
Estimation of State and Measurement Noise

Covariance Matrices by Multi-Step Prediction ⋆
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Abstract: Estimation of noise covariance matrices for linear or nonlinear stochastic dynamic systems
is treated. The novel off-line technique for estimation of the covariance matrices of the state and
measurement noises is designed. The technique is based on the multi-step prediction error and on
knowledge of the system initial condition and it takes an advantage of the well-known standard relations
from the area of state estimation techniques and least square method. The theoretical results are
illustrated in numerical examples.

1. INTRODUCTION

The problem of recursive state estimation of discrete-time
stochastic dynamic systems has been a subject of consider-
able research interest for the last several decades. The general
solution of the estimation problem is given by the Bayesian
Recursive Relations (BRR’s) for computation of the probability
density functions (pdf’s) of the state conditioned by the mea-
surements.

Although the BRR’s represent the full solution of the filtering
problem, their exact solution is possible only for a few special
cases, e.g. for linear Gaussian systems, which leads to the
well-known Kalman Filter (KF) [Lewis, 1986]. In most of
other situations it is necessary to apply some approximative
technique to the BRR’s solution. The approximative methods
can be generally classified into the two groups: local and global
methods [Sorenson, 1974].

The local methods are often based on approximation of the
nonlinear functions in the state or measurement equation so
that the technique of the Kalman filter design can be used for
the BRR’s solution for the nonlinear systems as well [Lewis,
1986, Nørgaard et al., 2000, Julier and Uhlmann, 2004, Dunı́k
et al., 2005, Xiong et al., 2006]. This approach causes that all
conditional pdf’s of the state estimate are given by the first two
moments, i.e. by mean value and covariance matrix, which in-
duces local validity of the state estimates and consequently im-
possibility to generally ensure the convergency of the local filter
estimates. As an advantage of the local methods the simplicity
of the BRR’s solution can be mentioned. The Extended Kalman
Filter, Unscented Kalman Filter, and Divided Difference Filters
exemplify the local methods.

The global methods are rather based on approximation of the
conditional pdf of the state estimate of some kind to accomplish
better state estimates. These methods are more sophisticated
but they have higher computational demands than the local
methods. Further details and references can be found e.g. in

[Šimandl and Straka, 2003, Dunı́k et al., 2005].

⋆ The work was supported by the Ministry of Education, Youth and Sports of

the Czech Republic, project No. 1M0572.

The successful design and application of an arbitrary filter is,
however, conditioned by knowledge of the sufficiently exact
model of the real system, namely the “deterministic part”
including the functions in the state and measurement equations
and the “stochastic part” including the statistical properties of
the system initial condition and of the state and measurement
noises. Thus, the relatively close attention have been paid to
the estimation of unknown parameters in the system description
[Wan and Nelson, 2001, Mehra, 1972].

This work is addressed to the problem of estimating the second
order noise statistics. The methods for estimation of the state
and measurement noise covariance matrices can be generally
divided into on-line and off-line methods. The on-line meth-
ods, usually called adaptive filtering methods, can be further
classified into the various groups such as Bayesian estimation,
maximum likelihood estimation, correlation methods, and co-
variance matching methods [Mehra, 1972]. These methods can
be further modified into the form where, instead of computation
of noise covariance matrices, the filter gain is directly com-
puted [Mehra, 1970, Bos et al., 2005]. As an alternative to the
adaptive filtering methods the methods based on the minimax
approach have been proposed [Verdú and Poor, 1984]. The
common disadvantage of the adaptive and minimax filtering
methods is that they have been designed for the linear systems
only.

The off-line estimation can be performed by e.g. the subspace
methods [Palanthandalam-Madapusi et al., 2005] or the predic-
tion error methods [Ljung, 1999]. These methods are, how-
ever, suitable mainly for linear systems or for special types
of nonlinear systems, e.g. Wiener or Hammerstein. Recently,
the novel technique for estimation of the system noise covari-
ance matrices either for linear or nonlinear systems have been

proposed [Šimandl and Dunı́k, 2007]. The technique, which
belongs, in essence, into the correlation methods, was based on
knowledge of the system initial condition and on the possibility
to measure a first few data repeatedly 1 . However, in some cases

1 Motivation for the technique was found in the problem of traffic control

where the control law is based on the minimisation of the total lengths

of car queues in all arms of an intersection [Homolová and Nagy, 2005].

Unfortunately, the queue lengths are hardly measurable and they have to be
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the estimation of the noise covariance matrices on the basis of
one measured realisation is advantageous.

The first aim of the paper is therefore to extend the technique

given in [Šimandl and Dunı́k, 2007] to estimate the state and
measurement noise covariance matrices of linear systems on
the basis of one measured realisation. The second aim is to
analyse the stability of the technique for estimation of the
noise covariance matrices of nonlinear systems on the basis of
multiple measured data sets.

The paper is organised as follows. Section 2 is devoted to
the system description and to the Bayesian solution of the
estimation problem. Then, the thorough analysis of the multi-
step prediction error is given and novel relations for estimation
of the noise covariance matrices are derived in Section 3. The
results from the area of linear systems are extended into the
area of nonlinear systems in Section 4. Numerical illustrations
and conclusion remarks are given in Section 5 and Section 6,
respectively.

2. PROBLEM STATEMENT

Let the discrete-time nonlinear Gaussian stochastic system be
considered

xk+1 = fk(xk) + wk, k = 0, 1, 2, . . . , (1)

zk = hk(xk) + vk, k = 0, 1, 2, . . . , (2)

where the vectors xk ∈ R
nx and zk ∈ R

nz represent the
immeasurable state of the system and the measurement at time
instant k, respectively, and fk : R

nx → R
nx , hk : R

nx →
R

nz are known vector functions. The pdf of the initial state
p(x0) = N {x0 : x̄0, P0} is known as well. The variables
wk ∈ R

nx and vk ∈ R
nz are the state and the measurement

white noises with Gaussian pdf’s p(wk) = N {wk : 0, Q} and
p(vk) = N {vk : 0, R}, ∀k, respectively, where the covariance
matrices Q and R are supposed to be unknown. The noises are
mutually independent and independent of the initial state.

The aim of the filtering, as a special part of the state estimation,
is to find the state estimate in the form of the conditional
pdf of the state xk conditioned by measurements up to the
time k, i.e. p(xk|z

k) is looked for, where zk = [z0, . . . , zk].
The solution of the filtering problem, given by the BRR’s
[Lewis, 1986], is conditioned by knowledge of the state and
the measurement noise pdf’s, i.e. by p(wk) and p(vk), ∀k.
However, the covariance matrices of the state and measurement
noises are unknown and they have to be estimated.

The first goal of the paper is to design the off-line technique for
estimation of the noise covariance matrices for linear Gaussian
systems based on the one measured realisation and so to extend

the technique proposed in [Šimandl and Dunı́k, 2007]. The
technique comes out from the statistical properties of the multi-
step measurement prediction error and it allows to determine
set of independent equations for estimation of all elements
of the noise covariance matrices. The second aim is to apply
the proposed technique into the area of nonlinear systems as
well with stress on the bounded multi-step prediction error.
To ensure bounded prediction error for nonlinear systems the
stability analysis of the local filters will be exploited.

estimated on the basis of measured quantities. However, there are many (on

the order of hundreds) of measured daily courses of passing vehicles through

the intersection, e.g. measurable intensity of traffic flow, at disposal. Thus, the

proposed technique is suitable not only for systems with possibility to measure

a first few data repeatedly, but also it is easily applicable for periodic processes.

3. ESTIMATION OF NOISE COVARIANCE MATRICES
OF LINEAR SYSTEMS

In this section the novel technique for estimation of the state
and measurement noise covariance matrices will be discussed.
This technique will be based on the known initial condition of
the system and on the analysis of properties of measurement
multi-step prediction error.

3.1 Multi-Step Prediction

Let the linear t-invariant Gaussian system (1), (2) with known
initial condition p(x0), where fk(xk) = Fxk and hk(xk) =
Hxk , be considered. Then, the multi-step predictor, with initial
condition p(x0|z

−1) = p(x0) = N {x0 : x̂0|−1, P0|−1}; x̂0|−1 =
x̄0, P0|−1 = P0, is given as

x̂k+1|−1 = Fx̂k|−1, (3)

Pk+1|−1 = FPk|−1FT + QP , (4)

where x̂k+1|−1 is the (k + 1)-th state prediction with covariance
matrix Pk+1|−1. The predictive state estimate is thus based
on the known initial condition and it does not depend on
the measurement, i.e. the predictive mean and the covariance
matrix are conditioned by z−1. If the true state noise covariance
matrix is known it is used in the predictor design, i.e. QP = Q.
In the situation when there is no such information, let the matrix
QP in the predictor algorithm be chosen arbitrarily.

To find a relation of the measurement multi-step prediction
error it is advantageous to rewrite (1) and (3) as

xk+1 = Fk+1x0 +

k
∑

i=0

Fi wk−i , (5)

x̂k+1|−1 =

k
∏

i=0

Fx̂0|−1 = Fk+1x̂0|−1. (6)

Then, with respect to the linear measurement equation, the
prediction error at time instant (k + 1) is given by

ek+1 = zk+1 − ẑk+1|−1 = H(xk+1 − x̂k+1|−1) + vk+1 =

= HFk+1(x0 − x̂0|−1) + H

k
∑

i=0

Fi wk−i + vk+1, (7)

where ẑk+1|−1 = Hx̂k+1|−1 represents (k + 1)-th prediction of
the measurement. And as will be shown, (7) is the key relation
for estimation of the system noise covariance matrices.

3.2 Properties of Multi-Step Prediction Error

In this part the prediction error is analysed which allows to find
relations for estimation of the noise covariance matrices. The
mean of the prediction error, with respect to the zero means of
the state and measurement noises, is

E[ek] = HE[xk − x̂k|−1] + vk = 0,∀k, (8)

where E[x0] = x̄0 = x̂0|−1. As far as the second-order
statistics are considered, the covariance matrix of ek and cross-
correlation matrices of el and ek , where l < k, can be easily
computed as well, i.e.

cov[ek] = cov[zk − ẑk|−1] = HFkP0|−1(F
k)T HT +

+

k−1
∑

i=0

HFi Q(Fi)T HT + R, (9)
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cov[el; ek] = cov[zl − ẑl|−1; zk − ẑk|−1] = (10)

= HFlP0|−1(F
k)T HT +

l
∑

i=1

HFl−i Q(Fk−i )T HT .

Relations (9), (10), which do not depend on chosen QP , can
be used for estimation of the true covariance matrices Q and
R based on the multiple measurements of a first few steps.
This will be discussed later in detail. However, to be able
to estimate the true covariance matrices of the noises on the
basis of one measured data realisation it is necessary to specify
further relations.

The first relation is based on the possibility to find a relation
for computation of the covariance matrix of a mixture based on
particular prediction errors. The basic idea will be discussed in
the following proposition.

Proposition 1. Let two variables x ∼ N {x : x̄, Px} and y ∼
N {y : ȳ, Py} with the known (true) means (x̄ = ȳ = 0)
and covariance matrices be supposed and two sets of samples

from particular variables x(1:N) = [x(1), . . . , x(N)] and y(1:N) =

[y(1), . . . , y(N)] be available. The estimated mean of merged

sets of samples, denoted as z(1:2N) = [x(1:N), y(1:N)], is then

ẑ =
1

2N

2N
∑

i=1

z(i) =
1

2

( 1

N

N
∑

i=1

x(i) +
1

N

N
∑

i=1

y(i)
)

=
1

2
(x̂ + ŷ).

(11)

Applying mean value operator to (11) leads to

z̄ = E[ẑ] =
1

2
(x̄ + ȳ) = αx x̄ + αy ȳ = 0. (12)

where αx = αy = N
2N

= 1
2
. With respect to the known means

of variables x and y, the estimator of the covariance matrix is

P̂z =
1

2N

2N
∑

i=1

(z(i) − z̄)(z(i) − z̄)T =
1

2
(P̂x + P̂y), (13)

where P̂x = 1
N

∑N
i=1 x(i)(x(i))T and P̂y = 1

N

∑N
i=1 y(i)(y(i))T

are unbiased estimators of the covariance matrices Px and Py

[Papoulis and Pillai, 2002]. Then

Pz = E[P̂z] =
1

2
(Px + Py) = αx Px + αyPy . (14)

In other words, variable z can be understood as the mixture of
variables x and y. Thus, the true mean z̄ and covariance matrix
Pz of variable z can be computed as weighted sum of means
and covariance matrices of particular Gaussian terms and (11),
(13) represent their unbiased estimators. Note that the weights
αx , αy of particular terms are given by the number of samples.

The idea given in the proposition can be adopted for compu-
tation of the covariance matrix of the mixture of the particular
prediction errors e0, e1, . . . , en . The mixture is denoted as e.

Theorem 1. Let the prediction errors e0, . . . , en be supposed.
Then, the covariance matrix of the variable e, representing the
mixture of the particular prediction errors ek , ∀k, is given by

cov[e] =
1

n + 1

n
∑

k=0

HFkP0|−1(F
k)T HT +

+

n−1
∑

k=0

n − k

n + 1
HFkQ(Fk)T HT + R. (15)

Proof 1. The proof of relation (15) is based on relation (14),
which can be understood as a weighted sum of covariance
matrices (9) of the particular prediction errors ek , ∀k, i.e.

cov[e] =

n
∑

k=0

αkcov[ek] =
1

n + 1

n
∑

k=0

(

HFkP0|−1(F
k)T HT +

+

k−1
∑

i=0

(HFiQ(Fi )T HT ) + R
)

= R +
1

n + 1

n
∑

k=0

HFk×

× P0|−1(F
k)T HT +

1

n + 1

n
∑

k=0

k−1
∑

i=0

HFi Q(Fi)T HT , (16)

which can be rewritten to the form (15). The weights αk = 1
n+1

,

are the same for all k because the set of samples are supposed
to have the same number of elements. However, the sets can
generally have different number of samples which causes the
different weights. In any case it holds that

∑n
k=0 αk = 1. �

Further relations, suitable for estimation of the noise covariance
matrices of stable linear systems only, are based on the fact,
that the powers of the stable state transition matrix Fk become
insignificant for increasing k. In other words it means that

cov[ek] ≈ cov[ek+1], k > L1, (17)

where L1 ∈ Z
+ and Z

+ is a set of positive integers. Similar
relation can be found for the cross-correlation matrices

cov[el; ek] ≈ cov[el+1; ek+1], l > L1. (18)

It should be mentioned that the analogous relations describing
properties of the prediction error can be derived also for a linear
t-variant system (1), (2), where fk(xk) = Fkxk , hk(xk) = Hkxk .

Utilisation of the derived relations concerning statistical prop-
erties of the prediction error in the estimation of the state and
measurement noise covariance matrices is discussed in the fol-
lowing parts.

3.3 Estimation by Multiple Realisations

The estimation of the system noise covariance matrices based
on the multiple measured data sets (realisations) is considered
as a first technique. Suppose that N sets of data were repeatedly

measured for (n + 1) steps, i.e. data z
(1:N)

0 , . . . , z
(1:N)
n are avail-

able, where z
(1:N)
k = [(z

(1)
k )T , . . . , (z

(N)
k )T ]T , k = 0, 1, . . . , n.

Then, the computation of multi-step prediction ẑk|−1, ∀k, (6) on
the basis of known mean of the system initial condition, allows

to determine sets of the prediction error sequences e
(1:N)
k =

[(e
(1)
k )T , . . . , (e

(N)
k )T ]T according to (7). By means of these

sets, the sample covariance matrices P̂ek , ∀k, can be found as

P̂ek =
1

N

N
∑

j=1

e
( j )
k (e

( j )
k )T ≈ cov[ek]. (19)

Similarly the sample cross-correlation matrix

P̂el ,ek =
1

N

N
∑

j=1

e
( j )
l (e

( j )
k )T ≈ cov[el; ek] (20)

and the sample covariance matrix of the mixture of particular
prediction errors

P̂e =
1

(n + 1) × N

n
∑

k=0

N
∑

j=1

e
( j )
k (e

( j )
k )T ≈ cov[e] (21)

can be computed. After substitution of the sample covariance
or cross-correlation matrices (19)–(21) into relations (9), (10),
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(15), the estimates of the state and measurement noise co-

variance matrices Q̂ and R̂ can be found by means of the
standard least square method. Therefore, it is also easily pos-
sible to compute a covariance matrix of estimated parameters
representing elements of the system noise covariance matrices
[Ljung, 1999]. The number of estimated elements of the noise
covariance matrices and the fact, that each of equations (19)–
(21) allows to determine nz(nz + 1)/2 independent equations,
leads to the minimal length of repeatedly measured data set n. It
should be also noted that if the system initial covariance matrix
P0 is unknown it can be analogously estimated as well.

In some cases it is nevertheless inevitable to estimate the noise
covariance matrices on the basis of one measured realisation,
i.e. N = 1. This situation is considered in the following part.

3.4 Estimation by Single Realisation

For stable linear systems it is possible to estimate all elements
of the noise covariance matrices on the basis of single measured
data realisation because the sufficient number of independent
equations can be set. Thus, suppose that single data set was
measured for (n + 1) steps and prediction error sequence was

computed, i.e. single sequence [e
(1)
0 , . . . , e

(1)
n ] is at disposal.

Then, the sample covariance matrices, with respect to relations
(17), (18), and (15), are given by

P̂eL1
=

1

n − L1

n
∑

k=L1

e
(1)
k (e

(1)
k )T ≈ cov[eL1

], (22)

P̂eL1
,eL2

=
1

n − L1

n
∑

k=L1

e
(1)
k (e

(1)
k+i )

T ≈ cov[eL1
; eL2

], (23)

P̂e =
1

(n + 1)

n
∑

k=0

e
(1)
k (e

(1)
k )T ≈ cov[e], (24)

where L2 = L1 + i , i = 1, 2, . . .. Analogously to previous

part, estimates of matrices Q̂ and R̂ can be found by means of
the least square method by substitution of the sample matrices
into (9), (10), (15) with respect to (17), (18). Moreover, it
can be easily seen that for the stable systems the requirement
concerning the known system initial condition can be omitted.
For unstable linear systems, relations (17) and (18) are not valid
(powers of Fk do not become insignificant for increasing k)
and thus one equation, namely (15), for estimating elements of
Q and R is available which allows to determine nz(nz + 1)/2
independent equations only.

3.5 Some Aspects of Proposed Technique

In the rest of the section three comments concerning the pro-
posed technique are given. Firstly, the basic idea behind the
proposed technique can be stated as follows: The predicted
measurement ẑk|−1 represents a “deterministic part” of the real
measurement zk and therefore the prediction error includes
information about a “stochastic part” of the system (and thus
information about the noise covariance matrices). Secondly,
similar relations can be also derived by means of the KF with
suitably chosen matrices QF and RF for the KF algorithm. If
QF ≪ RF then the Kalman gain is insignificant and the KF
works nearly as a multi-step predictor. In this case the variable
ek is referred as an innovation. This interpretation is interesting
for comparison with other correlation techniques for estimating
noise covariance matrices, such as the Adaptive Kalman Filter

(AKF) [Mehra, 1970], from the theoretical point of view, but
unfortunately it is necessary to set down more restriction on the
system. Estimation of noise covariance matrices by means of

the filter was discussed in detail in [Šimandl and Dunı́k, 2007]
and it will be also discussed in the section devoted to nonlinear
systems. Thirdly, the proposed technique, except for estimation
of noise covariance matrices of an unstable linear system on the
basis of one measured realisation, allows to determine an “arbi-
trary” number of equations and thus to estimate all elements of
Q and R, contrary to the other correlation techniques, such as
the AKF, which allows to estimate nx × nz elements of Q only.

4. ESTIMATION OF NOISE COVARIANCE MATRICES
OF NONLINEAR SYSTEMS

The aim of this section is to extend the proposed technique
given in the previous section for linear systems into the area
of nonlinear systems. Whereas the technique for estimation of
the noise covariance matrices was designed exactly for linear
systems, for nonlinear systems it is necessary to employ some
approximations in design of a multi-step predictor. Application
of the approximations, however, can cause that the multi-step
prediction error does not remain bounded. The simplest way to
ensure the bounded prediction error for nonlinear systems is to
exploit the results from the stability analysis of the local filters.
Thus, the design of the estimation technique via the local filter
will be preferred in this section. Mention that the estimation
of the noise covariance matrices of the discrete-time nonlinear
systems was initially motivated by the articles [Xiong et al.,
2006, Wu et al., 2007, Xiong et al., 2007] where it was proved
that the estimation error of the local filter remains bounded (and
local filter is thus stable) if certain conditions are satisfied.

4.1 Extended Kalman Filter and its Innovation Sequence

The algorithms of the local filters have the same structure as the
algorithm of the KF, where the first two moments of the state
estimates are recursively computed. As a representative of these
filters the Extended Kalman Filter (EKF) was chosen. The EKF
is based on the linearisation of the nonlinear functions in the
state and measurement equations (1), (2) by means of the first
order Taylor expansion and can be written in the form where
the filtering mean and covariance matrix are given as

x̂k|k = x̂k|k−1 + Kkek = x̂k|k−1 + Kk(zk − ẑk|k−1), (25)

Pk|k = Pk|k−1 − KkHk(x̂k|k−1)Pk|k−1, (26)

and the predictive ones as

x̂k+1|k = fk(x̂k|k), (27)

Pk+1|k = Fk(x̂k|k)Pk|kFT
k (x̂k|k) + QF , (28)

Kk = Pk|k−1HT
k (x̂k|k−1)

(

Hk(x̂k|k−1)Pk|k−1HT
k (x̂k|k−1)+RF

)−1

is the Kalman gain, ẑk|k−1 = hk(x̂k|k−1), ek is the inno-

vation, and Fk(x̂k|k) = ∂fk(xk)
∂xk

|xk=x̂k|k
and Hk(x̂k|k−1) =

∂hk(xk)
∂xk

|xk=x̂k|k−1
are Jacobians of the nonlinear functions fk(·)

and hk(·) in the best available state estimates x̂k|k and x̂k|k−1,
respectively. As far as the stability is concerned, the EKF, as a
local filter, will be stable if the system (1), (2) is observable,
the initial conditions of the system and filter are sufficiently
close, and the filter noise covariance matrices are greater than
true ones, i.e. QF > Q, RF > R [Xiong et al., 2006, Wu
et al., 2007, Xiong et al., 2007]. Thus, estimation of the noise
covariance matrices is, for nonlinear systems, conditioned by
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exact knowledge of the system initial condition, i.e. x̂0|−1 = x0,
which allows to set small filter initial covariance matrix, i.e.
P0|−1 = δI, where δ → 0 and I is identity matrix.

Following the basic idea of the noise covariance matrices esti-
mation technique, given in Section 3.5 for linear systems, it is
necessary to make the EKF to work as a multi-step predictor
with bounded prediction error. This can be achieved by the
suitable Kalman gain Kk which depends on chosen QF and RF .
Thus, impact of the chosen matrices QF and RF on the Kalman
gain and statistics of the innovation sequence are given below.

The mean of the innovation sequence ek,∀k, of the EKF is zero
for an arbitrary choice of the filter noise covariance matrices

meeting conditions QF > Q and RF > R [Šimandl and
Dunı́k, 2007]. Then, let matrix RF be chosen “sufficiently
large” which causes the insignificant Kalman gain K0 and
thus, the elimination of the filtering step (25), (26) in the EKF
algorithm. The covariance matrices of the innovations e0 and e1

can be approximated by following relations

cov[e0] ≈ cov[h(x0) + v0 − h(x̂0|−1)] ≈

≈ H0(x̂0|−1)P0|−1HT
0 (x̂0|−1) + R ≈ R, (29)

cov[e1] ≈ E
[(

H1(x̂1|0)F0(x̂0|0)
(

x0 − x̂0|−1

)

+ (30)

+ H1(x̂1|0)w0 + v1

)(

H1(x̂1|0)F0(x̂0|0)
(

x0 − x̂0|−1

)

+

+ H1(x̂1|0)w0 + v1

)T ]

= H1(x̂1|0)QHT
1 (x̂1|0) + R,

where fk(xk) ≈ fk(x̂k|k) + Fk(x̂k|k)
(

xk − x̂k|k

)

and hk(xk) ≈

hk(x̂k|k−1) + Hk(x̂k|k−1)
(

xk − x̂k|k−1

)

, k = 0, 1. Analogously
to the linear system and relation (10) the matrix cov[e0; e1]
can be computed which allows, together with (29) and (30),

to determine
3nz(nz+1)

2
independent equations for estimation

elements of matrices Q and R. The covariance matrix cov[e],
as the mixture of e0 and e1, can be computed as well, but it is
linearly dependent on the matrices cov[e0] and cov[e1]. Note
that the covariance matrices of e0 and e1 were determined on
assumptions of small P0|−1 and large RF only and they do not

depend on the chosen QF . Thus, QF can be chosen sufficiently
large as well, i.e. the inequality QF > Q surely holds, to ensure
the stability of the local filter. However, if it is necessary the
additional equations can be determined for example from

cov[ek] ≈

k−1
∑

i=1

Hk(x̂k|k−1)

k−1
∏

j=i

Fm(x̂m|m)Q
(

Hk(x̂k|k−1)×

×

k−1
∏

j=i

Fm(x̂m|m)
)T

+ Hk(x̂k|k−1)QHT
k (x̂k|k−1) + R, (31)

where m = k − j + i − 1, k = 2, 3 . . .. Unfortunately, for
general time instant, matrix QF should be chosen sufficiently
small to ensure negligible Kalman gain. This choice of QF can
cause the instability of the local filter as will be illustrated in the
numerical example. The alternative way is to keep sufficiently
large QF and to take “neglected” terms into account which
significantly increases the computational demands.

4.2 Estimation of Noise Covariance Matrices

With respect to the stability of the local filter the set of inde-
pendent equations allowing estimation of the noise covariance
matrices of nonlinear systems can be determined. The set of
equations is based on the covariance matrices of ek for few first
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Fig. 1. Theoretical and estimated elements of system noise
covariance matrices on the basis of one measured data set.

time instants and thus the estimation of the noise covariance
matrices will be based on the multiple measured short data sets.
On the basis of these sets the sample covariance and cross-
correlation matrices of the innovation sequence can be com-
puted and the noise covariance matrices can be estimated along
the same line as in the linear case (see Section 3.3). However,
the key difference from the linear case is that the linearised
matrices can be generally different for each filter run due to the
different linearisation points. To ensure the unvarying linearised
system matrices the constrain on the known and constant sys-
tem initial condition, by the small initial covariance matrix, was
set. Then, with proper choice of RF (and QF ) it surely holds

that F
(i)
k (·) = F

( j )
k (·) and H

(i)
k (·) = H

( j )
k (·), i, j = 1, . . . , N .

5. NUMERICAL ILLUSTRATIONS

Example 1: As the first example of estimation of the noise
covariance matrices on basis of one measured data set, the
linear stable system, defined by

xk+1 =

[

−0.8 0.9
0.1 0.5

]

xk + wk, (32)

zk = [0.4 0.1]xk + vk , (33)

was chosen, where k = 0, . . . , 7000. Both noises were de-
scribed by the normal distribution with p(wk) = N {wk :
[0, 0]T , diag[0.6, 1]} and p(vk) = N {vk : 0, 0.1}, ∀k. The
initial condition was given as p(x0) = p(x0|z

−1) = N {x0 :
[20, 20]T , I} and the covariance matrix QP = I. The function
diag[x] stands for diagonal matrix with vector x on diagonal.

The aim is to estimate the diagonal elements of the matrix Q
and R. Thus, at least three equations has to be set, e.g. equations

for P̂eL1
(22), P̂eL1

,eL1+1
, and P̂eL1

,eL1+2
(23), where L1 = 200.

Arbitrary number of additional equations can be further set to

refine the estimates, e.g. P̂eL1
,eL1+3

(23) and P̂e0:7000
(24). The

resultant estimates based on the three and five equations can
be found in Fig. 1. These estimates are compared with those
given by the Adaptive Kalman Filter with the initial estimates
of noise covariance matrices QF = I and RF = 1. Contrary to
the proposed technique, the AKF allows to determine a limited
set of equations only and thus to estimate a limited number
elements of the matrix Q (in this case 2 elements only.)

Example 2: In the second example, the nonlinear Gaussian
system, described by
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Fig. 2. Kalman gain, true and estimated state for different
choices of matrix QF , and true and estimated noise ma-
trices for increasing number of measured data sets.

x1,k+1 = x1,kx2,k + w1,k, (34)

x2,k+1 = x2,k + w2,k, (35)

zk = x2
1,k + vk, (36)

is considered, where k = 0, . . . , 18, p(wk) = N {wk :
[0, 0]T , diag[0.25, 0.004]}, and p(vk) = N {vk : 0, 0.01}, ∀k.
The initial condition is supposed to be p(x0) = p(x0|z

−1) =
N {x0 : [40, 0.95]T , 10−8 × I}. As a state estimator the EKF
was used with RF = 108. Matrix QF was chosen “large”
(QF = 40 × I) to ensure stability of the filter and “small”
(QF = 10−8 × I) to ensure the negligible Kalman gain.

An example of the Kalman gain and state estimate from one
particular run of the EKF with different choice of matrix QF

is shown in Fig. 2. It can be easily seen that large QF ensures
the stability of the EKF but it causes the significant Kalman
gain and thus some terms cannot be neglected during derivation
of (31). The insignificant Kalman gain is reached by the small
QF which can, however, cause the instability of the local filter
(the prediction error is not bounded and thus the nonlinear
system is not linearised in the point of the state space close
to the true system state). Nevertheless, note that for a first few
time instants, namely for first four instants, the Kalman gain is
negligible even for large QF . In Fig. 2 the estimates of R and
diagonal elements of Q for increasing number of the measured
data sets are shown as well. These estimates were computed on
the basis of cov[e0], cov[e1], and cov[e0; e1] and large QF .

6. CONCLUSION

The paper dealt with the off-line estimation of the state and
measurement noise covariance matrices of linear and nonlinear
dynamic systems. The novel technique for estimation of the
noise covariance matrices of linear systems was developed
for both situations when several data sets are available or
single data set is available. The technique allows to determine
a sufficient number of independent equations to estimate all
elements of the system noise covariance matrices, contrary
to other correlation methods such as the Adaptive Kalman
Filter. The estimation of the noise covariance matrices was
also discussed for a general nonlinear system with stress on
the stability of the local filters. The noise covariance matrices

estimation technique, based on the multiple measured data sets,
was derived for the Extended Kalman Filter as an representative
of the local filters.
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