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Abstract: Residual generation for linear differential-algebraic systems is considered. A new
systematic method for observer-based residual generation is presented. The proposed design
method places no restrictions on the system to be diagnosed. If the fault of interest can be
detected in the system, the output from the design method is a residual generator in state-
space form that is sensitive to the fault of interest. The method is iterative and relies only
on constant matrix operations such as multiplications, null-space calculations and equivalence
transformations, and thereby straightforward to implement. An illustrative numerical example is
included, where the design method is applied to a non-observable model of a robot manipulator.
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1. INTRODUCTION

The aim of fault diagnosis is to detect and isolate faults
present in a system. With the rising demand for reliability
and safety of technical systems, fault diagnosis has become
increasingly important. One approach is to generate a set
of residuals where different subsets of residuals respond
to different subsets of faults. For this reason decoupling
of faults in residuals is fundamental. Furthermore, decou-
pling can also be used to handle disturbances or unknown
inputs.

Differential-algebraic equation (DAE) systems, or descrip-
tor systems, are important in the residual generation con-
text since DAE-systems appear in large classes of technical
systems like mechanical-, electrical-, and chemical systems.
Further, DAE-systems are also the result when using phys-
ically based object-oriented modelling tools, e.g. Modelica,
Mattson et al. (1998).

For the class of linear state-space systems, residual gener-
ation is an extensively studied area. Main approaches are
for example the parity-space method, Chow and Willsky
(1984), the factorization approach e.g. Frank and Ding
(1994), and different observer-based methods, Chen and
Patton (1999), Massoumnia et al. (1989), Hou and Müller
(1994). For the more general class of linear DAE-systems,
the list of previous works is not as extensive but includes
parity-space approaches, Sauter et al. (1996), Maquin et al.
(1993), parity-space-like approaches, Nyberg and Frisk
(2006), Varga (2003), a parametric approach, (Duan et al.
(2002)), and several observer-based methods, Hou (2000),
Shields (1994), Marx et al. (2003).

Several of the above mentioned residual generation ap-
proaches for DAE-systems have limitations since they have
restrictions on the system to be diagnosed. The observer-
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based methods Shields (1994) and Marx et al. (2003),
both assumes observability and so does the parity-space
method, Sauter et al. (1996). In addition, Marx et al.
(2003), does not handle decoupling in the measurement
equation. Observability is not assumed in Maquin et al.
(1993), but instead decoupling is not considered.

The main contribution in this paper is a new observer-
based method for residual generation in linear DAE-
systems. In contrast to the above mentioned methods, no
restrictions are placed on the system to be diagnosed. This
means that if the fault of interest is possible to detect,
a residual generator can be designed with the proposed
method. The method is based only on constant matrix
operations such as multiplications, null-space calculations
and equivalence transformations, and thereby straightfor-
ward to implement.

The paper is organized as follows. Section 2 presents
preliminaries and states the problem formulation and
objective. In Section 3, the principles of the design method
is preseneted. Section 4 verifies, in two theorems, that
the objective is met with the proposed design method. In
Section 5 the method is applied to a non-observable DAE
model of a robot manipulator and Section 6 concludes the
paper. An appendix summarizes the design method as a
ready-to-implement algorithm.

2. PRELIMINARIES AND PROBLEM
FORMULATION

Consider the linear time-invariant differential-algebraic
equation (DAE) system described by

Eẋ = Ax + Bu + Fd + Hf (1a)

y = Cx + Du + Gd + Jf (1b)

where x ∈ R
n, u ∈ R

p, y ∈ R
m, d ∈ R

q, and f ∈ R
s are

vectors of the states, inputs, outputs, disturbances, and
faults of interest respectively. The inputs and outputs are
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considered as known variables and the states, disturbances
and faults as unknowns. The matrix E ∈ R

k×n may be
singular and the disturbance-vector d consists of faults and
unknown inputs that are to be decoupled. The matrices A,
B, F , H, C, D, G, and J are all constant real-coefficient
matrices of appropriate dimensions.

Before stating the main objective, the notion of fault
detectability is needed. First, let ONF denote the set of
all known trajectories u and y consistent with the DAE-
system (1) under the presence of no faults, i.e.

ONF = {[u, y]|∃x, d;Eẋ = Ax + Bu + Fd,

y = Cx + Du + Gd} . (2)

Note that u, y, x, and d are here considered to be trajecto-
ries. In a similiar way, Of is defined as the corresponding
set when the fault f is allowed to be non-zero. Or formally,

Of = {[u, y]|∃x, d, f ;Eẋ = Ax + Bu + Fd + Hf,

y = Cx + Du + Gd + Jf} . (3)

The sets ONF and Of will in the sequel be referred to
as observation sets. With ONF and Of defined, fault
detectability can now be defined, see also Nyberg and Frisk
(2006).

Definition 1. (Fault Detectability). Fault f is detectable
in (1) if Of 6⊆ ONF .

It may be noted that fault detectability is a system
property.

To check if given trajectories of u and y belongs to the
observation set ONF or not, i.e if a fault is present in the
system, residuals can be used. In this work, only residuals
that are outputs from state-space systems are considered,
leading to the following definition.

Definition 2. (Residual Generator). The linear time-
invariant state-space system

ξ̇ = Āξ + B̄u + M̄y (4a)

r = C̄ξ + D̄u + N̄y (4b)

is a residual generator for (1) and r is a residual if

[u, y] ∈ ONF ⇒ lim
t→∞

r = 0. (5)

Note that r may here be multi-dimensional.

The problem can now be formulated as follows. Given
the system (1), where it is assumed that the fault f is
detectable, the objective is to create a residual generator
for (1) where the residual is sensitive to f , that is, the
transfer function from fault to residual is non-zero.

3. PRINCIPLES OF THE DESIGN METHOD

As stated in the problem formulation, the input to the
design method is assumed to be a DAE-system on the
form (1), where f is detectable. The design method con-
sists of two main parts. First, a system in state-space
form with no disturbances present is extraced from the
input system. This is done iteratively, where disurbances
are decoupled and the dimension of the system is reduced
in each step. Second, a residual generator based on the
decoupled system is designed. The principles of the design
method are presented below.

Step 1: Write the system on the form

[

E
0

]

ẋ =

[

A
C

]

x +

[

B
D

]

u +

[

M
N

]

y+

[

F
G

]

d +

[

H
J

]

f (6)

Step 2: Let

r = rank

[

F
G

]

, (7)

and

P =

[

P1 P2

P3 P4

]

, (8)

with P1 ∈ R
(k+m−r)×k, P2 ∈ R

(k+m−r)×m, P3 ∈ R
r×k,

P4 ∈ R
r×m chosen such that the rows of [ P1 P2 ] form

a basis for the left null-space of

[

F
G

]

, and the rows of

[ P3 P4 ] form a basis for the image of

[

F
G

]

. This implies

that

rank P = k + m, (9)

P1F + P2G = 0, (10)

rank (P3F + P4G) = r. (11)

Step 3: Pre-multiply (6) with the full-rank matrix P .
Since (10) holds, the result becomes

P1Eẋ = (P1A + P2C)x + (P1B + P2D)u+

(P1M + P2N)y + (P1H + P2J)f (12a)

P3Eẋ = (P3A + P4C)x + (P3B + P4D)u+

(P3M + P4N)y + (P3F + P4G)d+

(P3H + P4J)f. (12b)

Step 4: Due to (11), the matrix (P3F + P4G) has full
row-rank. Therefore, (12b) does not contain any usable
information and is discarded.

Step 5: Let t = rank (P1E). If t = n, go to step 8,
otherwise continue to step 6.

Step 6: Find, by e.g. singular-value decomposition, non-
singular matrices U and V such that

U (P1E) V =

[

Σ 0
0 0

]

, (13)

where Σ ∈ R
t×t is a non-singular matrix.

Step 7: Pre-multiply (12a) with U , then introduce the
non-singular state-transformation

w = V −1x, w =

[

w1

w2

]

, (14)

where w1 ∈ R
t and w2 ∈ R

(n−t) to obtain
[

Σ
0

]

ẇ1 =

[

A1

A3

]

w1 +

[

A2

A4

]

w2 +

[

B1

B2

]

u+

[

M1

M2

]

y +

[

H1

H2

]

f, (15)

where
[

A1 A2

A3 A4

]

= U(P1A + P2C)V,

[

B1

B2

]

= U(P1B + P2D),

[

M1

M2

]

= U(P1M + P2N),

[

H1

H2

]

= U(P1H + P2J),

(16)

and A1 ∈ R
t×t, A4 ∈ R

(k+m−r−t)×(n−t), B1 ∈ R
t×p,

M1 ∈ R
t×m, and H1 ∈ R

t×s. The variable w2 is now seen
as a disturbance, and hence the system (15) is on the
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same form as (6). Return to step 1 with the system (15)
as input.

Step 8: Find a non-singular matrix U such that

U (P1E) =

[

Π
0

]

, (17)

where Π ∈ R
n×n is non-singular.

Step 9: Pre-multiply (12a) with U , then multiply the
dynamic part of the result with Π−1, to obtain

ẋ = Ā1x + B̄1u + M̄1y + H̄1f (18a)

0 = A2x + B2u + M2y + H2f (18b)

where

Ā1 = Π−1A1, B̄1 = Π−1B1,

M̄1 = Π−1M1, H̄1 = Π−1H1,
[

A1

A2

]

= U(P1A + P2C),

[

B1

B2

]

= U(P1B + P2D),

[

H1

H2

]

= U(P1H + P2J),

[

M1

M2

]

= U(P1M + P2N).

(19)

Step 10: Find a matrix L ∈ R
n×m such that all eigenval-

ues of the matrix (Ā1 + LA2) have negative real-parts.
Pre-multiply (18) with the non-singular matrix

Q =

[

I L
0 I

]

(20)

to obtain

ẋ = (Ā1 + LA2)x + (B̄1 + LB2)u + (M̄1 + LM2)y+

(H̄1 + LH2)f (21a)

0 = A2x + B2u + M2y + H2f. (21b)

Step 11: Design the residual generator as

ξ̇ = (Ā1 + LA2)ξ + (B̄1 + LB2)u + (M̄1 + LM2)y
(22a)

r = A2ξ + B2u + M2y. (22b)

The design method is summarized as a ready-to-implement
algorithm in Appendix A.

Remark 3. Step 10 requires that (18) is observable or at
least detectable, see e.g. Rugh (1996). If this is not the
case, the canonical structure theorem, e.g. Gilbert (1963),
can be used to extract the observable subsystem from (18),
which instead is used in step 10.

Remark 4. The states ξ in (22) is actually an estimate
of a linear combination of the states x in (1), and (22)
is sometimes referred to as a FDI (Fault Detection and
Isolation) observer, see e.g. Hou and Müller (1994). It
may also be noted that observer-based residual generation
has strong connections with the design of unknown-input
observers, see e.g. Müller and Hou (1994) for state-space
systems and e.g. Sun and Cheng (2004) for DAE-systems.
The aim in these works is to estimate the states of the
system and not generate a residual suitable for fault
detection. However, if an observer for a system can be
designed, a residual can be created as the difference
between measurements and estimated states.

Remark 5. Throughout this work, it assumed that the
system to be diagnosed is a DAE-system and the design
method is described in this framework. Still, the method
can likewise be applied to a state-space system, i.e. a
system where E = I.

4. CORRECTNESS OF THE DESIGN METHOD

In this section it is verified that the objective stated
in Section 2 is met. That is, that the output from the
proposed design method is a residual generator for (1), and
that the corresponding residual is sensitive to the fault f .

Since the design method (or algorithm, as in Appendix A)
is iterative, the following result is needed.

Lemma 6. With (1) as input, the design method termi-
nates.

Proof. The system (1) has k + m equations. In step 4
at least one equation is removed. Since t ≥ 0 in step 5,
the algorithm will terminate, if not earlier, after at most
k + m iterations when the remaining system is of zero
dimension. 2

4.1 Residual Generator Property

The output from the design method is (22) which is based
on the system (21), obviously different from (1). A key
property for (22) to be a residual generator for (1) is that
the systems (1) and (21) have equal observations sets.
This means that designing a residual generator for (1) is
equivalent to designing a residual generator for (21). This
property is the result of the following lemma.

Lemma 7. Let (1) be the input to the design method, ONF

defined by (2) and Of by (3). Let O′

NF be the set of
trajectories u and y consistent with (21) when f = 0 and
O′

f the corresponding sets when f is allowed to be non-

zero. It holds that ONF = O′

NF and Of = O′

f .

Proof. Given (1) as input to the design method, Lemma 6
states that the method will terminate. Two scenarios of
execution of the steps 1 to 11 are possible. Either steps
1-5 followed by steps 8-11 is performed directly, else steps
1-7 will be iterated until the condition in step 5 holds, and
then steps 8-11 will be performed. In both cases, steps
3, 9, and 10 consist of multiplication with non-singular
matrices and does not change the sets Of and ONF in
any of the execution cases. The same holds for step 7
in the second case. Hence, the critical part is step 4,
where equation (12b) is discarded. For the first execution
case it must be shown that the observation sets are equal
for (12) and (15) and for the second case that the same
holds for (12) and (18). Or in other words for both cases,
that (12b) can be discarded without loosing any usable
information. Here, the second case is considered and the
first case can be shown in the same manner. Since it is
trivial that the observation sets for (12) are subsets of
the observation sets for (18), only the reverse inclusion
is shown. Let x̃, ũ, and ỹ be trajectiories satisfying (18)
when f = 0. Since (12a) and (18) are related by a non-
singular transformation, x̃, ũ, and ỹ also satisfies (12a).
As a consequence of step 2, (11) holds. This implies that
the matrix (P3F + P4G) has full row-rank and hence the
matrix has a right-inverse. Denote this right-inverse R and
choose

d̃ = RP3E ˙̃x − R(P3A + P4C)x̃−

R(P3B + P4D)ũ − R(P3M + P4N)ỹ. (23)

With d̃ and the previously defined x̃, ũ, and ỹ, the
equation (12b) is satisfied. This shows that (12b) does not

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7909



contain any usable information and can be discraded. The
reasoning can be repeated for the case when f is allowed
to be non-zero to show that the observation sets are equal
for (12) and (18), which completes the proof. 2

With help of Lemma 7, it can be shown that the first part
of the stated objective is met.

Theorem 8. Let (1) be the input to the design method
and (22) the output. The system (22) is a residual gener-
ator for (1) and r in (22b) is a residual.

Proof. Assume f = 0 and let [u, y] ∈ ONF , where ONF

is the set defined in (2). Lemma 7 then implies that u
and y also satisfy (21). By subtracting (21a) from (22a)
and (21b) from (22b) the autonomous system

λ̇ = (Ā1 + LA2)λ (24a)

r = A2λ, (24b)

is obtained, where λ = ξ − x. Since, according to step
10, the matrix L is chosen such that all eigenvalues of
(Ā1 + LA2) have negative real-parts, it follows directly
that limt→∞ r = 0 and hence (22) is a residual generator
for (1) and (22b) is a residual. 2

4.2 Fault Sensitivity

The aim of this section is to show that the residual
generator (22) is sensitive to the fault f , i.e. that the
transfer function from f to the residual r is non-zero.
However, the residual generator (22) is written on a form
without faults. By again, as in the proof to Theorem 8,
subtracting (21a) from (22a) and (21b) from (22b), the
relation between f and r can be described as

λ̇ = (Ā1 + LA2)λ − (H̄1 + LH2)f (25a)

r = A2λ − H2f, (25b)

where λ = ξ − x.

From (25), the transfer function from fault to residual can
be written as

Grf (s) = A2

(

−sI + Ā1 + LA2

)

−1 (

H̄1 + LH2

)

− H2.
(26)

The result that verifies that the second part of the objec-
tive is met with the design method here follows.

Theorem 9. Let (1) be the input to the design method
and (25) the output. If f is detectable in (1), the transfer
function from fault to residual (26) is non-zero.

Proof. The transfer function (26) can by power-series

expansion of
(

−sI + Ā1 + LA2

)

−1
be written as

Grf (s) = A2

(

−sI + Ā1 + LA2

)

−1 (

H̄1 + LH2

)

− H2 =

−
∞
∑

i=1

A2

(

Ā1 + LA2

)i−1 (

H̄1 + LH2

)

s−i − H2.

(27)

To show the contrary of the claim, i.e. that Grf (s) = 0
implies Of ⊆ ONF , assume Grf (s) = 0. Using (27),
Grf (s) = 0 is equivalent to

H2 = 0, (28)

A2

(

Ā1 + LA2

)i−1 (

H̄1 + LH2

)

= 0, i = 1, . . . ,∞.

(29)

As a consequence of the Cayley-Hamilton theorem,

A2

(

Ā1 + LA2

)i−1
, for i ≥ n+1, can be written as a linear

combination of

A2, A2

(

Ā1 + LA2

)

, . . . , A2

(

Ā1 + LA2

)n−1
, (30)

therefore it is sufficient to consider the matrix

Ω =











A2

A2

(

Ā1 + LA2

)

...

A2

(

Ā1 + LA2

)n−1











. (31)

The condition (29) clearly implies
(

H̄1 + LH2

)

∈ Ker Ω
and the two cases rank Ω = n and rank Ω < n will now
be studied separately.

For the first case, i.e. when (22) and (25) are both
observable, dim Ker Ω = 0 which implies

(

H̄1 + LH2

)

=
0. From (28), H2 = 0 and it must hold that Of = ONF .

For the second case, let [ũ, ỹ] ∈ Of . This means that there

exist trajectories, say f̃ and x̃ with x̃(t0) = x̃0, such that

˙̃x = (Ā1 + LA2)x̃ + (B̄1 + LB2)ũ + (M̄1 + LM2)ỹ+

(H̄1 + LH2)f̃ (32a)

0 = A2x̃ + B2ũ + M2ỹ + H2f̃ . (32b)

It will now be shown that there exists a trajectory ζ
that along with the trajectories ũ and ỹ satisifies (32)

when f̃ = 0. Consider the residual generator (25) and

let λ̃(t0) = λ̃0 ∈ Ker Ω. This implies that λ̃ will be
a trajectory in the non-empty unobservable subspace of
(25). Evaluation of (25) with the initial state λ̃0, together
with (28) and (29), yields r ≡ 0 independent of f . In

particular, this holds for f = f̃ and hence

˙̃
λ = (Ā1 + LA2)λ̃ − (H̄1 + LH2)f̃ (33a)

0 = A2λ̃ − H2f̃ . (33b)

Now form ζ = x̃ + λ̃, ζ(t0) = x̃0 + λ̃0, and combine (32)
with (33) to obtain

ζ̇ = (Ā1 + LA2)ζ + (B̄1 + LB2)ũ + (M̄1 + LM2)ỹ (34a)

0 = A2ζ + B2ũ + M2ỹ. (34b)

Thus, there exists a trajectory ζ satisfying the fault-free
system (34) so that [ũ, ỹ] ∈ ONF , implying Of ⊆ ONF

and the proof is complete. 2

Remark 10. The two systems (22) and (25) are two ways
of writing a residual generator. The form (22) is the so
called computational form, and (25) is usually referred to
as internal form.

5. EXAMPLE

To illustrate the design method, it is applied to a DAE
model of a three-link planar manipulator from Hou (2000)
and Hou and Müller (1996), see Figure 1. The objective
of the manipulator is to apply a constant horizontal force
in the region between point A and B, e.g. for cleaning
the region. The manipulator consists of an end-effector,
three rods, and three joints. Via actuators at every joint,
a torque can be applied to move the effector repeatedly
between A and B. The manipulator is equipped with four
sensors measuring the height of the end-effector, the con-
tact force in the horizontal direction, and tracking signals.
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A

B

Fig. 1. The three-link planar manipulator

The DAE model has three states for the Cartesian coor-
dinates of the end-effector, three states for the derivatives
of the Cartesian coordinates, two states for Lagrangian
multipliers, and three states for the controller, altogether
11 states. In this example, the original fault model has
been extended with a sensor fault. The process is subjected
to 3 faults. Fault f1 represents a fault in actuator 1, f2 a
fault in the tracking reference signal, and f3 a fault in
sensor 4. Hence, the form of the DAE is

Eẋ = Ax + Bu + Hf (35a)

y = Cx + Jf, (35b)

where x ∈ R
11, u ∈ R

3, y ∈ R
4, and f ∈ R

3. Numerical
values of the matrices E,A, B, and C can be found in
Hou (2000) or Hou and Müller (1996). The matrix E is
square with rank E = 9 and (35) is regular. Further, the
system (35) is not impulse observable (Dai (1989)), since

rank

[

E A
0 E
0 C

]

= 18 6= rank E + n = 9 + 11 = 20. (36)

This means that methods assuming observability, for ex-
ample Shields (1994), Marx et al. (2003), and Sauter et al.
(1996), can not be applied to the system.

The design objective is to create three residual generators
for (35), each monitoring one fault. In residual generator 1,
the transfer function from fault f1 should be non-zero, and
the same should hold for fault f2 in residual generator 2
and for fault f3 in residual generator 3. Since each residual
generator should monitor only one fault, two faults need to
be decoupled in each residual generator. This means that
f2 and f3 are seen as disturbances in residual generator
1 and the matrix F1 = [ H2 H3 ], and G1 = [ J2 J3 ] can
be formed, where Hi and Ji denotes the i:th column of
the matrices H and J respectively. In the same way the
matrices F2, G2, F3, and G3, with the columns from H
and J corresponding to the faults to be decoupled in each
residual generator, are created.

Performing the design according to the method in Sec-
tion 3 with the three different configurations of system (35)
as input, three disturbance decoupled systems on the
form (18) with 6, 5, and 5 states respectively are obtained.
For all three input systems, the algorithm terminates after
3 iterations. The three systems are all observable, and
hence it is straightforward to perform step 10. For all three
residual genereators, the poles are placed in -1.

All three residual generators have two-dimensional resid-
uals. By calculating the transfer functions from fault to
residual for each residual generator, it can be verified that
Grfi

(s) = 0, when i = 2, 3 for residual generator 1, when

i = 1, 3 for residual generator 2, and when i = 1, 2 for
residual generator 3. To verify that the design objective
is met, the transfer functions from the monitored faults
to the residual for each residual generator is shown in
Figures 2(a), 2(b), and 2(c). It is clear that all transfer
functions are non-zero.
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(a) Transfer functions from fault f1 to the two
residuals in residual generator 1
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(b) Transfer functions from fault f2 to the two
residuals in residual generator 2
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(c) Transfer functions from fault f3 to the two
residuals in residual generator 3

Fig. 2. Transfer functions from monitored faults to resid-
uals in the obtained residual generators

6. CONCLUSIONS

Residual generation for linear DAE-systems has been
considered. A new systematic method for observer-based
residual generation has been presented. In contrast to sev-
eral previous methods, no restrictions such as observability
is placed on the system to be diagnosed. This means that if
the fault of interest is detectable in the system to be diag-
nosed, a residual generator can be designed with the design
method in this paper. It has been verified in Theorem 8
and 9 that the output from the design method is indeed
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a residual generator, and that the corresponding transfer
function from fault to residual is non-zero. Finally note
that even though the design method has been described in
the framework of DAE-systems, it can likewise be applied
to state-space systems.
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Appendix A. DESIGN ALGORITHM

The design method is here summarized as an algorithm in
which the following functions has been used

• null computes a basis for the null-space of a matrix.
• svd performs a singular-value decomposition.
• stabilize computes a feedback gain such that all

eigenvalues of the resulting matrix have negative real-
parts.

Algorithm 1

Input: Matrices E, A, B, F , H, C, D, G, and J corre-
sponding to a system on the form (1) where E ∈ R

k×n.
Output: Matrices Ā, B̄,M̄ , C̄, D̄, and N̄ corresponding

to a residual generator on the form (4).
N := I
t := 0
while t 6= n do

[ P1 P2 ] := null(

[

F
G

]T

)T

t := rank P1E
(U,Σ, V ) := svd(P1E)
[

B
D

]

:= U(P1B + P2D)
[

H
J

]

:= U(P1H + P2J)
[

M
N

]

:= U(P1M + P2N)

if t 6= n then
E := Σ
[

A F
C G

]

:= U(P1A + P2C)V

end if
end while
[

A
C

]

:= U(P1A + P2C)

L := stabilize(Σ−1A,C)
Ā := Σ−1A + LC
B̄ := Σ−1B + LD
M̄ := Σ−1M + LN
C̄ := C
D̄ := D
N̄ := N
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