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Abstract: The bottleneck (BN) of a production system is a machine with the strongest effect on
the system’s throughput. In this paper, a method for BN identification in serial lines with rework
and Bernoulli machines is developed. In addition, the paper provides two system-theoretic
results: First, it demonstrates that BNs may be shifting not only because of changes in machine
and buffer parameters but also due to changes in quality of parts produced. Second, it shows
that if the split and the merge machines are not the last and the first, respectively, Bernoulli
lines with rework do not observe the property of reversibility, and downstream machines may
have a larger effect on the throughput than those upstream.
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1. INTRODUCTION

Serial production lines with rework are used in large
volume manufacturing when parts produced may have
defects, which can be repaired and “re-worked”. The block
diagram of such a line is shown in Figure 1. Here the
main line has M machines and M − 1 buffers, while the
rework loop contains Mr machines and Mr + 1 buffers. It
is assumed that each part (referred to interchangeably as
a job) at the output of machine mk is non-defective with
probability q and defective with probability 1−q. The non-
defective jobs continue to be processed along the main line,
while the defective ones are routed into the rework loop
and re-enter the main line through machine mj . To prevent
deadlocks, mj takes a job from buffer bj−1 only if brMr

is
empty.
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Fig. 1. Bernoulli serial production line with rework

Due to their practical importance, production lines with
rework found considerable attention in recent literature
(see Li (2004), Borgh et al. (2007) and the references
therein). Mostly performance analysis problems have been
addressed. Specifically, analytical techniques for evaluat-

ing their production rates have been derived under the
assumption that the machines obey the exponential re-
liability model. In addition, since production lines with
rework can be viewed as a part of the general field of re-
entrant lines, issues of deadlock and stability have also
been investigated in Kumar (1993). However, bottlenecks
in such systems have not been analyzed. The current paper
is intended to contribute to this end.

More precisely, the primary goal of this work is to develop
a method for bottleneck (BN) identification in serial lines
with rework where each machine mi obeys the Bernoulli
reliability model, i.e., produces a part in a cycle time
with probability pi and fails to do so with probability
1− pi. Such a reliability model is applicable to operations
where the unscheduled downtime is primarily due to
quality reasons, e.g., painting and assembly operations,
see Li and Meerkov (2007). Since methods for performance
analysis of Bernoulli lines with rework are not available in
the literature and since the BN identification technique
developed here requires data on machine blockages and
starvations, the secondary goal of this paper is to present
a method for performance analysis of Bernoulli serial lines
with rework.

The outline of this paper is as follows: Section 2 formulates
the model and the problems addressed; Sections 3 and 4
are devoted to performance analysis and BN identification;
Section 5 presents the conclusions. Due to space limita-
tions, many details are omitted and can be found in Biller
et al. (2007).
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2. SYSTEM MODEL AND PROBLEM
FORMULATION

2.1 Model

Consider a production line shown in Figure 1. Assume
that it operates according to the following assumptions:
(i) The main line consists of M machines, m1, . . . ,mM ,
and M − 1 buffers, b1, . . . , bM−1; the repair part of the
rework loop consists of Mr machines mr1, . . . ,mrMr

, and
Mr + 1 buffers, br0, br1, . . . , brMr

. The set of all machines
is denoted as mi, i ∈ Im = {1, . . . ,M, r1, . . . , rMr}; the
set of all buffers is denoted as bi, i ∈ Ib = {1, . . . ,M −
1, r0, . . . , rMr}. Machines mj and mk are referred to as the
merge and split machines, respectively. (ii) The machines
have identical cycle time τ . The time axis is slotted with
the slot duration τ . (iii) The machines obey the Bernoulli
reliability model, i.e., mi, i ∈ Im, being neither blocked
nor starved, produces a part during a time slot with
probability pi and fails to do so with probability 1 − pi.
Parameter pi is referred to as the efficiency of mi. (iv)
Each buffer bi, i ∈ Ib, is characterized by its capacity, Ni,
where 1 ≤ Ni < ∞. (v) Machine mi, i 6= j, is starved
during a time slot if buffer bi−1 is empty at the beginning
of the time slot. Machine mj is starved if both bj−1 and
brMr

are empty. Machine m1 is never starved. (vi) Machine
mi, i 6= k, is blocked during a time slot if buffer bi has
Ni parts at the beginning of the time slot and machine
mi+1 fails to take a part during this time slot. Machine
mk is blocked by the main line if bk is full and mk+1 does
not take a part during this time slot; it is blocked by the
rework loop if br0 is full and mr1 does not take a part
during this time slot. Machine mM is never blocked. (vii)
Parts at the output of mk are non-defective and defective
with probability q and 1 − q, respectively. Parameter q
is referred to as the quality buy rate. Defective and non-
defective parts form a sequence of independent random
variables. Non-defective and defective parts are routed to
buffers bk and br0, respectively. (viii) The repaired parts
from the rework loop have a higher priority than those
from the main line. In other words, mj does not take a
part from bj−1 unless brMr

is empty.

2.2 Problems addressed

2.2.1 Performance analysis problem: Given the machine
and buffer parameters and the quality buy rate, evaluate
the production rate of the line with rework (PRlwr) and
the probabilities of blockages (BLlwr

i ) and starvations
(ST lwr

i ) of each machine in the system. Since mj has
two upstream buffers, bj−1 and brMr

, and mk has two
downstream buffers, bk+1 and br0, their starvations and
blockages are denoted as follows:

ST lwr
j1

= P [mj is starved by bj−1],

ST lwr
j2

= P [mj is starved by brMr
],

BLlwr
k1

= P [mj is blocked by bk+1],

BLlwr
k2

= P [mj is blocked by br0].

A solution to this problem is given in Section 3.

2.2.2 Bottleneck identification problem: The bottleneck
machine (BN) of a production line has been defined in
Kuo et al. (1996) as the machine that has the largest
effect on the system production rate. In the framework
of a production line with rework, this definition implies
that mi, i ∈ Im, is the BN if

∂PRlwr

∂pi

>
∂PRlwr

∂pl

, ∀l 6= i. (1)

Because this definition is difficult to apply in practice
(since the partial derivatives involved cannot be evaluated
analytically and are difficult to obtain from factory floor
measurements), Kuo et al. (1996) offered an indirect
method applicable to open serial lines (i.e., lines without
rework). This method, illustrated in Figure 2, consists of
calculating analytically or measuring on the factory floor
the probabilities of blockages, BLi, and starvations, STi, of
all machines in the system and assigning an arrow directed
from mi to mi+1 if BLi > STi+1 and from mi+1 to mi if
BLi < STi+1 (see Figure 2). If there is a single machine
with no emanating arrows, it is the BN in the sense of
(1). If there are multiple machines with no emanating
arrows (as in Figure 2), the one with the largest severity is
the primary bottleneck (PBN), where the severity of the
bottleneck is defined as

Si = |STi+1 − BLi| + |STi − BLi−1|, i = 2, . . . ,M − 1,

S1 = |ST2 − BL1|, SM = |STM − BLM−1|. (2)

Fig. 2. Bottleneck identification in open serial lines

With the rework loop added, this method is not applicable
due to the merge and split operations. The main goal of
this paper is to extend this method to Bernoulli lines with
rework. This is carried out in Section 4.

3. PERFORMANCE ANALYSIS

3.1 Approach

Due to complexity of the Markov chains involved in their
description, direct analysis of Bernoulli lines with rework
is all but impossible. Therefore, a simplification is nec-
essary. In this paper we use two simplification techniques:
overlapping decomposition and recursive aggregation. The
method of overlapping decomposition, developed in Li
(2004), represents a complex production system as several
open serial lines. The recursive aggregation technique, pro-
posed by Jacobs and Meerkov (1995), allows for analytical
performance evaluation of open serial lines. Below, these
two simplification techniques are briefly reviewed.

3.1.1 Overlapping decomposition: This method is based on
representing the line with rework as four overlapping serial
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lines and four virtual serial lines shown in Figure 3(a) and
(b), respectively. The overlapping lines include the overlap-
ping machines mj and mk, each belonging to three lines.
The virtual lines do not contain overlapping machines;
instead, they include six virtual machines, m1

j ,m
2
j ,m

4
j and

m2
k,m3

k,m4
k, efficiencies of which are selected so as to

represent the effect of the rest of the system on a particu-
lar virtual line. Calculating appropriately the efficiencies,
p1

j , p
2
j , p

4
j and p2

k, p3
k, p4

k, of the virtual machines, allows one
to analyze the performance of the original line with rework.
For the exponential model of machine reliability, this has
been carried out in Li (2004). For Bernoulli machines, this
approach is developed in Subsection 3.2.

 

mj 

pj 

Nr1 

Nj Nj-1 

m1 

p1 N1 

… ….

bj b1 bj-1 
mk 

pk Nk 

mM 

pM NM-1 

… 

bk bM-1 

Nk-1 

bk-1 

mr1 

pr1 

br1 

NrMr-1 

brMr-1 
mrMr 

prMr 
….

brMr NrMr br0 Nr0 

q 

1-q 

Line 1 Line 3 Line 2 

Line 4 

(a) Overlapping serial lines

 

 

m2 mj-1 

p2 pj-1 Nj-1 

m1 

p1 N1 

…

b1 bj-1 

Line 1 

mj+1 mk-1 

pj+1 pk-1 Nk-1 

2
jm

 

Nj+1 

…

bj+1 bk-1 

Line 2 
2
k

m  

2
k

p  2
jp  

1
jm  

1
jp  

mr1 mrMr 

pr1 prMr NrMr Nr0 

…

br0 brMr 

Line 4 
4
k

m  

4
k

p  

4
jm  

4
jp  

mk+1 mM-1 

pk+1 pM-1 

mM 

pM NM-1 Nk 

…

bk bM-1 

Line 3 
3
k

m  

3
k

p  

(b) Virtual serial lines

Fig. 3. Overlapping decomposition of serial production
lines with rework

3.1.2 Aggregation of Bernoulli serial lines: It has been
shown in Jacobs and Meerkov (1995) that the perfor-
mance measures of a serial line consisting of M Bernoulli
machines with efficiencies, p1, . . . , pM , and M − 1 buffers
with capacities, N1, . . . , NM−1, can be evaluated using the
following:
Recursive Procedure 3.1:

pb
i (s + 1) = pi[1 − Q(pb

i+1(s + 1), pf
i (s), Ni)],

i = 1, . . . ,M − 1, s = 0, 1, 2, . . . ,

pf
i (s + 1) = pi[1 − Q(pf

i−1
(s + 1), pb

i (s + 1), Ni−1)],

i = 2, . . . ,M, s = 0, 1, 2, . . . ,

with initial conditions pf
i (0) = pi, i = 1, . . . ,M , boundary

conditions pf
1 (s) = p1, pb

M (s) = pM , s = 0, 1, . . ., and

Q(p1, p2, N) =





(1 − p1)[1 − α(p1, p2, N)]

1 − p1

p2

αN (p1, p2)
if p1 6= p2,

1 − p

N + 1 − p
if p1 = p2 = p,

α(p1, p2) =
p1(1 − p2)

p2(1 − p1)
.

This procedure results in two sequences pf
2 (s), . . . , pf

M (s)
and pb

1(s), . . . , p
b
M−1(s), s = 1, 2, . . ., which are proved

to be convergent, and the following limits exist: pf
i =

lims→∞ pf
i (s), pb

i = lims→∞ pb
i (s). In terms of these limits,

the performance measures of a Bernoulli line are evaluated
as follows:

P̂R = pb
1 = pf

M = pf
i [1 − Q(pb

i+1, p
f
i , Ni)]

= pb
i+1[1 − Q(pf

i , pb
i+1, Ni)], i = 1, . . . ,M − 1, (3)

B̂Li = piQ(pb
i+1, p

f
i , Ni), i = 1, . . . ,M − 1, (4)

ŜT i = piQ(pf
i−1

, pb
i , Ni−1), i = 2, . . . ,M. (5)

In addition to these performance measures, the overlap-
ping decomposition of Subsection 3.2 requires the proba-
bility that b1 is full while m2 is either blocked or down
and the probability that bM−1 is empty; we denote these

probabilities as b̂l1 and ŝtM , respectively. As it follows
from (4) and (5), they can be evaluated as

b̂l1 = B̂L1/p1 = Q(pb
2, p1, N1), (6)

ŝtM = ŜTM/pM = Q(pf
M−1

, pM , NM−1). (7)

Recursive Procedure 3.1 and the estimates of the perfor-
mance measures (3)-(7) are used below for analysis of the
virtual serial lines of Figure 3(b).

3.2 Recursive procedure for Bernoulli serial lines with
rework

Consider the virtual lines of Figure 3(b) and introduce the
following notations:

PRl = production rate of virtual line l, l = 1, 2, 3, 4,

BLl
i = P [mi in virtual line l is blocked], l = 1, 2, 3, 4,

ST l
i = P [mi in virtual line l is starved], l = 1, 2, 3, 4,

blj = P [bj is full and mj+1 is either down or blocked],

stj1 = P [bj−1 is empty], stj2 = P [brMr
is empty],

blk1
= P [bk is full and mk+1 is either down or blocked],

blk2
= P [br0 is full and mr1 is either down or blocked],

stk = P [bk−1 is empty].

The estimates of these probabilities, which allow us to
evaluate the parameters p1

j , p
2
j , p

4
j and p2

k, p3
k, p4

k, can be
calculated using a recursive procedure described below.

Recursive Procedure 3.2:

Step 0: Select the initial conditions ŝtk(0), b̂lj(0) and

b̂lk1
(0) randomly and equiprobably from the interval (0,1).

Step 1: Consider virtual line 4 of Figure 3(b) and update
the efficiencies of machines m4

j and m4
k as follows:

p4
k(n + 1) = pk(1 − q)[1 − ŝtk(n)][1 − b̂lk1

(n)],

p4
j (n + 1) = pj [1 − b̂lj(n)], n = 0, 1, . . . .
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Perform Recursive Procedure 3.1 on virtual line 4 and,

using (3)-(7), calculate P̂R4(n+1), B̂L
4

i (n+1), ŜT
4

i (n+1),

b̂lk2
(n + 1) and ŝtj2(n + 1).

Step 2: Consider virtual line 3 of Figure 3(b) and update
the efficiency of machine m3

k as follows:

p3
k(n + 1) = pkq[1 − ŝtk(n)][1 − b̂lk2

(n + 1)], n = 0, 1, . . . .

Perform Recursive Procedure 3.1 on virtual line 3 and,

using (3)-(7), calculate P̂R3(n+1), B̂L
3

i (n+1), ŜT
3

i (n+1)

and b̂lk1
(n + 1).

Step 3: Consider virtual line 1 of Figure 3(b) and update
the efficiency of machine m1

j as follows:

p1
j (n + 1) = pj [1 − b̂lj(n)]ŝtj2(n + 1), n = 0, 1, . . . .

Perform Recursive Procedure 3.1 on virtual line 1 and,

using (3)-(7), calculate P̂R1(n+1), B̂L
1

i (n+1), ŜT
1

i (n+1)

and ŝtj1(n + 1).

Step 4: Consider virtual line 2 of Figure 3(b) and update
the efficiencies of machines m2

j and m2
k as follows:

p2
j (n + 1) = pj [1 − ŝtj1(n + 1)ŝtj2(n + 1)],

p2
k(n + 1) = pk[1 − b̂lk1

(n + 1)][1 − b̂lk2
(n + 1)], = 0, 1, . . . .

Perform Recursive Procedure 3.1 on virtual line 2 and

using (3)-(7), calculate P̂R2(n+1), B̂L
2

i (n+1), ŜT
2

i (n+1),

b̂lj(n + 1) and ŝtk(n + 1).

Step 5: If the stopping rule
4∑

l=1

|P̂Rl(n + 1) − P̂Rl(n)| < ε, ε ≪ 1, (8)

is satisfied, the procedure is terminated; otherwise return
to Step 1.

Denote the limits of this procedure as

P̂Rl = lim
n→∞

P̂Rl(n), l = 1, 2, 3, 4, (9)

b̂lj = lim
n→∞

b̂lj(n), ŝtj1 = lim
n→∞

ŝtj1(n), ŝtj2 = lim
n→∞

ŝtj2(n),

ŝtk = lim
n→∞

ŝtk(n), b̂lk1
= lim

n→∞

b̂lk1
(n), b̂lk2

= lim
n→∞

b̂lk2
(n).

Unfortunately, the existence of and the convergence to
these limits cannot be proved analytically (due to the non-

monotonic behavior of b̂lk2
(n), n = 0, 1, . . .). Therefore,

it has been investigated numerically. A total of 5,000,000
lines with rework have been analyzed, and in every case
the convergence (with ε = 10−10 in (8)) took place. The
details of this investigation are as follows:

Justification: A total of 5,000,000 lines have been gener-
ated by selecting j, k, M , Mr, pi’s, Ni’s and q randomly
and equiprobably from the sets:

j ∈ {2, 3, 4, 5}, k − j ∈ {2, 3, 4, 5}, (10)

M − k ∈ {1, 2, 3, 4}, Mr ∈ {1, 2, 3, 4}, (11)

pi ∈ [0.7, 0.95], i = 1, . . . ,M, (12)

pi ∈ [0.1, 0.5], i = r1, . . . , rMr, (13)

Ni ∈ {1, 2, 3, 4, 5}, i ∈ Ib, (14)

q ∈ [0.7, 0.95]. (15)

Note that the efficiencies of the machines in the rework
loop are selected lower than those of the main line because
in practice the capacity of the repair part of the system is
typically smaller than that of the main line.

For each of the lines, we ran Recursive Procedure 3.2 and
observed the convergence in all cases studied, with the
convergence taking place within a second using a standard
laptop with a Pentium M 1.60GHz processor and 1.23GB
RAM. Thus, we conclude that this procedure can be used
for analysis of production lines with rework defined by
assumptions (i)-(viii).

Concluding this subsection, we point out the following
relationships among the production rates of the virtual
lines 1-4:

Theorem 1. The production rates of the virtual lines are
related as follows:

P̂R1 = P̂R3, P̂R3 = qP̂R2, P̂R4 = (1 − q)P̂R2.

Proof : See Biller et al. (2007).

3.3 Performance measure estimates and their accuracy

In Section 2, the production rate of the line with rework
was denoted as PRlwr and the probabilities of blockages
and starvations as BLlwr

i and ST lwr
i . Based on the limits

(9) of Recursive Procedure 3.2, their estimates are intro-
duced as follows:

P̂Rlwr = P̂R3, (16)

ŜT
lwr

i = ŜT
l

i, B̂L
lwr

i = B̂L
l

i, i 6= j, k, l = 1, 2, 3, 4,(17)

ŜT
lwr

j1
= ŝtj1pj , ŜT

lwr

j2
= ŝtj2pj , B̂L

lwr

j = b̂ljpj , (18)

ŜT
lwr

k = ŝtkpk, B̂L
lwr

k1
= b̂lk1

pk, B̂L
lwr

k2
= b̂lk2

pk. (19)

The accuracy of these estimates has been investigated by
simulations. For the system parameters M = 10, j = 4,
k = 7 and Mr = 2, we constructed 100,000 lines with pi’s,
Ni’s and q’s selected randomly and equiprobably from sets
(12)-(15). The following metrics were used to evaluate the
accuracy of the estimates:

ǫPR =
|PRlwr − P̂Rlwr|

PRlwr

· 100%, (20)

ǫST =
1

M + Mr

∑

i∈S1

|ST lwr
i − ŜT

lwr

i |, (21)

S1 = {1, . . . , j − 1, j1, j2, j + 1, . . . , rMr},

ǫBL =
1

M + Mr

∑

i∈S2

|BLlwr
i − B̂L

lwr

i |, (22)

S2 = {1, . . . , k − 1, k1, k2, k + 1, . . . , rMr}.

Among the 100,000 lines studied, the average of ǫPR

was 3.97%, with very few extreme cases resulting in ǫPR

up to 20.4%. This accuracy is comparable with that
obtained in Li (2004) for the case of exponential machines
with similar parameters. The average of ǫST and ǫBL

were both less than 0.01. Therefore, we conclude that
Recursive Procedure 3.2 provides an effective tool for
performance evaluation of serial lines with rework defined
by assumptions (i)-(viii).
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3.4 System-theoretic properties of lines with rework

Using Recursive Procedure 3.2, we establish a system-
theoretic property described next.

As it is well known, production lines observe the property
of reversibility (see Yamazaki and Sakasegawa (1975)): the
production rates of a serial line and its reverse (i.e., when
the parts flow from the last machine to the first) are the
same. This property certainly holds for open and closed
Bernoulli lines (see Li and Meerkov (2007)). However, as
we show below, reversibility does not hold for Bernoulli
lines with rework, if the split and the merge machines are
the last and the first, respectively.

Indeed, consider a serial line and its reverse shown in
Figure 4(a) and (b). Using Recursive Procedure 3.2, we
determine that the production rate of the reverse line is not
the same as that of the original one; this conclusion is also
supported by simulations (see the data of Figure 4). Thus,
reversibility is violated. The lack of reversibility constitutes
a fundamental difference between the usual (i.e., open)
Bernoulli lines and those with rework.
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(a) Production line: P̂Rlwr = 0.4779, PRlwr = 0.4657
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(b) Reversed production line: P̂Rlwr = 0.5330, PRlwr = 0.4903

Fig. 4. Production line with rework and its reverse

In addition, comparing the data of Figure 4 we observe
that placing more efficient machines towards the end of
the line results in higher production rate than placing them
upstream. This is also qualitatively different from serial
lines with no rework where the position of a machine does
not indicate its importance for performance of the system.

4. BOTTLENECK IDENTIFICATION

4.1 Approach

The approach to BN identification in serial lines with
rework is based on a two-stage procedure.

At the first stage, BNs of the four overlapping lines of
Figure 3(a) are determined; we refer to them as local bottle-
necks (LBNs). At the second stage, the overall bottleneck
of the line with rework, referred to as the global bottleneck
(GBN), is identified. We describe below how LBNs can be
identified and show that one of them is practically always
the GBN.

4.2 Local bottlenecks identification

Consider the line with rework of Figure 3(a). Represent
its overlapping lines as shown in Figure 5. Assume that

these lines are in isolation, i.e., the first machines are not
starved and the last ones are not blocked. The probabilities
of blockages and starvations of all other machines can be
either calculated using Recursive Procedure 3.2 or mea-
sured on the factory floor during normal system operation.
Based on these data, the BN of each overlapping line can
be identified using the arrow method of Subsection 2.2.2.
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Fig. 5. LBNs identification

4.3 Global bottleneck identification

The foundation for GBN identification is based on the
following:

Numerical Fact 1. In serial lines with rework defined by
assumptions (i)-(viii), the GBN is practically always one
of the four LBNs.

Although a justification of this fact (including the quan-
tification of the term “practically always”) is given later
on (along with other numerical facts formulated below),
its application is clear: To identify the GBN, one must
test the effect of each LBN on the production rate of the
system; the LBN with the largest effect is the GBN. While
this process is somewhat involved (due to four, rather than
one, BNs to be investigated), it can be facilitated by the
following:

Numerical Fact 2. For serial lines with rework defined by
assumptions (i)-(viii),

(a) if an overlapping machine is the LBN in three of the
overlapping lines, then it is practically always the GBN;

(b) if an overlapping machine is the LBN in only one of
the overlapping lines, then it is practically never the GBN.

Numerical Fact 3. In a serial line with rework defined by
assumptions (i)-(viii) and with the quality buy rate q∗,

(α) if its GBN is a non-overlapping machine of line 1, then
this machine is practically always the GBN for all q > q∗;

(β) if its GBN is a non-overlapping machine of line 3, then
this machine is practically always the GBN for all q > q∗;

(γ) if its GBN is a non-overlapping machine of line 4, then
this machine is practically always the GBN for all q < q∗;

(δ) if its GBN is a non-overlapping machine of line 2 or
line 4, then the GBN is practically always in ether line 2
or line 4 for all q < q∗.
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Justification: The justification of Numerical Facts 1-3
has been carried out as follows: A total of 100,000 lines
have been generated with M = 10, j = 4, k = 7
and Mr = 2 and parameters of machines and buffers
selected randomly and equiprobably from sets (12)-(15).
The results are summarized in Table 1. Based on these
data, we conclude that Numerical Facts 1-3 indeed take
place.

Calculation-based Measurement-based

Numerical Fact 1 97.7% 93.3%

Numerical Fact 2(a) 88.1% 86.9%

Numerical Fact 2(b) 95.3% 94.9%

Numerical Fact 3(α) 91.3% 92.2%

Numerical Fact 3(β) 94.6% 94.0%

Numerical Fact 3(γ) 96.7% 95.4%

Numerical Fact 3(δ) 97.0% 97.2%

Table 1. Accuracy of Numerical Facts 1-3

4.4 Example

Consider the line with rework shown in Figure 6 along
with the corresponding overlapping lines 1-4. Their lo-
cal bottlenecks, identified both by calculations and the
measurement-based approaches (using simulations), are
also indicated. Since m4 is the LBN in only one of the
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Fig. 6. GBN identification for q = 0.8

virtual lines, according to Numerical Fact 2(b) it is not the
GBN. Thus, the candidates are m7 and mr1. Increasing
their efficiencies by 0.01, we determine that mr1 is the
GBN. According to Numerical Fact 3(γ), this machine
remains the GBN for all quality buy rate less than 0.8.

Similar analysis for q = 0.85, q = 0.90 and q = 0.95 result
in GBNs being machines m6, m8 and m1, respectively.
Thus, the BNs of production lines are shifting not only
due to changes in machine and buffer parameters but also
due to changes in the quality buy rate.

5. CONCLUSIONS

The method developed in this paper is an effective tool
for BN identification in Bernoulli serial lines with rework.
Using this method, we have shown that these lines pos-
sess specific system-theoretic properties, which differ from
those observed in open lines.
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