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Abstract: In this paper, we propose to track a pre-described profile for the substrate
concentration inside a continuous and well mixed bioreactor where a single bioreaction takes
place. The proposed approach uses a high gain based controller in order to achieve the control
objective. Two main characteristics of the proposed controller are worth to be mentioned. The
first one lies in the fact that its gain involves a design function that has to satisfy a mild
condition which is given. Many expressions of such a function are proposed and it is shown that
some of these expressions lead to many variants of sliding mode like controllers. In addition,
the proposed controller incorporates a filtered integral action which allows to carry out a robust
compensation of the state and output step disturbances, as well as a significant reduction of
unavoidable measurements noises. The second main property of the proposed controller lies in
the fact that its design does not require any model for the reaction rates. Indeed, the time
evolution of these rates are estimated on-line through appropriate nonlinear observers. The so
provided estimates are then used by the proposed control scheme. Simulation results are given
is order to highlight the performance of the proposed approach.

Keywords: Process control, bioreactor, High gain state feedback control, Sliding mode control,
High gain observer.

1. INTRODUCTION

The control of biotechnological processes has been exten-
sively investigated over the last decades. However, the
design of controllers for bioreactors has been hampered
by important obstacles. One of them is the lack of un-
derstanding of microbial metabolic pathways and cellular
control mechanisms, which is needed in order to model
the process and formulate meaningful process control algo-
rithms so that the final objective of process optimization
can be achieved. A way to circumvent this difficulty is
to use a mass balance based model: the biological lacks
of knowledge are located in dedicated terms, namely the
reaction rates.

In this paper, we focus on a standard control problem in
continuous bioreactors which consists in tracking a pre-
described component concentration (usually the substrate
one) using the dilution rate (or equivalently the input
flow rate) as the manipulated variable. Among the several
approaches proposed for this problem, the most known one
is unmistakably the linearizing nonlinear feedback control
first proposed in Hoo and Kantor [1986] and later popular-
ized by Bastin and Dochain [1990], Harmand et al. [2006].
However, a major drawback for this approach lies in the
fact that the underlying controller requires the knowledge
of the reaction rates. To overcome this difficulty, a number
of alternative control feedback laws, assuming model un-

certainties, have been proposed. Some of these variants use
interval observers Rapaport and Harmand [2002], Gouzé
et al. [2000] and they assume a partial knowledge of the
reaction rates. Other ones do not suppose any analytical
expression for the reaction rates. However, these rates are
either calculated by differentiating some available mea-
surements Alvarez-Ramirez and Femat [1999], or assumed
to be correlated to the available outputs through unknown
constants which are updated through appropriate adaptive
control laws Mailleret et al. [2004].

The purpose of this work is to propose an efficient and
systematic design of a nonlinear controller to track a
desired pre-described profile of a component concentra-
tion inside a continuous bioreactor. The proposed control
scheme consists in a high gain like state feedback controller
that has been naturally suggested by judiciously exploring
the duality with the high gain observer design proposed
in Farza et al. [2005]. Three features of the proposed
high gain like control design framework are worth to be
emphasized. The first feature consists in the fact that
its needs only available measurements without using their
differentiations. The second feature is a unified high gain
control design framework through an appropriate design
function. This allows to recover all commonly used high
gain controllers from the usual high gain ones to the sliding
modes based ones. The third feature is a high gain based
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closed loop estimation of the reaction rates to improve
the control performances while providing an appropriate
monitoring if needed Farza et al. [1998, 2004].

This paper is organized as follows. In the next section,
one introduces a typical bioprocess model which shall
be used throughout this paper for illustration purposes.
In section 3, one considers a class of nonlinear systems
including the considered bioprocess model and the design
of the proposed state feedback controller is detailed with
a full convergence analysis of the tracking error in a
free disturbances case. The main characteristics of the
proposed controller lies in the fact that its gain involves
a design function which specification allows to recover
all commonly used high gain controllers from the usual
high gain controllers to the sliding modes based ones.
Different expressions of this function are proposed in this
section. Moreover, a high observer is introduced in order
to estimate the reaction rates. The so provided estimates
are used in the proposed control scheme. In section 4,
the proposed nonlinear controller is used to track a pre-
described substrate profile in the bioreactor introduced
in section 2. Simulation results are given and discussed
throughout this section.

2. A TYPICAL BIOREACTOR MODEL FOR
CONTROL PURPOSES

The description of the dynamic behaviour of bioreac-
tors might be fairly complex and involves a large set of
algebraic-differential equations. However, for control pur-
poses, a reduced order model that adequately describes
the dynamics of the relevant variables, biomass and sub-
strate concentrations, is sufficient. Indeed, let us consider a
typical bioprocess dealing with a simple microbial culture
involving a single biomass x2 which is growing by consum-
ing a single substrate x1. It should be emphasized that
the considered process is chosen mainly for its simplicity
and illustrative properties. Nevertheless, the reader can
refer for example to Bailey and Ollis [1986], Bastin and
Dochain [1990] where a panorama of bioprocess models
corresponding to simulation and real experiments and to
which the entire theory presented here can be applied are
described.
The mass balance model of the considered bioprocess can
be described as follows:

{

ẋ2 = r − Dx2

ẋ1 = −kr + D(Sin − x1)
(1)

where x2 and x1 respectively denote the biomass and
substrate concentrations (mg/l), r is the reaction rate
(mg/(l.day)), Sin is the input substrate concentration
(mg/l), D (1/day) is the dilution rate and finally k is a
yield coefficient. The control objective consists in tracking
a pre-described substrate profile S⋆(t). The input vari-
able is the dilution rate. In order to achieve the control
objective, one shall synthesize a state feedback controller
whose implementation does not require any model for the
reaction rate. Moreover, such a controller must incorporate
a filtered integral action. The filtering is mainly moti-
vated by measurement noise sensitivity reduction while
the integral action allows to achieve a robust offset free

performance in the presence of step like disturbances.

To tackle the tracking problem, one introduces the follow-
ing notations :

• Let x̃1 = x1 − S⋆, be the substrate tracking error.

• Let x̃f
1 be a filtered version of x̃1 which is obtained as

the output of a first order filter with a unitary static
gain and a time constant equal to τ , and which entry
is x̃1.

• Let σf be the integral of x̃f
1 , i.e. σ̇f = x̃f

1 .

Using the above notations, the original tracking problem
can be interpreted as a regulation problem for the tracking
error system which can be written as follows:



















σ̇f (t) = x̃f
1 (t)

˙̃x
f

1 (t) = −1

τ
x̃f

1 (t) +
1

τ
x̃1(t)

˙̃x1(t) = −α(t) + D(t)(Sin(t) − x1(t)) − Ṡ⋆(t)

(2)

where α = kr denotes a normalized reaction rate.
One shall perform a change of variables to bring the
equations of the control design model (2) into coordinates
that will be easier to work with. Indeed, let Φ : IR3 → IR3,

x =





σf

x̃f
1

x̃1



 7→ z =

(

z1

z2

z3

)

= Λx where

Λ = diag(1, 1,
1

τ
) (3)

One can check that the map Φ puts system (2) under the
following form:

{

ż = Az + B(b(z)u − z⋆(t) + g(t)) + ϕ(z)

y = z
(4)

where A =

(

0 1 0
0 0 1
0 0 0

)

, B =

(

0
0
1

)

(5)

b(z) =
1

τ
(Sin − S⋆ − z3), u = D

z⋆(t) =
Ṡ⋆(t)

τ
, g(t) = −α(t)

τ
, ϕ(z) =







0

−1

τ
z2

0







In the next section, one shall synthesize a state feed-back
control for a class of nonlinear systems including system
(4).

3. HIGH-GAIN FEEDBACK CONTROL LAWS
DESIGN

Consider the following strict-feedback form:

{

ż = Az + B(b(z)u + g(t) − z⋆(t)) + ϕ(z)

y = z
(6)

with z = (z1 z2 z3)
T
, the matrices A and B are

as in (5) and ϕ is a smooth function which assumes
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a triangular structure with respect to z, i.e. ϕ(z) =

(ϕ1(z1) ϕ2(z1, z2) ϕ3(z1, z2, z3))
T

where the state z ∈ ϑ
an open subset R3 and it is assumed to be measured, the
input u ∈ U a connected set of IR, b(z) is a non vanishing
function on IR; g(t) is an unknown function et z⋆(t) is a
known signal. The control task we address is the problem
of state-feedback regulation for system (6).

The synthesis of the control law is made under the follow-
ing hypotheses:

H1. the function b(z) does not vanish, i.e.

∃β > 0;∀z ∈ IR3 : |b(z)| > β

H2. The function ϕ(z) is Lipschitz in its arguments over
the domain of interest ϑ and one has ϕ(0) = 0.

H3. The function g(t) is unknown and its first time
derivative is uniformly bounded.

As we shall see later, the expression of the control law we
shall propose does depend on the function g(t). However,
since the time evolution of such a function is not available,
one shall use an observer which provides on-line estimate
of such a function. The equations of such observer can be
written as follows Farza et al. [1998, 1999]:

{

˙̂z3 = ĝ(t) + b(z)u(z) − z⋆(t) + ϕ3(z) − 2θ(ẑ3 − z3)
˙̂g(t) = −θ2(ẑ3 − z3)

(7)

where ẑ3, ĝ ∈ IR are the respective estimates of z3 and
g, and θ > 0 is the observer design parameter. The main
characteristic of observer (7) is stated by the following
Theorem.

Theorem 3.1. Under hypothesis H3, the trajectories of
observer (7) satisfy the following property:

∃θ0 > 0;∀θ ≥ θ0;∃µo(θ), ηo(θ) > 0 such that ∀t ≥ 0 :

|ĝ(t) − g(t)| ≤ ηo(θ)e
−µo(θ)t|ĝ(0) − g(0)| + m

δ

θ
(8)

where m > 0 is a real constant and δ is the upper bound
of the first time derivative of g(t). Moreover, one has:
lim

θ→∞

µo(θ) = +∞.

Statement of Theorem 3.1 means that in the case where g
is constant, the estimation error converges exponentially
to zero. Otherwise, if the first time derivative of g(t) is
bounded by a constant δ, the estimation error remains in
a ball whose radius can be made as small as desired by
choosing θ high enough.
The considered control design framework borrows from
the high gain observer design proposed in Farza et al.
[2005] thanks to the duality with respect to the high gain
observation Gauthier and Kupka [2001], Hammouri and
Farza [2003], Farza et al. [2005] . This leads to the following
state feedback control law

u(z) =
1

b(z)
(−ĝ(t) + z⋆ + ν(z))

with ν(z) =−BT Kc(S̄Γλz) (9)

where Γλ is a diagonal matrix defined by

Γλ = diag
(

λ3, λ2, λ
)

(10)

with λ > 0 a real number, S̄ is the unique symmetric
positive definite solution of the the following algebraic
Lyapunov equation :

S̄ + AT S̄ + S̄A = S̄BBT S̄ (11)

and Kc : IR3 7→ IR3 is a bounded design function satisfying
the following property

∀ξ ∈ Ω one has ξT BBT Kc(ξ) ≥ 1

2
ξT BBT ξ (12)

where Ω is any compact of IR3.

Remark 3.1. Let C = BT . From the fact that the
following algebraic Lyapunov equation

S + AT S + SA = CT C (13)

has a unique Symmetric Positive Definite solution S Gau-
thier et al. [1992], one can deduce that equation (11) has
a unique symmetric positive definite solution S̄ which can
be expressed as follows

S̄ = TS−1T with T =

(

0 0 1
0 1 0
1 0 0

)

(14)

Furthermore and from the expression of S−1CT given in
Farza et al. [2004], one obtains:

BT S̄ = CS−1T = [3 3 1]

The control law (9) achieves the control objective as stated
by the following theorem.

Theorem 3.2. The trajectories of (6) under hypotheses
H1 - H3 where the input u is given by (9) satisfy the
following property:

∃λ0 > 0; ∀λ ≥ λ0; ∀θ ≥ θ0;

∃M > 0; ∃µc(λ), η1(θ, λ), η2(λ) ≥ 0,

such that ∀t ≥ 0:

‖z(t)‖ ≤ λ3

√

λmax(S̄)

λmin(S̄)
e−µc(λ)t‖z(0)‖

+ η1(θ, λ)e−µo(λ)t + η2(λ)
Mδ

θ

where λmax(·) (resp. λmin(·)) denotes the largest (resp.
smallest) eigenvalue of (·); θ0, µo(θ) and δ are given by
Theorem 3.1 . Moreover, one has:

lim
λ→∞

µc(λ) = lim
λ→∞

µo(λ) = +∞ and lim
λ→∞

η2(λ) = 1

Remark 3.2. Statement of Theorem 3.2 means that: if
the function g is constant, z(t) converges globally expo-
nentially to zero for relatively high values of λ. In the case
where ġ(t) is bounded, ‖z(t)‖ can be made aritrarily small
by choosing high values of the observer design parameter
θ.

Proof of Theorem 3.2: Using (9), system (6) can be
written as follows:
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ż = Az − BBT Kc(S̄Γλz) + ϕ(z) + Bg̃(t)

where g̃(t) = ĝ(t)−g(t). Set z̄ = Γλz. Since ΓλAΓ−1
λ = λA

and ΓλB = λB, one has:

˙̄z = λAz̄ − λBBT Kc(S̄z̄) + Γλϕ(z) + λBg̃(t)

Now, let V (z̄) = z̄T Sz̄ be the candidate Lyapunov func-
tion. Using (11), one obtains:

V̇ = 2z̄T S̄ ˙̄z

=−λV + λz̄T S̄BBT S̄z̄ − 2λz̄T S̄BBT Kc(S̄z̄)

+ 2z̄T S̄Γλϕ(z) + 2λz̄T S̄Bg̃(t)

=−λV − 2λ

(

ξT BBT Kc(ξ) −
1

2
ξT BBT ξ

)

+ 2z̄T S̄Γλϕ(z) + 2λz̄T S̄Bg̃(t)

where ξ = S̄z̄. Using inequality (12), one obtains

V̇ ≤ − λV + 2‖S̄z̄‖ (‖Γλϕ(z)‖ + ‖λBg̃(t)‖) (15)

Since the function ϕ assumes a triangular structure and is
Lipschitz, one can show that for λ ≥ 1:

2‖S̄z̄‖‖Γλϕ(z)‖ ≤ c1V (16)

where c1 > 0 is a constant which does not depend on λ.
Using (8), one obtains:

‖λBg̃(t)‖ ≤ λ

(

η0(θ)‖g̃(0)‖e−µo(θ)t +
mδ

θ

)

and hence

‖2S̄z̄‖‖λBg̃(t)‖ ≤ λ

(

k1e
−µo(θ)t +

k2δ

θ

)√
V (17)

where k1, k2 > 0 are some constants which do not depend
on θ, nor λ.
Combining (15), (16) and (17), one gets

V̇ ≤ −(λ − c1)V + λ

(

k1e
−µo(θ)t +

k2δ

θ

)√
V (18)

this implies that for λ ≥ c1, one has:

√

V (t)≤ e−
λ−c1

2
t
√

V (0) +
k1λ

λ − c1 + 2µo(θ)
e−µo(θ)t

+
λ

λ − c1

k2δ

θ

Using the fact that, for λ ≥ 1, one has:

‖z(t)‖ ≤ ‖z̄(t)‖ ≤ λ3‖z(t)‖
one obtains:

‖z(t)‖ ≤
√

λmax(S̄)

λmin(S̄)
λ3e−

λ−c1

2
t‖z(0)‖

+
1

√

λmin(S̄)

k1λ

λ − c1 + 2µo(θ)
e−µo(θ)t

+
1

√

λmin(S̄)

λ

λ − c1

k2δ

θ
(19)

The parameters λ0,M, µc, η1 and η2 required by Theorem
3.2 are;

λ0 = max(1, c1);µc(λ) =
λ − c1

2
; M = k2;

η1(θ, λ) =
1

√

λmin(S̄)

k1λ

λ − c1 + 2µo(θ)
;

η2(λ) =
1

√

λmin(S̄)

λ

λ − c1

Remark 3.3. Consider the following system:

{

ẋ = Ax + B(b(x)u − x⋆ + g(t)) + ϕ(x)

y = x
(20)

whereA =

(

0 a1 0
0 0 a2

0 0 0

)

with a1, a2 6= 0 are real constants;

BT = [0 0 1] and the function ϕ assumes a triangular
structure with respect to x. One can easily show that the
corresponding control law (9) is then given by

u(x) =
1

b(x)
(−ĝ(t) + x⋆ + ν(x)) (21)

ν(x) =− 1

a1a2
BT Kc

(

S̄ΓλΛx
)

and Λ = diag (1, a1, a1a2)

Indeed, let us consider the change of coordinates z = Λx.
Then, system (20) can be rewritten as follows











ż = ΛAΛ−1z + ΛB(b(Λ−1z)u − x⋆ + g(t))
+ Λϕ(Λ−1z)

y = x = Λ−1z

(22)

Taking into account the structure of the the system state
realization as well as the transformation matrix, one gets

ΛAΛ−1 =

(

0 1 0
0 0 1
0 0 0

)

,ΛB =
1

a1a2
B

One hence recovers the structure of the considered class
of systems, i.e. system (6), and naturally deduces the
expression of the state feedback control law (21).

3.1 Some particular design functions

The control law involves a gain depending on the bounded
design function Kc which is completely characterized by
the fundamental property (12). Some useful design func-
tions are given below to emphasize the unifying feature of
the proposed high gain concept.

• The usual high gain design function given by

Kc(ξ) = kc ξ (23)

where kc is a positif scalar satisfying kc ≥ 1

2
. Notice

that the required property is fulfilled over R3.

• The design function involved in the actual sliding
mode framework

Kc(ξ) = kc sign(ξ) (24)

where kc is a positif scalar and ’sign’ is the usual
signum function. It is worth mentioning that the
required property (12) holds in the case of bounded
input bounded state systems. However, this design
function induces a chattering phenomena which is by
no means suitable in practical situations.
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• The design function that are commonly used in the
sliding mode practice, namely

Kc(ξ) = kc tanh(koξ) (25)

where tanh denotes the hyperbolic tangent func-
tion and kc and ko are positif scalars. One can
easily shows that the design function (25) sat-
isfies the property (12) for relatively great val-
ues of ko. More particularly, recall that one has

lim
ko−→+∞

tanh(koz̃) = sign(z̃).

4. APPLICATION TO BIOREACTOR

In this section, the control scheme described above shall
be illustrated through the bioprocess introduced in section
2. In this application, the control objective consists in
tracking the following pre-described substrate profile S⋆:
the substrate concentration has to be maintained at a
desired set point which values changes at 175 and 275 days
as shown in figure 1 Lop̀ez et al. [2006]. On the basis on
the bioreactor model (2) and according to Remark 3.3, the
expression of the control law can be written as follows:







D =
1

Sin − x1

(

Ṡ⋆(t) + α̂(t) + ν(x)
)

ν(x) = −τ [0 0 1] Kc(S̄ΓλΛx)
(26)

where the dynamics of x =





σf

x̃f
1

x̃1



 is governed by (2) and

Λ is given by (3).
In the case where the function Kc specializes as in (25),
the expression of ν becomes:

ν(x) =−kcτ tanh(ko(λ
3σf + 3λ2x̃f

1 + 3
λ

τ
x̃1))

Notice that the expression of the dilution rate in (26) does
depend on the estimation of the normalized reaction rate
α(t) = kr(t). Such estimate is provided by an observer of
the form (7) which equations can be written as follows :

{

˙̂x1 = −α̂(t) + D(Sin − x̂1) − 2θ(x̂1 − x1)
˙̂α(t) = θ2(x̂1 − x1)

(27)

where x̂1 and α̂ are the respective estimates of x1 and α.
Notice that, for simplicity purposes, observer (27) uses x1

rather than x̃1 = x1 − S⋆ to estimate α.

4.1 Simulation results

Controller (26) has been simulated using the bioreactor
balance model (1). However, for simulation purposes, the
reaction rate has to be expressed. Indeed, the specific
growth rate has been supposed to follow the well known

Monod law, i.e.: r =
µmaxx1x2

KS + x1
where µmax and KS

respectively denote the maximum specific growth rate and
the saturation constant.
In order to simulate practical situations, the measurements
of x1 issued from the model simulation have been cor-
rupted by a measurement noise with a zero mean value
and a standard deviation equal to 0.223. Moreover, a
step disturbance with a magnitude of 10 (mg/(l.day))
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Fig. 1. The reference generator input sequence

intervening in the dynamics of x1 and occurring in the
interval [150 250], has been considered. Several simu-
lation studies have been carried out to emphasize the
applicability of the proposed control strategy using all the
design functions Kc that have been described above. As
the performance were almost comparable, one will present
only those obtained with the design function given by
expression (25). A particular emphasis has been put on
the design parameter specification to deal with the control
system performance requirements. A satisfactory shaping
of the control system input-output performance has been
achieved with the following specifications.

• The parameters involved in the control design have
been specified as follows

kc = 1, ko = 5 , λ = 5, τ = 500, θ = 10

• The desired profile for the substrate has been gener-
ated bearing in mind the input saturations as well as
the input sequence shown in figure 1. A first order
reference generator with unitary static gain and a
pole p = −5 has been used to provide the substrate
reference together with its first time derivative which
is required for the control law implementation.

The values of the physical constants used in simulation
are:

µmax = 1.064day−1; KS = 43.9mg/day

k = 2.686mg/mg

Notice that the above three values of the physical parame-
ters as well as the expression of the reaction rate are not
known by the controller and they are only used to simulate
the bioreactor model in order to generate the substrate
pseudo-measurements.

Simulation results are reported in figures 2 to 4. Figures
2 and 4 respectively show the input-output performance
of the control system and the observer performance. Since
the curves corresponding to the desired and real substrate
concentrations, which are given in figure 2 are superim-
posed, we have reproduced in figure 3 the difference be-
tween these curves, i.e. the substrate tracking error. There
are three main features that are worth to be mentioned.
Firstly, the servo requirements have been achieved by the
proposed control approach, namely improved regulation
dynamics and a robust offset free performances. Secondly,
the input performance are relatively well filtered thanks
to the considered design functions. Thirdly, an accurate
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estimate of the reaction rate has been provided by the
nonlinear observer. Such estimate which has been used
in the proposed control scheme can also be exploited for
engineering monitoring purposes.
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Fig. 2. Output and input time evolution
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Fig. 3. Output tracking error
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Fig. 4. Estimate of the normalized reaction rate

5. CONCLUSION:

A systematic approach to design a nonlinear controller
for the robust tracking of a pre-described substrate con-
centration in a continuous bioreactor has been presented
presented. It has been shown that the control objective
can be appropriately handled using a high gain state

feedback controller with a filtered integral action. The
latter provided a suitable tracking capability and offset-
free performance. Of primary importance, an adequate
high gain observer has been designed to provide accurate
on-line estimates of the reaction rates which were exploited
by the controller. The proposed approach can be used for
other control objectives such as the tracking of biomass or
product pre-described profiles. Numerical simulations were
carried out and the obtained results clearly confirmed the
good performance of the control scheme proposed.
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