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Abstract: Due to increasing complexity in embedded devices for industrial automation,
conventional development processes put growing strain on the developers of these systems.
For future generations of devices, it is therefore necessary to adapt the development process in
order to be able to deliver the reliability required for these devices. In this paper, testing of
embedded systems is taken as an example of how the increase in complexity drives the need for
new approaches and how model-based testing can be employed to offset these effects.

1. INTRODUCTION

Although industrial automation products have a long life-
time in the field, the customer demand for new features like
advanced human-machine interfaces or more recently wire-
less connectivity has driven an increase in complexity over
the last years. In combination with traditional goals of the
development for industrial automation products, namely
reliability and robustness, this increase in complexity puts
a large strain on the developers.

In this paper we argue that adhering to traditional devel-
opment methods will in the long run lead to a decrease
of product quality. We believe, that the use of tailorable
development processes which are supported by a flexible
and consistent tool chain can reduce the impact of the
increase in complexity. Embracing new techniques like
model-based testing can even lead to improved product
quality despite added features and the resulting increase
in complexity.

The rest of the paper is organized as follows: in Section 2,
we present an overview of applicable processes, define the
tailorability aspect of processes and show how model-based
testing offers a solution to some of the challenges imposed
on the process by increasing complexity. In Section 3 we
present our vision of a flexible tool chain and compare it
to the state-of-the-art. The paper ends with a conclusion,
which presents some challenges for the parties involved
in the development of intelligent devices in industrial
automation.

2. DEVELOPMENT PROCESS

Typical and intuitive examples for processes used in the
development of embedded systems are the waterfall model
and the V-Model, see Bunse and von Knethen (2002). Both
provide engineers with a guideline of how to develop an em-
bedded system. In practical development however, follow-
ing defined guidelines and processes and even the correct
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and complete implementation of development processes is
a challenge. This is true especially in larger projects. In this
section, we will look at the reasons and consequences for
this and use model-based testing as an example of how to
effectively use methods to improve product development.
It is thus an improvement of the way towards a product.
Of course, as result of this, the quality of the product will
increase.

2.1 Understanding how development works

Most development processes commonly share three fun-
damental phases of system development: understanding
what to develop (1), development of the product (2) and
checking whether the outcome matches what was origi-
nally intended (3). Which phase has to be repeated at what
frequency and how many iterations are required depends
on the system under consideration and the process used.
Processes are defined as hierarchical set of process steps.

@ Understand

what to develop. ® Check
outcome

@ Develop against

the original

product. intention.

Process Part

Input Data ms) ==) Output Data

Data Updates

Process Step

Fig. 1. Process step in the context of a process, see
Streitferdt and Nenninger (2007)

In Fig. 1 the three fundamental phases are depicted as
part of the V-Model, which is an abstraction chosen for
this paper. Each phase is then extended to a set of process
steps, which in turn are part of the complete development
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process — a process part. Process steps have an input as
well as an output, which is the data that is processed.
This data can be plain or formatted text, mathematical
formulas or even an UML model. Note, there may be more
than one way through a process part and still each way
has to be correct. These differences come from the various
methodologies that can be used or are in use. Finally, each
process step is made up of several actions. Again, there
are many possible ways to convert the input data into
the output data. The variability of a process step mainly
comes from cultural peculiarities. All in all we get to an
adaptable/tailorable process. The principle of arranging
and tailoring processes is well known and implemented e.g.
in the freely available Eclipse Process Framework ' (EPF).

None of these steps is trivial even in isolation. Understand-
ing what to build for example includes understanding the
customer’s needs which can be challenging even between
engineers and computer scientists. The main challenge in
the requirements phase is the multi-domain knowledge
which is needed on both sides, that of the stakehold-
ers and that of the implementing engineers. Experience
shows that defining crucial vocabulary like “system” and
“architecture” leads to more productive discussions and
thus to better requirements, which are the main work
product of this process step. Good requirements have three
properties: they are correct, concise and complete. If the
requirements lack any of these properties, the chances that
there will be large changes late in the development process
are high. For the formal part of requirements engineering,
there are several good sources, for example Ardis (1997),
Atlee et al. (1996), and Chechik and Gannon (1994). How-
ever the challenge of transferring domain knowledge to a
formalized representation remains. Gathering, maintaining
and re-using best practice knowledge is a key success factor
in developing embedded systems.

During the implementation phase of the development pro-
cess (“(2) Develop the product”), working with large teams
poses another set of challenges which can be aggregated
under “corporate culture”, see also Kankanhalli et al.
(2002). Teams do not have to work on different continents
for differences in corporate culture to appear, in some cases
two departments or teams at different sites have different
views of how development should work. One example is
the level of detail engineers expect from the documents
they receive, which require a delicate balance between
over-specification, resulting in engineers who feel that their
creativity is not valued, and under-specifying the problem
leaving engineers to wonder what to develop in the first
place. In order to account for varying corporate cultures
among other things, a process has to be tailorable. Tailor-
ing adapts a process to the needs of the project under
consideration by adding or removing process steps and
work products. In the example given above, this implies
adding more detailed requirements and models if the de-
velopers feel that they are not given sufficient information
to complete their tasks. Tailorability is a crucial feature of
development processes because it allows the process to be
fitted to varying environments, products and tools.

1 See www.eclipse.org/epf for further details.

One example of such a tailorable process is MeDUSA 2,
see Nyssen and Lichter (2007), which was developed in a
cooperation between the ABB Corporate Research Center
Germany and the RWTH Aachen and is extensively used
for example in the development process of industrial in-
strumentation products at ABB. MeDUSA is based on the
COMET method Gomaa (2000) and has been tailored to
be object-based instead of object-oriented since this allows
for a smoother transition between models and C-code.
Object-based means that some features of object-oriented
languages like polymorphism are not or only partially
covered. MeDUSA covers the development process from
early use-cases to the detailed design by using the UML2
notation.

In the development process of embedded systems, testing
is an important phase. Depending on the size of the system
under test and the reliability requirements, between 30 %
and 50 % of the total development time are devoted to
testing. Embedded system testing requires an effort to
develop test-cases which can be based on or even generated
from a test model. There are various notations for such a
test model, a very common one is the finite state machine
(FSM). For reasons explained in detail in the following
section, testing in its conventional form can be seen as a
key factor in limiting the ability to increase the complexity
of industrial automation products. It therefore has the
potential to become a driving factor in embracing new
technologies and processes.

2.2 The limits of growth

One popular and simple transition-based modeling tech-
nique is the use of finite state machines (FSMs), which
use nodes for the states and directed vertices for the
transitions of system. The usage or a test of the system
can be described as a (not necessarily finite) path through
the FSM. In a first and very rough approach, an FSM of
an embedded system can be characterized as a tree with
its root at the reset state and the leaves being the states
at the end of an execution. Every independent decision,
that is every if-statement, creates a new level and thus
the number of states z. With n being the number of
(binary) variables which are checked in the if-statements,
the number of states results to

x:i2i:2"+l —1.
1=0

Because the length d of a path from the root to a leaf is
n, the combined length of all paths from the root to the

leaves
Z d=n-2"

and thus also grows faster than exponentially with n.

While this model might not be very accurate, it neglects
shorter paths and joining paths for example, it describes in
simple math a phenomenon often observed by developers:

2 Method for Designing UML2-based Embedded System Software
Architectures
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that even small increases in functionality can result in a
large increase in complexity and thus testing effort 3.

It becomes clear that complete path or state coverage
becomes increasingly difficult with project size just by
the sheer magnitude of the system. With test engineer
executing each test case manually, the cost of testing
soon becomes prohibitive. Additionally, if the process to
generate the test cases is procedure-free, that is if test cases
are just ‘guessed’, determining the state or path coverage
is another challenge.

This short example motivates the statement made above
that industrial-strength testing is indeed a limiting factor
for the complexity of systems. But if customers require
additional features which drive complexity and traditional
testing cannot deliver, another approach to the problem is
needed.

2.8 Model-based testing

In the past few years, the formal verification of software 4

has grown by leaps and bounds, see for example Chaki
et al. (2004) and Ray and Sumners (2007). For specialized
software, it has even reached a level of maturity where it
can be considered to be state-of-the-art. A good example
is the Static Driver Verification for Windows, coming out
of Microsoft’s SLAM project, see Ball et al. (2006). Due
to its (relatively) narrow scope, it checks for applica-
tion programming interface (API) usage errors of device
drivers, the construction of a model for the environment,
in this case the operating system and some other pieces of
software, was possible.

For embedded systems in general and even for embedded
systems in industrial automation, the development of
an environment model to cover external influences on
the system is currently only possible for parts of the
environment. Here, static code analysis has reached a
level of maturity that allows it to be used productively
during the implementation phase. In static code analysis,
the source code of a system is checked for several typical
programming faults such as boundary violations but also
more complex problems like the real-time capability of the
embedded system. Tools, which operate directly on the
source code are readily available. But testing is still by
far the most important way to determine, whether the
system fulfills its requirements. When it comes to testing,
two central questions have to be answered:

What to test against: Before testing can take place,
the test team has to have a reference, a test oracle, to
be able to decide, whether the system under test passed
or failed a specific test.

How to test: Test strategies vary from black to white
box testing. Which of these strategies is applicable
depends on the system under test and can even differ for
various parts of the same system. In general, exhaustive
white-box testing (testing with all possible permutations

3 Tt is worthwhile mentioning that Uttig and Legeard (2007) come
to the same statement ‘exponential growth of effort’” by using an
entirely different approach.

4 The term ‘formal verification of software’ may be a bit misleading
here since it is really checked to see if certain assumptions about the
piece of software under consideration hold under certain conditions.

of input variables) is impracticable, instead equivalence
classes are in use.

On both of these topics there are many excellent books
which describe in detail what the theoretical options of
the test team are and how to decide on the best test for
a given system, see Myers (2004) for example. In practice,
however, the nature and the amount of tests is limited by
the effort involved with testing. With a given set of test
cases the corresponding execution effort can be calculated,
however the number of test cases only has a proportional
influence on the effort of the testing process, however,
certain parts of the system which are covered by the new
test cases have already been tested in existing test cases
and therefore an increase in the number of test cases
does not translate directly into an increased coverage, as
indicated in Fig. 2. The coverage here is the ratio of a
certain metric which is covered by the test cases. Popular
choices for the coverage metric include branches, decisions
and states. As illustrated by the example above, the first
test cases usually yield a much larger increase in coverage
than the subsequent ones, and the return on investment
diminishes rather quickly for conventional testing. This is
especially true if regression testing of the system is taken
into consideration. For all practical purposes, the coverage
converges towards an upper limit.

Goal:
A reduced effort
100 % B NPT T L
o ) AT
%0 — model-based testing sz
g == automated testing .
2 | +==+ conventional ’
O testing P
,I
/
R /
/
/
0 %+ — >
0% 20 % 30 % 70 %  Effort 100 %

Fig. 2. Estimated effort for a given coverage using different
testing approaches. Break-even points, upper limits
and reduced effort vary depending on the project
under consideration.

An attribute of “conventional testing” is that both the test
case definition and the test case execution are done manu-
ally. This form of testing is still common (and effective) for
small subsystems which will not be included in the final
product. However, this form of testing quickly becomes
inefficient as the system under test gets larger.

One common way to increase coverage during testing is the
use of automated testing, for which tools and processes
are available. In contrast to conventional testing, tests
can run unsupervised in batch mode and thus much more
efficiently in most cases. A common example of automated
testing are hardware-in-the-loop (HiL) test rigs which are
widely used in the automotive industry. Automated testing
requires a certain investment before the start of the tests,
which is indicated in Fig. 2 as an offset on the “effort”-
axis. This investment comes in the form of installing the
more complicated test rig and translating the test cases,
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so they can be executed automatically, for example from
an informal list to a formalism such as TTCN-3, see for
example Wilcock et al. (2005).

The break-even point between conventional and auto-
mated testing depends on many factors including the type
of system under test, the experience of the test engineers
and of course the coverage metric applied. If for example
the test setup and the test cases of a previous product
can be reused, and the test team is already experienced in
using the automated testing environment, the break-even
point shifts in favor of automated testing.

“

The question “what to test against” is usually answered
rather quickly: test cases come with expected results. But
that is only part of the answer. What is still unclear is
how these test cases are generated and how the outcome
is evaluated. One of the few cases where predicting the
outcome is not a problem is the re-engineering of a system
due to a changed bill of materials but with unchanged
functionality. In most cases however, an oracle in the form
of a technical system is not available and predicted test
results have to be explicitly generated. Some authors argue
that this process always requires a model of the system,
even if this model exists only in the test engineer’s head,
for example Uttig and Legeard (2007). While there is
some truth in this point of view, we would like to call
this an informal model and distinguish it from the more
formal models, which we will refer to simply as models.
Fig. 3 shows a comparison of a simple implementation
process and a concurrent test process. We would like to
focus on the testing side of the diagram and thus, the
implementation side is not shown in detail.

Implementation Test

Requirements

< Traceability

+ Coverage

Test Setup

Test
Execution

> Results

System

v

Fig. 3. Model-based testing as a parallel activity to system
implementation

An important point in Fig. 3 is, that both the imple-
mentation and the testing branch have their root in the
requirements. In Subsection 2.1 we stressed the importance
of correct, concise and complete requirements. Since both
the system and the test cases are developed based on
the requirements, a fault in the requirements will lead to
faulty behavior of the system under test which will not be

evaluated as a failed test and can therefore not be detected
using model-based testing.

In Fig. 3, we chose to create a model specifically for testing.
Since we did not specify the implementation activities,
it is possible, and with a process that includes model-
based testing it is even likely, that development is also
model-based. This raises the question, whether or not
development and test should share a common model. On
one hand, reusing the development model for test design
saves effort and thus money, avoiding ‘redundant’ work.
On the other hand, auto-generating the complete code and
all test cases for the system from the same model basically
limits the testing results to a statement about differences
in the development and the testing tool chain. Although
this can be useful, it does not cover implementation faults.
A crucial question is therefore, when to split the two paths.
The aim of having a model for model-based development
is to include as much detail as possible for example in
the form of state machines, because this information is
required for the code generation. Model-based testing does
not require this level of detail, since white-box testing of
individual building blocks, classes or functions, is covered
by unit testing. If the development path produces a high
level model, this model can be used to generate test cases.
However it must be possible to verify that the model at
this abstraction level satisfies the requirements.

After generating the test cases from the model, the quality
of these test cases can be evaluated. Typically, the coverage
is used as a metric. Depending on the system under test,
various coverage metrics, for example decision, path or
code coverage, can be applied to evaluate the efficiency
of the test cases. It is also possible to assess the relevance
of test cases based on the typical use of the system. Which
metric is used strongly depends on the system under
test but the metric gives the engineer some idea whether
the testing effort is sufficient, if new test cases must be
introduced or if a subset of the test cases created from the
model can be selected in order to fulfill other prerequisites,
such as limited time for overnight testing, and still achieve
a good coverage. Another important feature of the test
cases is their traceability to the requirements, usually given
in the form of a traceability matrix linking test cases and
requirements in a many-to-many relation.

The coverage matrix is one point where it is possible to
track, whether the different pieces of the process puzzle
come together. Traceability is an important metric in
itself, since it allows to measure whether or not, and even
to what degree the test cases consider certain require-
ments. If the model includes usage or cost information
the traceability matrix also provides information about
how intensively the most probable and the cheapest or
most expensive requirements are represented in the test
cases. Based on this information, the set of test cases can
be refined in order to meet testing goals like minimum
(statistical) coverage or test duration.

In comparison to conventional testing, model-based testing
has two major advantages:

(1) Better than with conventional testing, several cover-
age metrics can be used for the evaluation of the test
cases. In case special properties must be covered, for
example special paths, test cases can be specifically
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designed. This allows for an effective approach to test
case design.

(2) Since the execution of the test cases is automated,
generating and executing more test cases from a given
model does not increase the time required from the
test team (proportionally), but only the time the test
rig is occupied. Therefore, testing is possible earlier
and more often in the development process. It is also
easier to re-test the system after parts of the system
have been updated.

The quality of the final product is of course related to the
way it was developed. The more structured and clearer a
development process is, the better the resulting products
will be. In the process described above, we started with the
requirements, the design of the system and the resulting
source code. With the given testing methods, strategies,
technologies and the current complexity of embedded sys-
tems it became clear that test cases have to be generated
out of a test model to reach the best possible effort reduc-
tion. Clearly the only way towards model-based testing
will lead via a well defined and tailorable development
process. Tailorable, because the current situation has a
level of diversity which simply prohibits a one-fits-all-
solution, with the given effort reduction goal.

The fact that the test execution is automated requires
some sort of special tools for this task. How this and
other tools should work together to effectively support
development is described in following section.

3. TOOL CHAIN

For the whole process described in Section 2, commercial
as well as, for some parts, open source tools are available.
Use-cases can be modeled using standard UML tools,
requirements can be written using a text processor and
source code can be processed by command line tools like
compilers/debuggers. It is possible to deliver high quality
products with this tool-setup, but it is not possible to
deliver the currently needed product quality within the
currently required time-to-market for currently needed
systems. The ‘old” way of developing embedded systems
described above will work well for very small systems with
less than about some thousand lines of code. For the rest,
more than 90 %, of the embedded systems structured,
defined and accepted development processes are a pre-
requisite for current high quality products. Still the goal of
a tailorable tool chain—process combination has not been
reached sufficiently.

The usage of a development process with its associated
tools for a process step currently requires the manual
transformation of the results of one process step into an
input for the next step. This transformation is error-prone
and requires additional effort of system developers. Also,
it is occasionally omitted to track changes late in the
development, which are directly implemented in source
code, in the results of the early stages of the process, the
requirements for example.

Several tool vendors have put considerable effort into com-
pleting their tool chain, Telelogic® and The Mathworks ®

5
6

www.telelogic.com
www.mathworks.com

being just two examples. These tool chains provide good
support for their specific domain, but tend to lock the
developer in, which is not just a financial issue, but also
prevents him to use the ‘right tool for the job’. The reasons
for the tools selections are closely linked to those for
process tailoring, see Section 2. Just like the tailorability of
processes, the ability to exchange unfitting tools is a cru-
cial feature of a tool chain for the development of complex
industrial automation products. Using the import/export
features of tools is often insufficient since vendors tend
to focus on the import feature and neglect the export,
leading to data loss in the transformation. In Streitferdt
and Nenninger (2007), we proposed the use of data (meta)-
models, like the one provided by Eclipse” as a possible
solution for this problem, see also Figure 4.

' I I Tool chain

Data (Meta) Model I

Process

A4

00 1 00 8 0 0oy
Process
”*SZS?’“”YEW”””””

Fig. 4. Tailoring of a process

The data (meta)-model contains all the information cre-
ated in the process and thus links the process steps. The
different tools are associated to one or more specific pro-
cess steps and several tools may be used in one process
step. Since they all store their output in the data (meta)-
model, they are exchangeable and developers can chose the
tool they feel is appropriate without the danger of losing
information or creating results incompatible with those of
other tools. The data (meta)-model is the general idea of
how to integrate various tools into a meaningful tool-chain.
The model-bus is an approach going more towards keeping
the tool boundaries, see e.g. Blanc et al. (2005). With
pre-defined transformations for a data exchange (a partial
data exchange is also allowed) between tools it offers a
possibility to arbitrarily interconnect tools and establish a
user-definable tool chain. However these transformations
typically include some sort of data loss due to varying
representation of the same data in different tools or even
differing data sets.

From the viewpoint of the developers of embedded systems
in the industrial automation domain, the convergence of
tools toward a common data (meta)-model is a desirable
developments, possibly comparable to the rise of embed-
ded real-time operating systems. Like using a real-time op-

7 See www.eclipse.org for more information on the Eclipse data
model.
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erating system, having a continuous and tailorable devel-
opment process with related tool chain lets the developer
focus on the problem at hand instead of using up effort on
process or tool integration questions. A continuous tool
chain in combination with a tailored process will in any
case ease solving the traceability challenge to, e.g. track
errors found in the integration testing back to all the
elements involved (requirements, model elements, source
code). Whether or not it is feasible to do this automatically
remains to be seen.

4. CONCLUSION AND OUTLOOK

Development processes became more and more important
for embedded systems which have been considered to be
very small and easy to handle. The complexity increase
of these systems now requires an adapted approach in the
development process — tool chain question. The diversity
of the embedded systems in the industrial automation
domain needs highly tailorable processes as well as very
flexible tools.

As shown in the testing of embedded systems example,
reliability and robustness, traditional goals of the devel-
opment for industrial automation products, require state-
of-the-art technology adaptation. Model-based testing as
such a technology requires its integration into development
processes already in place. Additionally, the tools needed
to realize and efficiently run a model-based testing ap-
proach have to be integrated into an existing tool chain.
Of course all this has to happen without disrupting the
normal business and the product release schedules.

A flexible process base with integrated tool chain is a gen-
eral solution to this challenge, which has been presented
for the industrial automation domain. Future efforts will
be spent on realizing this approach and pushing forward
current solution ideas in this field.
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