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Abstract: The paper deals with active fault detection and dual control in the multiple model
framework. A monitored and controlled system is described by a discrete-time linear stochastic
model at each step of a finite time horizon. The model belongs to an a priori given set of
models, and known transient probabilities describe switching between the models. The goal is
to design an active detector and controller that processes all available information and generates
decisions and inputs. The decisions inform whether a fault has occurred in the system, and the
inputs should simultaneously control and excite the system. As the control is in conflict with the
excitation, the dual control problem arises. It is shown that both active fault detection and dual
control can be solved using Bellman’s principle of optimality, and a corresponding backward
recursive equation is derived. The approximative solution of the backward recursive equation is
discussed, and an algorithm based on an application of rolling horizon and nonlinear filtering
techniques is presented. The presented approach is illustrated in a simple numerical example.

1. INTRODUCTION

The fault detection problem has received a lot of attention
during recent years because of increasing requirements on
safety, reliability, and low maintenance costs. The main
goal is to design a detector that processes measurements
and generates decisions about faults in a system. The very
earliest detectors were based on using redundant sensors to
detect their failures [Daley et al., 1979]. These quite simple
detectors are still used in safety-critical systems, but they
suffer from issues such as higher cost, increased weight
and the need of additional space for redundant sensors.
To avoid these disadvantages more complex detectors,
utilizing a model of the system, were developed.

The model-based detectors [Jones, 1973, Basseville and
Nikiforov, 1993] can detect faults in the system without
any redundant sensors, because more detailed information
about system behavior in fault-free and faulty cases is
used. The detector usually consists of a residual generator
and a decision generator, which are connected in cascade.
The residual generator processes input-output data and
generates residual signals that are close to zero in fault-
free case and deviate from zero in faulty case. The decision
generator statistically analyzes these residual signals and
outputs a decision on fault.

In all above mentioned cases, the detector D uses measure-
ments zk to generate the decision dk in a passive way, as
depicted in Fig. 1. The measurements zk consist of input-
output data, i.e. zT

k = [uT
k ,yT

k ]. If a proper input uk is
applied to the system S, as depicted in Fig. 2, further
improvement of fault detection quality can be achieved.

⋆ This work was supported by the Ministry of Education, Youth and
Sports of the Czech Republic, project No. 1M0572, and by the Czech
Science Foundation, project No. GA102/08/0442.

This idea is similar to input design for parameter esti-
mation [Mehra, 1974]. The active detector AD generates,
in addition to the decision dk, an auxiliary input uk that
excites the system and improves fault detection. Note that
in the fault tolerant control literature, e.g. [Blanke et al.,
2003], the terms passive and active are used in a different
meaning. The term passive is used for fault tolerant system
that is robust to faults and the term active denotes a fault
tolerant system that estimates faults and reconfigures the
controller.

There are only few works dealing with the active fault
detection problem. One of the first attempt to formulate
and solve this problem can be found in [Zhang, 1989].
Multiple linear Gaussian models were used for description
of the system, the detector was based on the sequential
probability ratio test (SPRT) and a clipped harmonic aux-
iliary input signal was designed to minimize the average
sampling number (ASN). This idea was further extended
in [Kerestecioğlu, 1993] referring to the fact that minimiza-
tion of the ASN can increase probability of false detection.
A more general formulation of active change detection,
based on criterion minimization, was also proposed there,
but it was not elaborated in all details. A completely
different approach to the active fault detection problem
was introduced in [Campbell and Nikoukhah, 2004]. The
system was again described using the multiple model ap-
proach, but the disturbances were modelled as bounded
deterministic signals. Further, it was considered that the
behavior of the system does not change during the test
period, in which a valid model is determined using the
member set approach. Depending on the system and a
restriction on the input signal there can be an auxiliary
input signal that allows to surely decide on valid model
during the test period.
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Fig. 2. Active detection

Nevertheless, there are some issues when active fault de-
tection and control should be performed simultaneously.
The fundamental question is how the auxiliary input signal
should enter the system if all inputs are already used
for control purposes. The first possibility is to completely
replace the control signal by the auxiliary input signal for a
short time period. Another solution is to generate weighted
sum of control signal and auxiliary input signal. If these
or other heuristic solutions to this issue are used then
the resulting closed loop behavior is always questionable.
Active fault detection for closed-loop systems is presented
in [Niemann, 2006], where a controller is supplemented
by a probing signal, which slightly degrades quality of
control and manifests itself in residual signal only in faulty
case. Another approach that allows to incorporate control
objectives in active fault detection was proposed in [Black-
more and Williams, 2006], where control objectives were
expressed in terms of equality and inequality linear con-
straints on input and expected system state trajectories.
All above mentioned approaches solve the active detection
and control problem in different frameworks and with
different levels of generality.

A unified framework that allows to formulate and solve
several active fault detection problems was presented
in [Šimandl and Punčochář, 2006]. The more detailed
derivation of the active fault detector and controller was
discussed in [Šimandl and Punčochář, 2007]. The goal
of the paper is to elaborate the general approach given
in [Šimandl and Punčochář, 2007] for multiple model
framework and present a suboptimal solution based on
rolling horizon technique.

The paper is organized as follows. Section 2 introduces
description of a system, an active detector and controller,
and a criterion. The dynamic programming is used for
the design of optimal active fault detector and controller
in Section 3. Suboptimal solutions of recursive equation
and state estimation problem are presented in Section 4.
Section 5 deals with a numerical example.

2. PROBLEM FORMULATION

Let the system S be described at each time step k ∈ T =
{0, 1, . . . , F} by the jump Markov linear Gaussian model

xk+1 = A (µk)xk + B (µk)uk + G (µk)wk, (1)

yk = C (µk)xk + H (µk)vk, (2)

where yk ∈ Rny denotes the output and uk ∈ Uk ⊂ Rnu

denotes the input. The subset Uk is a continuous or discrete
set that determines a range of admissible values of the

input uk. The immeasurable state x̄k =
[

xT
k , µk

]T
of the

system consists of variables xk ∈ Rnx and µk ∈ M =
{1, 2, . . . , N}. The vector xk is continuous in values and

represents the common state of particular linear Gaussian
models. The scalar µk is the index of linear Gaussian
model that represents the system at time step k. It is
assumed that the set of models M is identical with a
set of all possible modes of system (i.e. model set cover
fault-free and all faulty behavior patterns of the system)
and the number of models N remains constant over time.
Practical model selection is described e.g. in [Athans
et al., 2006]. The noises wk ∈ Rnx and vk ∈ Rny are
mutually independent zero-mean white Gaussian noises
with identity covariance matrices, which is written as
N{0, I}. The initial condition x0 is described by the

Gaussian probability density function N{x̂
′

0, P
′

x,0} and the
variable µ0 is described by the probability function P (µ0).
The variables x0 and µ0 are mutually independent and also
independent of the noise processes. The switching between
models is governed by the given transition probability
Pi,j = P (µk+1 = j|µk = i) for i, j ∈ M and the each
model µk is represented by known matrices A (µk), B (µk),
C (µk), G (µk), H (µk) of appropriate dimensions.

The active detector and controller (ADC) is considered
as one block that processes the output of the system and
generates the input and decision about faults. At each time
step k ∈ T , a realizable ADC has to be a causal system
that utilize all information received up to the current time

[

dk

uk

]

= ρk

(

Ik
0

)

, k ∈ T , (3)

where dk ∈ M denotes decision, uk is already defined

input and Ik
0

T
=

[

yk
0

T
, uk−1

0

T
, dk−1

0

T
]

denotes all available

information received up to the actual time step. The
notation yk

0 = [y0
T ,y1

T , . . . ,yk
T ]T is used for description

of whole history of considered variable or sequence of
functions.

The goal is to design the ADC that achieves minimum
costs connected with wrong decisions and trajectories of
the state and input. An appropriate criterion can be chosen
as

J(ρF
0 ) = E

{

F
∑

k=0

Ld
k(µk, dk) + αkLc

k(xk,uk)

}

, (4)

where E{·} denotes the expectation operator over all ran-
dom variables, the cost function Ld

k(µk, dk) is a real-valued
non-negative function representing decision objective, the
cost function Lc

k(xk,uk) is a real-valued non-negative func-
tion representing control objective and the coefficient αk

sets a desired compromise between these two objectives.

3. OPTIMAL ACTIVE DETECTOR AND
CONTROLLER

3.1 Information processing strategies

In the optimal stochastic control problem, a dynamic opti-
mization can be solved using three basic information pro-
cessing strategies (IPS’s). Open-loop (OL) IPS uses only
an a priori information and no future information will be
used. Open-loop feedback (OLF) IPS assumes that an ad-
ditional information will be available in a priori unknown
time steps and this information will be used together with
the a priori information. Closed-loop (CL) IPS supposes
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that an additional information will be received and utilized
at all future time steps.

These IPS’s lead to different values of criterion J . It holds
that JOL ≥ JOLF ≥ JCL, where JOL is the value of the
criterion when OL IPS is used, JOLF is the value of the
criterion when OLF IPS is used and JCL is the value of
the criterion when CL IPS is used. The question is if the
IPS’s are also used in fault detection (FD). The use of the
IPS’s in FD was firstly elaborated in [Šimandl and Herejt,
2003] with the following conclusions. The OL IPS uses only
the prior information and hence it is not used in FD. The
OLF IPS corresponds to the standard approaches in FD
(e.g. Bayesian approach) and the CL IPS providing the
best results is not commonly used in FD. In this paper
only the CL IPS will be considered due to its superiority
in comparison to OL and OLF IPS’s.

3.2 Closed loop information processing strategy

Bellman’s principle of optimality [Bertsekas, 1995] is a
general approach to solve a dynamic optimization problem.
The dynamic optimization problem is solved backward in
time from the final time step and the result is an optimal
policy that is defined as follows.

An optimal policy has the property that whatever the
initial state and the initial decisions/controls are, the
remaining decisions/controls must constitute an optimal
policy with regard to the state resulting from the first
decision/control.

This definition allows to write directly the backward
recursive equation for time step k = F, F − 1, . . . , 0

V ∗
k

(

Ik
0

)

= min
dk∈M

uk∈Uk

E{Ld
k (dk, µk) + αkLc

k (xk,uk)

+ V ∗
k+1

(

Ik+1
0

)

|Ik
0 ,uk, dk},

(5)

where E{·|·} denotes the conditional expectation operator
and V ∗

k (Ik
0) is the so called Bellman function. The Bellman

function expresses the minimum of expected costs from
current time step k to the final time step F of the
detection horizon given all available information Ik

0 . The
initial condition for this backward recursive equation is
V ∗

F+1 = 0 and the value of criterion (4) can be expressed

as JCL = J
(

ρ
F∗
0

)

= E {V ∗
0 (y0)}.

The pdf’s p
(

x̄k|I
k
0 ,uk, dk

)

and p
(

yk+1|I
k
0 ,uk, dk

)

are
needed for evaluation of the conditional expectations
in (5). These pdf’s can be obtained from a nonlinear filter
and they satisfy the following identities

p
(

x̄k|I
k
0 ,uk, dk

)

= p
(

x̄k|y
k
0 ,uk−1

0

)

, (6)

p
(

yk+1|I
k
0 ,uk, dk

)

= p
(

yk+1|y
k
0 ,uk

0

)

. (7)

It will be shown that backward recursive equation (5) can
be rewritten to a simpler form using identities (6) and (7).
The Bellman function at time step k = F is

V ∗
F

(

IF
0

)

= min
dF ∈M

uF ∈UF

E
{

Ld
F (dF , µF )

+ αF Lc
F (xF ,uF ) |IF

0 ,uF , dF

}

.

(8)

Applying (6) the Bellman function V ∗
F

(

IF
0

)

takes the form

y
k C

D

d
k

u
k

ADC

Fig. 3. Optimal active detector and controller

V ∗
F

(

IF
0

)

= min
dF ∈M

uF ∈UF

[

E
{

Ld
F (dF , µF ) |yF

0 ,uF−1
0 , dF

}

+ αF E
{

Lc
F (xF ,uF ) |yF

0 ,uF
0

}

]

.

(9)

The first term on the right-hand side of (9) is independent
of the input uF and it can be minimized only over the
decision dF . Moreover, the second term is independent of
the decision dF and it can be minimized only over the
input uF . Therefore, the minimization can be split into
two independent minimization problems. The right-hand
side of (9) is independent of decisions dF

0 and thus it holds

that V ∗
F

(

IF
0

)

= V ∗
F

(

yF
0 ,uF−1

0

)

.

It holds that V ∗
k+1

(

Ik+1
0

)

= V ∗
k+1

(

yk+1
0 ,uk

0

)

at a time step
k + 1 = F . At time step k, the Bellman function can be
written

V ∗
k

(

Ik
0

)

= min
dk∈M

uk∈Uk

E{Ld
k (dk, µk) + αkLc

k (xk,uk)

+ V ∗
k+1

(

yk+1
0 ,uk

0

)

|Ik
0 ,uk, dk}.

(10)

Applying (6) and (7) it can be seen that the Bellman
function V ∗

k

(

Ik
0

)

is also independent of decisions dk
0 (i.e.

V ∗
k

(

Ik
0

)

= V ∗
k

(

yk
0 ,uk−1

0

)

). The first term on the right-
hand side of (10) is again independent of the input uk and
the remaining two terms are independent of the decision
dk. Thus, the backward recursive equation can be written
at each time step k ∈ T as

V ∗
k

(

yk
0 ,uk−1

0

)

= min
dk∈M

E
{

Ld
k (dk, µk) |yk

0 ,uk−1
0 , dk

}

+ min
uk∈Uk

E
{

αkLc
k (xk,uk)

+ V ∗
k+1

(

yk+1
0 ,uk

0

)

|yk
0 ,uk

0

}

,

(11)

and the optimal decision d∗k and the optimal input u∗
k are

given as

d∗k = σ∗
k

(

yk
0 ,uk−1

0

)

= arg min
dk∈M

E
{

Ld
k (dk, µk) |yk

0 ,uk−1
0 , dk

}

,
(12)

u∗
k = γ

∗
k

(

yk
0 ,uk−1

0

)

= arg min
uk∈Uk

E
{

αkLc
k (xk,uk)

+ V ∗
k+1

(

yk+1
0 ,uk

0

)

|yk
0 ,uk

0

}

,
(13)

where σ∗
k

(

yk
0 ,uk−1

0

)

is a function describing the optimal

passive detector and γ
∗
k

(

yk
0 ,uk−1

0

)

is a function describing
the optimal dual controller. The structure of the optimal
ADC is depicted in Fig. 3.

Finally, some comments concerning the optimal ADC are
given. The optimal decision d∗k minimizes the conditional
mean value of the cost function Ld

k (dk, µk). The block gen-
erating optimal decisions can be called a passive detector
considering the fact that the decisions do not influence
the dual controller as shown in (13). The optimal input
u∗

k is generated by the second block of the optimal ADC
and represents an optimal tradeoff between exciting and
controlling the system. This block can be called an optimal
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dual controller but the generated input signal differs from
the input signal provided by the standard dual controller
because of the first term Ld

k (dk, µk) in the criterion (4).

4. SUBOPTIMAL ACTIVE DETECTOR AND
CONTROLLER

This section deals with a practical implementation of the
ADC, which is based on rolling horizon technique.

4.1 State estimation

This subsection summarizes the solution of the state
estimation problem for multiple Gaussian linear mod-
els. The aim is to find conditional pdf’s p

(

xk|y
k
0 ,uk−1

0

)

,

p
(

yk+1|y
k
0 ,uk

0

)

and probability P
(

µk|y
k
0 ,uk−1

0

)

.

The conditional pdf of the variable xk has the form of
Gaussian sum

p
(

xk|y
k
0 ,uk−1

0

)

=
∑

µ0∈M

. . .
∑

µk∈M

p
(

xk, µk
0 |y

k
0 ,uk−1

0

)

=
∑

µ0∈M

. . .
∑

µk∈M

p
(

xk|y
k
0 ,uk−1

0 , µk
0

)

P
(

µk
0 |y

k
0 ,uk−1

0

)

,

(14)

where the pdf p
(

xk|y
k
0 ,uk−1

0 , µk
0

)

= N{x̂k

(

µk
0

)

, Px,k

(

µk
0

)

}

is Gaussian with the mean value x̂k

(

µk
0

)

and the co-

variance matrix Px,k

(

µk
0

)

, and the conditional probabil-

ity P
(

µk
0 |y

k
0 ,uk−1

0

)

can be computed recursively as will

be shown later. The mean value x̂k

(

µk
0

)

and covariance

matrix Px,k

(

µk
0

)

can be obtained using the Kalman filter
for t-variant system. The corresponding relations for the
filtering step of the Kalman filter are

x̂k

(

µk
0

)

= x̂
′

k

(

µk−1
0

)

+ K
(

µk
0

)

[

yk − C (µk) x̂
′

k

(

µk−1
0

)

]

,
(15)

Px,k

(

µk
0

)

= P
′

x,k

(

µk−1
0

)

−K
(

µk
0

)

C (µk) P
′

x,k

(

µk−1
0

)

, (16)

where the Kalman gain K
(

µk
0

)

is given as

K
(

µk
0

)

= Px,k
′
(

µk−1
0

)

C (µk)
T

[

C (µk) P
′

x,k

(

µk−1
0

)

C (µk)
T

+ H (µk) H (µk)
T
]−1

,
(17)

where x̂
′

k is the predictive mean and P
′

x,k is the pre-
dictive covariance matrix at time k. In the predictive
step of the Kalman filter, the mean value x̂

′

k+1

(

µk
0

)

and

the covariance matrix P
′

x,k+1

(

µk
0

)

, which are parame-

ters of the Gaussian predictive pdf p
(

xk+1|yk
0 ,uk

0 , µk
0

)

=

N{x̂
′

k+1

(

µk
0

)

, P
′

x,k+1

(

µk
0

)

}, are computed as

x̂
′

k+1

(

µk
0

)

= A (µk) x̂k

(

µk
0

)

+ B (µk)uk, (18)

P
′

x,k+1

(

µk
0

)

= A (µk) Px,k

(

µk
0

)

A (µk)
T

+ G (µk) G (µk)
T

.
(19)

The conditional probability of the model µk is simply given
by the following marginalization

P
(

µk|y
k
0 ,uk−1

0

)

=
∑

µ0

. . .
∑

µk−1

P
(

µk
0 |y

k
0 ,uk−1

0

)

. (20)

The conditional probability of the model sequence µk
0 is

recursively evaluated according to the relation

P
(

µk
0 |y

k
0 ,uk−1

0

)

=
p

(

yk|y
k−1
0 ,uk−1

0 , µk
0

)

p
(

yk|y
k−1
0 ,uk−1

0

)

P (µk|µk−1) P
(

µk−1
0 |yk−1

0 ,uk−2
0

)

,

(21)

where the predictive pdf p
(

yk|y
k−1
0 ,uk−1

0

)

is a normaliza-

tion constant independent of the model sequence µk
0 and

it is computed as

p
(

yk|y
k−1
0 ,uk−1

0

)

=
∑

µk
0

p
(

yk|y
k−1
0 ,uk−1

0 , µk
0

)

P (µk|µk−1)P
(

µk−1
0 |yk−1

0 ,uk−2
0

)

.

(22)

It is obvious that the predictive pdf p
(

yk|y
k−1
0 ,uk−1

0 , µk
0

)

=

N{ŷ
′

k

(

µk
0

)

, P
′

y,k

(

µk
0

)

} is also Gaussian with the mean
value and the covariance matrix

ŷ
′

k

(

µk
0

)

= C (µk) x̂
′

k

(

µk−1
0

)

, (23)

P
′

y,k

(

µk
0

)

= C (µk) P
′

x,k

(

µk−1
0

)

C (µk)
T

+ H (µk) H (µk)
T

,
(24)

respectively.

The introduced relations provide an exact solution of
the state estimation problem for the multiple Gaussian
linear models. Unfortunately, at time step k there are
Nk+1 distinct model sequences µk

0 , for which the state
estimation has to be solved. Therefore, it is necessary to
reduce exponentially growing number of model sequences
at some time steps using sequence pruning, merging, or a
combination of these methods [Boers and Driessen, 2005].
The following subsection presents a simple method for
approximative state estimation.

4.2 Suboptimal state estimation

The approximation is based on model sequence pruning
performed at predefined time steps. During pruning only
a sequence that has the highest probability is retained and
other sequences that has the same history except last l-
steps are pruned.

The conditional probability of the sequence µk
k−l is

P
(

µk
k−l|y

k
0 ,uk−1

0

)

=
∑

µ0∈M

. . .
∑

µk−l−1∈M

P
(

µk
0 |y

k
0 ,uk−1

0

)

(25)

and the filtering pdf p
(

xk|y
k
0 ,uk−1

0 , µk
k−l

)

has the Gaus-
sian sum form

p
(

xk|y
k
0 ,uk−1

0 , µk
k−l

)

=
∑

µ0∈M

. . .
∑

µk−l−1∈M

β
(

µk
0

)

p
(

xk|y
k
0 ,uk−1

0 , µk
0

)

,

(26)

where

β
(

µk
0

)

=
P

(

µk
0 |y

k
0 ,uk−1

0

)

P
(

µk
k−l|y

k
0 ,uk−1

0

) . (27)

Note that dependence of β
(

µk
0

)

on yk
0 and uk−1

0 was
simply omitted because of brevity. The Gaussian sum
p

(

xk|y
k
0 ,uk−1

0 , µk
k−l

)

is replaced by one term of the orig-

inal Gaussian sum, which has highest probability β
(

µk
0

)

.
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Given the terminal sequence µk
k−l, the sequence with the

maximum probability is µk∗
0 =

[

µk−l−1∗
0 , µk

k−l

]

, where

µk−l−1∗
0 = arg max

µ
k−l−1

0

β
(

µk
0

)

, (28)

and the Gaussian sum (26) is replaced by the single

Gaussian pdf p
(

xk|y
k
0 ,uk−1

0 , µk∗
0

)

with the mean value

x̂k

(

µk∗
0

)

and covariance matrix Px,k

(

µk∗
0

)

.

4.3 Application of rolling horizon technique

The closed-form solutions of backward recursive equations,
presented in Section 3, can not be derived even in the
multi-model framework. It is caused by the fact that the
expectations in these backward recursive equations can not
be computed analytically. Thus, certain approximation,
preserving properties of solution based on the CL IPS,
has to be used to obtain a feasible solution. Many ap-
proximative solutions were proposed for optimal stochastic
control problem, see e.g. [Bertsekas, 1995, Feldbaum, 1960-
61], and there are also some feasible design procedures
for active detector design [Blackmore and Williams, 2006,
Zhang, 1989].

Here, an approximative solution is the following. Discrete-
ness of the set Uk allows to compute the value of the
Bellman function V ∗

k recursively forward in time for each
input, and choose the optimal one. The conditional expec-
tation of the Bellman function V ∗

k is computed numerically
using the trapezoidal rule. However, it is a computationally
intensive method that is infeasible for long detection hori-
zon F . Therefore, the rolling horizon method [Bertsekas,
1995, Šimandl et al., 2005] is used to overcome this prob-
lem. At each time step k, the optimization is performed
over an optimization horizon Fo ≤ F instead of the whole
detection horizon F . It means that the Bellman function
V ∗

k+Fo+1 is approximated by V̄ ∗
k+Fo+1 = 0 and the decision

dk and input uk are determined by the design procedure.

5. NUMERICAL EXAMPLE

The proposed ADC and a passive detector coupled with
a heuristic certainty equivalent controller (HCEC)[Wenk
and Bar-Shalom, 1980] are compared. A simple system is
chosen to make the example clear and understandable .

The detection horizon is F = 40 and the system is
described by one of two second order stable models

µk =1:xk+1 =

[

0.0707 −0.4826
0.8579 0.4996

]

xk+

[

0.2145
0.2224

]

uk

+

[

0.003 0
0 0.003

]

wk, (29)

yk = [ 0 2.25 ] xk + 0.005vk, (30)

µk =2:xk+1 =

[

0.0707 −0.4826
0.8579 0.4996

]

xk+

[

0.1973
0.2104

]

uk

+

[

0.003 0
0 0.003

]

wk, (31)

yk = [ 0 2.25 ] xk + 0.005vk. (32)

The first model describes fault-free behavior and the
second one describes the faulty behavior of the sys-

tem. The initial state x0 has mean x
′

0 = [0 0]
T

and

Table 1. Monte Carlo simulation results

NWD MSE
x
r

k
−xk

ADC 25.47 5.8890
HCEC 30.58 5.9047

covariance matrix P
′

x,0 = 0.1I. The initial probabili-
ties of models are P (µ0 = 1) = P (µ0 = 2) = 0.5
and the transition probabilities are P1,1 = P2,2 = 0.95
and P1,2 = P2,1 = 0.05. The set of admissible inputs
is Uk = {−0.8,−0.7,−0.6,−0.5,−0.4,−0.3,−0.2,−0.15,
−0.1, 0, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. The func-
tion penalizing wrong decision is

Ld
k (µk, dk) =

{

0 if µk = dk

1 if µk 6= dk
(33)

and the control objective is expressed by the cost function

Lc
k (xk,uk) = [xr

k − xk]
T

Qk [xr
k − xk] + uT

k Rkuk, (34)

where Qk = I, Rk = 0.001, and αk = 8. The reference

state xr
k =

[

xr
1,k, xr

2,k

]T

is defined as follows: xr
1,k = 0

for all k ∈ T and xr
2,k is the rectangular signal with

amplitude ±0.2667 and period 40 steps. The parameters
for suboptimal state estimation and optimization were
chosen l = 1 and Fo = 1, respectively.

The results of 300 Monte Carlo simulations are presented
in Tab. 1. The difference in the quality of control, mea-
sured by the mean square error MSExr

k
−xk

of xk, is not
statistically significant, but the average number of wrong
decisions NWD in percents is considerably lesser in the case
of ADC. Contrary to Tab. 1, Figures 4, 5, and 6 illustrate
results for one simulation run. The HCEC controls the
system in a steady state quite well (see Fig. 5) whatever
the correct model is. However, the corresponding passive
detector can generate more wrong decisions in such situa-
tion as presented in Fig. 6. The same figure shows that the
ADC automatically generates a probing signal whenever
input-output data does not contain information necessary
to distinguish between models and it naturally leads to
slightly worse quality of control as depicted in Fig. 4.

6. CONCLUSION

The general approach to the optimal active fault detection
and dual control was applied to a special case of system
description based on multiple model framework. The case
was elaborated in detail, especially suboptimal solution
of backward recursive equation and state estimation prob-
lem. In contrast to the general active fault detection, which
provides unified theoretical framework, the multiple model
approach can be useful for practical application, because
particular models represents considered faults in the sys-
tem and numerical demands of the corresponding algo-
rithm are acceptable for many processes. The numerical
simulation shows that active fault detection and dual con-
trol can significantly improves quality of decisions whereas
quality of control is usually only slightly decreased.
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