z1(t) 6= 0, then
it follows from (7) that

∆ż1 = −cz1

c0
cos2(γ + β0)∆z1 (9)

γ̇ =
c0

d0 cos(β0)
(

1
c0

∆z1 − vT ) sin γ.

Provided that vT > 0, it is easy to see from (9) that
(∆z1(t), γ(t)) → (0, 0) as long as γ(0) 6= π. However, if
γ(0) = π, then (∆z1(t), γ(t)) → (0, π). Thus, the first three
state variables in (7), i.e., (x̄e(t), ȳe(t),∆z1(t)), globally
converge to zero exponentially for all values of γ(0) if
vT > 0. As for γ, it will converge to zero from all initial
values except from γ(0) = π.

By the well known classical results on input to state
stability (see for example Khalil (1996)), we know that
for any given initial condition, (x̄e(t), ȳe(t),∆z1(t)) will
remain to be L2 if the “inputs” ωT and v̇T are L2, which
is our assumption. This implies that ∆d and ∆β are L2.
The additional assumption that vT (t) ≥ v0 > 0 assures
that sin γ is also L2. By recursion we can show that in
a cascaded system, where robot j is set to follow robot
j − 1, all v̇j , ωj , j ≥ 1 are L2, and vj(t) ≥ 1

2v0 when t is
sufficiently large.

Now we consider the case β0 = π
2 . In this case we propose

an observer that, in combination with tracking control (4),
locally stabilizes the error dynamics (2). The new observer
is defined by

ż2 = −cz2(β − β0) cos(γ). (10)

Theorem 2. Suppose the motion of the target satisfies the
following condition:

vT (t) ≥ v0 > 0, v̇T (t) ∈ L2[0,∞), ωT (t) ∈ L2[0,∞).
If the control for the tracking robot is given by (4)
with c2 = 0 and with vT replaced by the observer z2

defined by eq. (10), then for some choice of constants
c1, c3, c4, c5 > 0, the equilibrium (d, γ, β) = (d0, 0, β0) is
locally exponentially stable.

Proof. Let vT in control (4) be replaced by the ob-
server z2. Insert the control (4) in (2), define ∆z2 =
z2 − vT and linearize the system around the equilibrium
(∆d, γ, ∆β, ∆z2) = (0, 0, 0, 0). This gives

∆ḋ =−vT γ

γ̇ = c4∆d− c5γ + c3∆β + ωT (11)

∆β̇ =−c4∆d + c5γ − c3∆β +
1
d0

∆z2 + ωT

∆ż2 =−cz2∆β − v̇T .

The associated system matrix is

A =


0 −vT 0 0
c4 −c5 c3 0

−c4 c5 −c3
1
d0

0 0 −cz2 0

 . (12)

The matrix A is, in general, time-varying (vT is time-
varying). The following lemma gives us a sufficient condi-
tion for uniformly asymptotic stability. The lemma can be
proved in the same spirit as that of Theorem 2 in Brockett
(1970)(p. 206).
Lemma 3. Considering a time varying matrix A. Assume
that A is bounded and the real part of all the eigenvalues
of A satisfy Reλ(t) ≤ γ < 0 for all t, and ‖Ȧ‖ ∈ L2(0,∞).
Then ẋ = Ax is exponentially stable.

By constructing the characteristic polynomial of A and
using Routh-Hurwitz criterion, one can show that all
eigenvalues of A have negative real part if and only if

c5cz2

(c3 + c5)
> vT c4d0. (13)

Thus, if an upper bound on vT is known, the control
parameters can be designed in order to give stable tracking
for all possible vT . Under the given assumptions, we can
show recursively (analogous to the previous theorem) that
in a cascaded system v̇j , ωj are in L2[0,∞) for all robots
j ≥ 1.

For the case c2 > 0, an inequality corresponding to that
of eq. (13) can be derived. This inequality becomes more
complex than for the case c2 = 0 and is therefore not as
useful in the process of choosing the constants. It can,
however, be used to verify stability for a given set of
constants. A good rule when choosing the constants is to
set c1 ≈ c4 ≈ c5, while c2 and c3 should be slightly smaller.

5. SIMULATIONS

The simulations in this section are made in order to evalu-
ate the tracking performance of the control algorithms (3)
and (4) when combined with the proposed observers (5)
and (10). For comparison, corresponding simulation results
for EKF based tracking are also presented. The perfor-
mances of the observers, in terms of deviations from true
target speed, are studied separately.

To simulate measurement errors, white noise was added
to the “measurements” of d, β and γ. The noise had
standard deviation 0.1d0 for distance measurements and
π
16 for angular measurements. Pre-filtering of data is likely
to improve the results but was not used here.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9206



0 10 20 30 40 50 60 70 80 90 100
0.8

1

1.2

1.4

1.6

time [s]

ta
rg

et
 v

el
oc

ity
 [m

/s
2 ]

 

Fig. 3. EKF-estimate of target speed (solid line) and
true target speed (dotted line) from a simulation
with tracking control (3), β0 = 0 and sinusoidal
target trajectory.
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Fig. 4. Observer estimate of target speed (solid line)
and true target speed (dotted line) from a sim-
ulation with tracking control (3), β0 = 0 and
sinusoidal target trajectory.

β0 = 0 β0 = π
4

Observer EKF Observer EKF

mean ∆d/d0 0.0795 0.0805 0.0819 0.0805
std ∆d/d0 0.1773 0.2680 0.2182 0.1995
mean ∆β -8.814e-04 -6.347e-4 0.0015 0.0036

std ∆β 0.0453 0.0461 0.0659 0.0637
mean ∆z1 0.0282 0.0289 0.0322 0.0342

std ∆z1 0.1331 0.1923 0.2042 0.1863

Table 1. Error data obtained from a set of
simulations with control (3) running over 25

periods of a sinusoidal reference trajectory.

We first study control (3) and the corresponding ob-
server (5). The allowed reference angles for this control are
β0 ∈ [0 π

2 ). In the simulations, the target was set to follow a
sinusoidal path (see fig. 2) with a slowly varying speed. The
simulations using the EKF-estimate and the simulations
using the observer (5) showed that the positioning and
estimation errors were, more or less, of the same magnitude
for the two approaches (see table 5). The observer based
control showed a slightly better performance at reference
angles close to β0 = 0 while the EKF based control gave
a slightly smaller spread at large values on β0. Fig. 3
and 4 show the estimated and real target speed for two
simulations with β0 = 0, using the EKF-approach (fig. 3)
and the observer based-approach (fig. 4).

Let us now consider control (4) and the corresponding
observer (10). This control is only valid for β0 = π

2 .
Contrary to the case β0 = 0, the desired speed of the
tracking robot in this case is strongly depending on the
curvature of the trajectory. Not only does this make
tracking more difficult on curved trajectories, it also affects
the possibilities to correctly estimate target speed with a
simple observer. We shall therefore study the two cases
ωT = 0 and |ωT | > 0 separately (although convergence
can only be shown for ωT ∈ L2).

Fig. 2. Target and tracking robot and their trajectories
after a simulation with serial tracking control, β0 = 0.

In fig. 5 and 6, estimated and real target velocity for the
EKF-approach and the observer-approach are shown for
two simulations where the target was moving on a straight
trajectory (ωT = 0) with varying speed. Even if velocity
estimates are worse for these simulations than for the
simulations with β0 = 0 they are still sufficiently good to
obtain stable tracking. The mean and standard deviation
of the positioning errors ∆d and ∆β from the simulations
corresponding to fig. 5 and 6 are shown in table 5.

Finally we consider the case β0 = π
2 and |ωT | > 0. The

target was set to move with varying velocity on a sinusoidal
trajectory similar to the trajectory shown in fig. 2 but with
ωT restricted to a smaller interval. In this very challenging
test, the EKF-estimate fails to reliably detect changes in
target velocity and presents an almost random behavior.
The observer, on the other hand, clearly shows a periodic
behavior. This behavior, however, is depending rather on
the shape of the target trajectory than on the target
velocity. Additional simulations with constant ωT > 0
(target turning away from the follower) has shown that
the observer (10) consequently overestimates target speed,
while setting ωT < 0 (target turning against the follower)
results in an underestimation of vT . If (10) is considered
mainly as a state estimate for target velocity, then this
is indeed a poor result. If, on the other hand, the main
purpose of the observer is to stabilize the corresponding
tracking control, it turns out that the suggested parallel
control (4) in practice works better with the proposed
observer than with the true target velocity plugged into
the control equations. As long as the curvature of the
target trajectory is sufficiently small, the observer based
control is quite robust. The EKF based control on the
other hand suffers more from the inability to estimate
target speed. Compared to the observer based control it
shows a significantly increased risk for looping when ωT

ωT = 0 ωT varying
Observer EKF Observer EKF

mean ∆d/d0 0.1082 0.1079 0.1104 0.1486
std ∆d/d0 0.1054 0.1154 0.1142 0.1465
mean ∆β -8.2850e-4 0.0387 0.0011 -0.0061

std ∆β 0.1423 0.1812 0.1503 0.4321
mean ∆z2 0.0035 0.0292 0.0059 0.0223

std ∆z2 0.0730 0.1390 0.1779 0.1508

Table 2. Error data obtained from a set of
simulations with control (4) running over 25

periods of a sinusoidal reference trajectory.
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Fig. 5. EKF-estimate of target speed (solid line) and
true target speed (dotted line) from a simulation
with tracking control (4), β0 = π

2 and straight
target trajectory (ωT = 0).
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Fig. 6. Observer estimate of target speed (solid line)
and true target speed (dotted line) from a sim-
ulation with tracking control (4), β0 = π

2 and
straight target trajectory (ωT = 0).

takes on large values (see fig. 5). In a simulation that ran
over 25 periods of the sinusoidal reference trajectory, the
follower made 13 loops when using the EKF based control
while it avoided making one single loop when using the
observer based control during the same period of time.

Fig. 7. Target and tracking robot and their trajectories
after a simulation with EKF based control (4). Note
the loop made by the follower when |ωT | is large.

6. CONCLUSIONS

Simulations have shown that both the EKF-approach and
the observer-approach produce good estimates of target
velocity and give stable tracking with small tracking errors
when β0 is close to zero. As expected, results were not quite
as good for the more difficult case β0 = π

2 . As long as the
target was following a straight trajectory, both methods
were able to produce good estimates of target velocity, but
in the simulation with curved trajectories, the estimation
of target velocity was poor for both methods. Despite this,
the tracking performance of the observer based tracking
control was still good as long as the curvature of the
reference path was sufficiently small.

If computation time is compared for the observer based ap-
proach and the simple EKF-approach used in these simu-
lations, it is found that the observer-approach is more time
efficient. With the observer-approach, the new estimate for
target speed is computed directly from available sensor
data, while in the EKF-method, several computations,
including the inverse computation of a matrix, must be
made in each step of the algorithm. In real time applica-
tions computation time is often critical so this is a strong
motivation for using the observer based approach instead
of the EKF-approach. Also, stability for the observer based
method is not only verified in simulations, but for some
special, but important, cases it has been proved mathe-
matically. The results in this paper suggest that, for the
application described here, the observer based estimation
method would in most cases be the most suitable.
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