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1. INTRODUCTION

Singular time-delay systems arise in a variety of practical
systems such as networks, circuits, power systems and so
on [1]. Since singular time-delay systems are matrix delay
differential equations coupled with matrix difference equations,
the study for such systems is much more complicated than
that for standard state-space time-delay systems or singular
systems. The existence and uniqueness of a solution to a given
singular time-delay system is not always guaranteed and the
system can also have undesired impulsive behavior.

Both delay-independent and delay-dependent stability condi-
tions for singular time-delay systems have been derived using
the time domain method, see [2, 3, 4, 13] and references therein.
However, most of the delay-dependent results in the literature
tackle only the case of constant time delay where two ap-
proaches were used to prove the stability of the system. The first
approach consists of decomposing the system into fast and slow
subsystems and the stability of the slow subsystem is proved
using some Lyapunov functional. Then, the fast variables is
expressed explicitly by an iterative equation in terms of the
slow variables [2]. The second approach introduced by [3] and
it consistes of constructing a Lyapunov-Krasovskii functional
that corresponds directly to the descriptor form of the system.
The extension of these approaches to time-varying delays has
not been addressed yet. In [13], where time-varying delays are
considered, the response of the fast variables has been bounded
by an exponential term using a different approach. Using this
approach, it is not possible to give an estimate of the conver-
gence rate of the states of the system.

Recently, a free-weighting matrices method is proposed in [5]
and [6] to study the delay-dependent stability for time-delay
systems. In 2007, Zhu et al. adopted this technique for singular
time-delay systems [4]. Also, delay-range-dependent concept
was recently studied for time-delay systems, where the delays
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are considered to vary in a range and thereby more applicable
in practice [7].

Formally speaking, these conditions provide only the asymp-
totic stability of singular time-delay systems. In [8], the global
delay-independent exponential stability for a class of singular
systems with multiple constant time delays is investigated and
an estimate of the convergence rate of such systems is pre-
sented. One may ask if there exists a possibility to use the
LMI approach for deriving exponential estimates for solutions
of singular time-delay systems. In [13], exponential stability
conditions in terms of LMIs are given but no estimate of the
convergence rate is presented.

This paper addresses an important problem that has not been
fully investigated. Delay-range-dependent exponential stability
conditions for singular systems with multiple time-varying
delays is established in terms of LMIs. These conditions will
guarantee that the system will be regular, impulse-free and
exponentially stable. Moreover, an estimate of the convergence
rate of such systems is presented. It has been shown also that
this rate depends if the system has single or multiple delays. The
method used is based on the Lyapunov-Krasovskii approach,
and some graph theory terminology has been used to prove the
stability of the fast subsystem.

The rest of the paper is organized as follows. In section II,
the problem, the goal of the paper and some definitions and
Lemmas are stated. In section III, the main results are given. In
sections IV and V, a numerical example and the conclusion are
given, respectively.

Notation: Throughout this paper, λmax(P) and λmin(P) denote,
respectively, the maximal and minimal eigenvalue of matrix P.
Cτ = C([−τ,0],Rn) denotes the Banach space of continuous
vector functions mapping the interval [−τ,0] into R

n with the
topology of uniform convergence. ‖ · ‖ refers to the Euclidean
vector norm whereas ‖φ‖c = sup−τ≤t≤0‖φ(t)‖ stands for the
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Fig. 1. An example of a tree

norm of a function φ ∈ Cτ . Cv
τ is defined by Cv

τ = {φ ∈
Cτ ;‖φ‖c < v,v > 0}.

2. PROBLEM STATEMENT AND DEFINITIONS

Consider the linear singular time-delay system:





Eẋ(t) = Ax(t)+
p

∑
k=1

Akx(t −dk(t))

x(t) = φ(t),−d ≤ t ≤ 0

(1)

where x(t) ∈ R
n is the state, the matrix E ∈ R

n×n may be
singular, and we assume that rank(E) = r ≤ n, A and Ak are
known real constant matrices, φ(t) ∈Cτ is a compatible vector
valued continuous function and dk(t), k = 1, . . . , p, is the time
delay and that is assumed to satify:

{
0 < dk ≤ dk(t) ≤ dk

ḋk(t) ≤ µ < 1
(2)

with dk and dk are given positive scalars. Also, d and d

are positive scalars with d = max{d1,d2, . . . ,dp} and d =
min{d1,d2, . . . ,dp}.

The following definitions will be used in the rest of this paper:

Definition 1. [12]

i. System (1) is said to be regular if the characteristic poly-
nomial, det(sE −A) is not identically zero.

ii. System (1) is said to be impulse-free if deg(det(sE −
A)) = rank(E)

iii. System (1) is said to be exponentially stable if there exist
σ > 0 and γ > 0 such that, for any compatible initial
conditions φ(t), the solution x(t) to the singular time-
delay system satisfies

‖x(t)‖ ≤ γe−σt‖φ‖c

iv. System (1) is said to be exponentially admissible if it is
regular, impulse-free and exponentially stable.

Remark 2. In the rest of this paper, the following terminology
borrowed from graph theory will be used.

• A tree structure is a way of representing the hierarchical
nature of a structure in a graphical form (see Figure (1)).

• The topmost node in a tree is called the root node.
• A node is a parent of another node (child) if it is one step

higher in the hierarchy and closer to the root node.
• Nodes at the bottommost level of the tree are called leaf

nodes.

Lemma 3. [10] Suppose that system (1) is regular and impulse-
free, then the solution to system (1) exists and it is impulse-free
and unique on (0,∞).

Lemma 4. Given a set of matrices (D1, . . . ,Dp). Let a set of
symmetric and positive-definite matrices (S1, . . . ,Sp) and a set
of positive scalars (η1, . . . ,ηp) ∈ (0,1) exist such that





D⊤
1 S1D1 −η1

2S1 < 0
...

D⊤
p SpDp −ηp

2Sp < 0

(3)

then, any random multiplication of these matrices (each matrix
can appear more than once) satisfies the bound

‖Dk1
Dk2

. . .Dkc
‖ ≤ χe−λ (4)

with

c ∈ N, ki ∈ {1, . . . , p}

λ = −ln

(
c

∏
i=1

ηki

)
, χ =

√
λmax(Sk1)λmax(Sk2) . . .λmax(Skc)

λmin(Sk1)λmin(Sk2) . . .λmin(Skc)
.

3. MAIN RESULTS

3.1 Delay-Range-Dependent Exponential Stability

Theorem 5. Given positive scalars dk and dk, with dk < dk,

k = 1, . . . , p, µ < 1 and α > 1
d

. System (1) with time-varying

delays dk(t) satisfying (2) is exponentially admissible with

σ > α − 1
d

if there exist a nonsingular matrix P ∈ R
n×n, n× n

symmetric and positive-definite matrices Qk1, Qk2, Qk3, Zk1 and
Zk2, k = 1, . . . , p, and n× n matrices Mki, Nki and Ski, i = 1,2,
k = 1, . . . , p, such that the following LMI hold




Π ϒ ÃU
⋆ T 0
⋆ ⋆ −U


< 0 (5)

with the following constraint

E⊤P = P⊤E ≥ 0 (6)

where

T = diag

{
−

e2αdk −1

2α
Zk1,−

e2αdk − e2αdk

2α
(Zk1 +Zk2),

−
e2αdk − e2αdk

2α
Zk2

}
, k = 1, . . . , p

Ã⊤ =
[

A Ã1 . . . Ãp

]
, with Ãk = [ Ak 0 0 ]

U =
p

∑
k=1

{(
dkZk1 +dkZk2

)}
with dk = dk −dk

Π =

[
Π1 F
⋆ G

]
and ϒ =

[
Ñ1 S̃1 M̃1 . . . Ñp S̃p M̃p

]

Ñ⊤
k =

[
N⊤

k1 0n×3n(k−1) N⊤
k2 0 0 0n×3n(p−k)

]
, k = 1, . . . , p

M̃⊤
k =

[
M⊤

k1 0n×3n(k−1) M⊤
k2 0 0 0n×3n(p−k)

]
, k = 1, . . . , p

S̃⊤k =
[

S⊤k1 0n×3n(k−1) S⊤k2 0 0 0n×3n(p−k)

]
, k = 1, . . . , p

Π1 = P⊤A+A⊤P+
p

∑
k=1

{
3

∑
i=1

Qki +Nk1E +(Nk1E)⊤

}

+2αE⊤P

F = [ W1 . . . Wp ] and G = diag
{

J1, . . . ,Jp

}
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Jk =




Πk3 eαdk Mk2E −eαdk Sk2E
⋆ −Qk1 0
⋆ ⋆ −Qk2


 k = 1, . . . , p

Wk =
[

Πk2 eαdk Mk1E −eαdk Sk1E

]
, k = 1, . . . , p

Πk2 = P⊤Ak +(Nk2E)⊤−Nk1E +Sk1E −Mk1E k = 1, . . . , p

Πk3 = −(1−µ)e−2αdk Qk3 +Sk2E +(Sk2E)⊤−Nk2E

− (Nk2E)⊤−Mk2E − (Mk2E)⊤ k = 1, . . . , p.

Proof. The system can be shown to be regular and impulse-
free. Therefore, there exist two matrices R, L such that (see
[10])

Ē = REL =

[
Ir 0
0 0

]
Ā = RAL =

[
Â 0
0 In−r

]
(7)

Now, let Ākd = RAkL and Q̄ki = L⊤QkiL,

Ākd =

[
Akd11 Akd12

Akd21 Akd22

]
, Q̄ki =

[
Qki11 Qki12

Qki21 Qki22

]

Then, the following relations can be shown

Akd22
⊤Qk322Akd22 − e−2αdk Qk322 < 0 ∀k = 1, . . . , p (8)

ρ(eαdk Akd22) < 1 ∀k = 1, . . . , p (9)

Let ζ (t) = L−1x(t) =

[
ζ1(t)
ζ2(t)

]
, where ζ1(t) ∈ R

r and ζ2(t) ∈

R
n−r. System (1) is equivalent to the following one

ζ̇1(t) = Âζ1(t)

+
p

∑
k=1

{Akd11ζ1(t −dk(t))+Akd12ζ2(t −dk(t))} (10)

0 =ζ2(t)+
p

∑
k=1

{Akd21ζ1(t −dk(t))+Akd22ζ2(t −dk(t))} .

(11)

Now, choose the Lyapunov functional as follows:

V (ζt) = ζ (t)⊤Ē⊤P̄ζ (t)+
p

∑
k=1

{∫ t

t−dk

ζ (s)⊤e2α(s−t)Q̄k1ζ (s)ds

+

∫ t

t−dk

ζ (s)⊤e2α(s−t)Q̄k2ζ (s)ds

+
∫ t

t−dk(t)
ζ (s)⊤e2α(s−t)Q̄k3ζ (s)ds

+
∫ 0

−dk

∫ t

t+θ
(Ēζ̇ (s))⊤e2α(s−t)Z̄k1Ēζ̇ (s)dsdθ

+
∫ −dk

−dk

∫ t

t+θ
(Ēζ̇ (s))⊤e2α(s−t)Z̄k2Ēζ̇ (s)dsdθ

}

where ζt = ζ (t −β ), β ∈ (−d2,0]. Then, the following estima-
tion can be obtained

‖ζ1(t)‖ ≤

√
λ2

λ1

‖φ‖ce−αt (12)

where λ1 and λ2 are positive integers. In order to proof the
exponential stability of the fast system, the relation in (11)
should be used. For constant time delay, an explicit equation
of ζ2(t) can be found easily by an iterative method [2]. It can
be seen that ζ2 at time t depends on ζ2 at time t − τ , where τ
is the constant delay, and ζ2 at time t − τ depends on ζ2 at time
t − 2τ , and so on. In the case of multiple time-varying or even
single delay, such a simple relation can’t be found. Thus, a tree

Fig. 2. An example with p = 2. Take note that ζ2(ti j) depends
on the value of ζ at all times indicated by the children of
ti j in the tree.

structure will be adopted to model the dependency of ζ2(t) on
past instances. Now, define

t00 = t (13)

ti j = t(i−1)ν j
−d(mod( j,p)+1)(t(i−1)ν j

) (14)

Θ = {ti j | ti j ∈ (−d,0] and t(i−1)ν j
/∈ (−d,0]} (15)

Â00 = I (16)

Âi j =
(

Â(i−1)ν j

)
×
(
−A(mod( j,p)+1)d22

)
(17)

where

ν j = the greatest integer less than or equal to
j

p
,

mod( j, p) = the remainder of the integer division
j

p
, and

ti j and Âi j are undefined if t(i−1)ν j
∈ (−d,0].

If we let the parents of ti j and Âi j to be t(i−1)ν j
and Â(i−1)ν j

,

respectively, ti j’s and Âi j’s will represent two trees with the
same structure (see Figure 2), with roots t and I, respectively.
Note also that the values of the leaf nodes of the ti j’s tree
belongs to Θ. Noting that mod( j, p) = j if j < p, then from
(11), and using the definitions (13)-(17), we get

ζ2(t) = −
p

∑
k=1

{Akd21ζ1(t −dk(t))+Akd22ζ2(t −dk(t))}

ζ2(t) =
p−1

∑
j=0

{
−A( j+1)d21ζ1(t1 j)+ Â1 jζ2(t1 j)

}

= ∑
t1 j∈Θ

{
Â1 jζ2(t1 j)

}
+

p−1

∑
j=0

{
−A( j+1)d21ζ1(t1 j)

}

+
p−1

∑
j=0

t1 j /∈Θ

Â1 jζ2(t1 j) (18)

if t1 j /∈ Θ, from (11) and (13)-(17), we get

Â1 jζ2(t1 j) = Â1 j

( j+1)p−1

∑
r= jp

{
−A(mod(r,p)+1)d21ζ1(t2r)

−A(mod(r,p)+1)d22ζ2(t2r)
}

Â1 jζ2(t1 j) =
( j+1)p−1

∑
r= jp

{
−Â1 jA(mod(r,p)+1)d21ζ1(t2r)
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− Â1 jA(mod(r,p)+1)d22ζ2(t2r)
}

=
( j+1)p−1

∑
r= jp

{
−Â1 jA(mod(r,p)+1)d21ζ1(t2r)

+Â2rζ2(t2r)
}

thus, ζ2(t) in (18) can be computed from

ζ2(t) = ∑
t1 j∈Θ

{
Â1 jζ2(t1 j)

}
+

p−1

∑
j=0

{
−A( j+1)d21ζ1(t1 j)

}

+
p−1

∑
j=0

t1 j /∈Θ

( j+1)p−1

∑
r= jp

{
−Â1 jA(mod(r,p)+1)d21ζ1(t2r)+ Â2rζ2(t2r)

}

= ∑
t1 j∈Θ

{
Â1 jζ2(t1 j)

}
+

p−1

∑
j=0

{
−A( j+1)d21ζ1(t1 j)

}

+
p2−1

∑
j=0

t1ν j
/∈Θ

{
−Â1 jA(mod( j,p)+1)d21ζ1(t2 j)+ Â2 jζ2(t2 j)

}

= ∑
t1 j∈Θ

{
Â1 jζ2(t1 j)

}
−

1

∑
i=0

pi+1−1

∑
j=0

tiν j
/∈Θ

Âi jA(mod( j,p)+1)d21×

ζ1(t(i+1) j)+
p2−1

∑
j=0

t1ν j
/∈Θ

Â2 jζ2(t2 j)

=
2

∑
i=1

∑
ti j∈Θ

{
Âi jζ2(ti j)

}
−

1

∑
i=0

pi+1−1

∑
j=0

tiν j
/∈Θ

Âi jA(mod( j,p)+1)d21×

ζ1(t(i+1) j)+
p2−1

∑
j=0

t2 j /∈Θ

Â2 jζ2(t2 j)

Continuing in the same manner, if t2 j /∈ Θ,

Â2 jζ2(t2 j) =
( j+1)p−1

∑
r= jp

{
−Â2 jA(mod(r,p)+1)d21ζ1(t3r)

−Â2 jA(mod(r,p)+1)d22ζ2(t3r)
}

=
( j+1)p−1

∑
r= jp

{
−Â2 jA(mod(r,p)+1)d21ζ1(t3r)+ Â3rζ2(t3r)

}

we get,

ζ2(t) =
3

∑
i=1

∑
ti j∈Θ

{
Âi jζ2(ti j)

}
−

2

∑
i=0

pi+1−1

∑
j=0

tiν j
/∈Θ

Âi jA(mod( j,p)+1)d21×

ζ1(t(i+1) j)+
p3−1

∑
j=0

t3 j /∈Θ

Â3 jζ2(t3 j)

Note that

ti j = t(i−1)ν j
−d(mod( j,p)+1)(t(i−1)ν j

)

≤ t(i−1)ν j
−d(mod( j,p)+1) < t(i−1)ν j

which means that the time of a child is always less than the time
of its parent. Therefore, there exists a positive finite integer k(t)
such that

ζ2(t) =
k(t)

∑
i=1

∑
ti j∈Θ

{
Âi jζ2(ti j)

}

−
k(t)−1

∑
i=0

pi+1−1

∑
j=0

tiν j
/∈Θ

Âi jA(mod( j,p)+1)d21ζ1(t(i+1) j)

and ti j ∈ [−d,0]. Thus, we get

‖ζ2(t)‖ ≤
k(t)

∑
i=1

∑
ti j∈Θ

{
‖Âi j‖

}
‖φ‖c

+
k(t)−1

∑
i=0

pi+1−1

∑
j=0

tiν j
/∈Θ

‖Âi j‖‖A(mod( j,p)+1)d21‖‖ζ1(t(i+1) j)‖ (19)

Now, in order to estimate ‖ζ2(t)‖, the two terms in (19) have

to be estimated. For the first term, from (16)-(17), Âi j can be
written as

Âi j =
(

Â(i−1)ν j

)
×
(
−A(mod( j,p)+1)d22

)

=
(

Â(i−1)ν j

)
×
(
−Ak1d22

)

Iterating on Â(i−1)ν j
gives after i-1 iterations,

Âi j = Akid22 . . .Ak2d22Ak1d22

where k1,k2, . . . ,ki are integers between 1 and p. Using Lemma

4 and (8), Âi j satisfies the bound

‖Âi j‖ = ‖Akid22 . . .Ak2d22Ak1d22‖ ≤ χe−α d̂i j (20)

with

χ =

√
λmax(Qki322) . . .λmax(Qk2322)λmax(Qk1322)

λmin(Qki322)λmin . . .(Qk2322)λmin(Qk1322)

d̂i j =
i

∑
e=1

dke

Note also that if ti j ∈ Θ, d̂i j will be greater than or equal to t.
Therefore, using (20), the first term in (19) can be estimated as

k(t)

∑
i=1

∑
ti j∈Θ

{
‖Âi j‖

}
‖φ‖c ≤

k(t)

∑
i=1

∑
ti j∈Θ

χe−α d̂i j ‖φ‖c (21)

Noting that ti j ∈ Θ, which implies that d̂i j > t, (21) can be
estimated as

k(t)

∑
i=1

∑
ti j∈Θ

{
‖Âi j‖

}
‖φ‖c ≤

k(t)

∑
i=1

∑
ti j∈Θ

χ ‖φ‖c e−αt

≤ χ
k(t)

∑
i=1

∑
ti j∈Θ

{1}‖φ‖c e−αt (22)

The summation in (22) equals to the number of leaves in the
tree (see Figure f1). It can be seen easily that the worst case
when all the leaves are in the level k(t) (i.e. i = k(t)), thus the

summation can be bouneded by pk(t), and we get

k(t)

∑
i=1

∑
ti j∈Θ

{
‖Âi j‖

}
‖φ‖c e−αt ≤ χ pk(t) ‖φ‖c e−αt (23)

Now, in order to estimate the second term in (19), define

‖Ǎ1‖ = max{‖A1d21‖, . . . ,‖Apd21‖} (24)

‖Ǎe‖ = max{‖A1d22eαd1‖, . . . ,‖Apd22eαdp‖}. (25)
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From (8), there exist constants β > 1 and γ ∈ (0,1) such that

‖Ǎe‖ ≤ βγ i, i = 1,2, · · · . (26)

Then, from (13)-(17), we get

‖Âi j‖e
−α(t(i+1) j)

≤ ‖Â(i−1)ν j
A(mod( j,p)+1)d22‖e

−α(tiν j
)
e

αd(mod( j,p)+1)(tiν j
)

≤ ‖Â(i−1)ν j
e
−α(tiν j

)
A(mod( j,p)+1)d22e

αd(mod( j,p)+1)‖

≤ ‖Â(i−1)ν j
e
−α(tiν j

)
Ak1d22e

αdk1‖ (27)

Iterating on Â(i−1)ν j
and tiν j

gives after i-1 iterations,

‖Âi j‖e
−α(t(i+1) j) ≤ ‖Ie

−αt1ki+1 Akid22e
αdki . . .Ak1d22e

αdk1‖

≤ ‖Akid22e
αdki . . .Ak1d22e

αdk1‖e−αteαd

≤ ‖Akid22e
αdki ‖ . . .‖Ak1d22e

αdk1‖e−αteαd

≤ ‖Ǎe‖
ie−αteαd (28)

Therefore, using (12) and noting that ‖A(mod( j,p)+1)d21‖≤ ‖Ǎ1‖
for any integer j, the second term in (19) can be estimated as

k(t)−1

∑
i=0

pi+1−1

∑
j=0

tiν j
/∈Θ

‖Âi j‖‖A(mod( j,p)+1)d21‖‖ζ1(t(i+1) j)

≤
∥∥Ǎ1

∥∥
√

λ2

λ1

‖φ‖c

k(t)−1

∑
i=0

pi+1−1

∑
j=0

tiν j
/∈Θ

‖Âi j‖e
−α(t(i+1) j)

using (28),

≤
∥∥Ǎ1

∥∥
√

λ2

λ1
eαd

k(t)−1

∑
i=0

pi+1−1

∑
j=0

tiν j
/∈Θ

{
‖Ǎe‖

i
}
‖φ‖c e−αt (29)

Note that for any i,
pi+1−1

∑
j=0

tiν j
/∈Θ

‖Ǎe‖
i = m‖Ǎe‖

i, where m equals to

the number of nodes in level i+1 (see Figure 2). It can be seen
easily that the worst case is when all the nodes exist in the level
(i.e. pi+1 nodes), and we get

k(t)−1

∑
i=0

pi+1−1

∑
j=0

tiν j
/∈Θ

‖Ǎe‖
i ≤

k(t)−1

∑
i=0

pi+1‖Ǎe‖
i

≤ pk(t)
k(t)−1

∑
i=0

‖Ǎe‖
i

using (26)

≤ pk(t)M where M =
β

1− γ
(30)

Therefore, using (29) and (30), the second term in (19) can be
estimated as

k(t)−1

∑
i=0

pi+1−1

∑
j=0

tiν j
/∈Θ

‖Âi j‖‖A(mod( j,p)+1)d21‖‖ζ1(t(i+1) j)

≤
∥∥Ǎ1

∥∥
√

λ2

λ1
eαd ‖φ‖c pk(t)Me−αt (31)

Now, from (31) and (23), ‖ζ2(t)‖ in (19) is estimated by

‖ζ2(t)‖ ≤


χ ‖φ‖c pk(t) +

∥∥Ǎ1

∥∥
√

λ2

λ1
eαd ‖φ‖c pk(t)M


e−αt

Note that,

k(t)−1 ≤
t

d

pk(t)−1 ≤ p
t
d

max
t≥0

{pk(t)−1e−at} ≤ max
t≥0

{p
t
d e−at} = 1 if a >

1

d

Then,

‖ζ2(t)‖ ≤
[
χ ‖φ‖c pk(t)e−β t

+
∥∥Ǎ1

∥∥
√

λ2

λ1
eαd ‖φ‖c pk(t)e−β tM


e−(α−β )t (32)

≤


χ p+

∥∥Ǎ1

∥∥
√

λ2

λ1
eαd pM


‖φ‖c e−(α−β )t (33)

where β > 1
d

. Thus, system in (10) and (11) is exponentially

stable with a minimum decaying rate equals to (α−β ). Finally,
as we have shown that this system is also regular and impulse-
free, by Definition (1), we conclude that the system (1) is
exponentially admissible. This completes the proof. 2

Remark 6. If we perform the slow-fast decomposition pre-
sented in [9] to the class of singular systems, we will get two
subsystems. These subsystems are referred to in the literature
as fast and slow subsystems. The dynamics of the slow one
is governed by differential equation while the dynamics of the
fast one is governed by algebraic equation and it goes to zero
immediately (This is why it is called fast subsystem). Yet, if
we perform the decomposition to our class of systems (i.e.
with multiple time-varying delays). It has been shown in the
proof of Theorem (5) that the subsystem which is usually called
slow converge with a guaranteed convergence rate equals to α ,
while the subsystem which is usually called fast converge with

a guaranteed convergence rate equals to α − 1
d

. In other words,

the so called fast subsystem usually converge slower than the
one called slow subsystem. In this sense, we prefer to refer
to the two subsystems as differential and algebraic subsystems
instead of fast and slow subsystems.

As a special case of our class of systems, we present here the
result in the case of single time-varying delay.

Corollary 7. Given positive scalars d1 and d1 with d1 ≤ d1,
µ < 1 and α , system (1) with time-varying delay d1(t) satis-
fying (2) is exponentially admissible with σ = α if there exist
a nonsingular matrix P ∈ R

n×n, n× n symmetric and positive-
definite matrices Q1, Q2, Q3, Z1, Z2, and n×n matrices Mi, Ni,
Si, i = 1,2 such that the following LMI hold:




Π11 Π12 eαd1 M1E −eαd2 S1E
e2αd2 −1

2α
N1

⋆ Π22 eαd1 M2E −eαd2 S2E
e2αd2 −1

2α
N2

⋆ ⋆ −Q1 0 0

⋆ ⋆ ⋆ −Q2 0

⋆ ⋆ ⋆ ⋆ −
e2αd2 −1

2α
Z1

⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆
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e2αd2 − e2αd1

2α
S1

e2αd2 − e2αd1

2α
M1 A⊤U

e2αd2 − e2αd1

2α
S2

e2αd2 − e2αd1

2α
M2 Ad

⊤U

0 0 0

0 0 0

0 0 0

−
e2αd2 − e2αd1

2α
(Z1 +Z2) 0 0

⋆ −
e2αd2 − e2αd1

2α
Z2 0

⋆ ⋆ −U




< 0

with the following constraint

E⊤P = P⊤E ≥ 0

where

Π11 = P⊤A+A⊤P+
3

∑
i=1

Qi +N1E +(N1E)⊤ +2αE⊤P

Π12 = P⊤Ad +(N2E)⊤−N1E +S1E −M1E

Π22 = −(1−µ)e−2αd2 Q3 +S2E +(S2E)⊤−N2E − (N2E)⊤

−M2E − (M2E)⊤

d = d1 −d1, U = d1Z1 +dZ2

Note that the guaranteed exponential rate in this special case is

α and not α − 1
d

as it may be expected from Theorem (5). This

is due to the fact that p = 1 to the power any number equals one.
Therefore, the steps in (32) and (33) in the proof of Theorem (5)
are not needed and the guaranteed exponential rate is going to
be α .

4. EXAMPLE

Consider the following singular system with multiple time
delays:

E =

[
1 0 0
0 1 0
0 0 0

]
, A =

[
−3 2 0
0 −5 1
1 0 2

]
,

A1d =

[
0 0.5 0
0 0 0.1

−0.1 0 −0.1

]
A2d =

[
0.05 0.1 0

0 −0.4 0.05
0.1 0.1 −0.1

]

Let d1 = 0.5, d1 = 0.6, d2 = 0.6, d2 = 0.8 and µ = 0.5. Us-
ing Theorem 5, the guaranteed convergence rate of this sys-
tem is given by σ = 0.4. Note also that α = 2.4, this means
that the differential subsystem exponentially converge with
a guaranteed convergence rate equals to 2.4. Figure 3 gives
the simulation results of x1, x2 and x3 when d1(t) = 0.55 +
0.04sin(5t), d2(t) = 0.7+0.5sin(5t) and the initial function is

φ(t) = [ 2 −1 −1.0556 ]⊤, t ∈ [−0.7,0]. Note that the algebraic
subsystem x3(t) converge slower than the differential subsys-
tem.

5. CONCLUSION

This paper deals with the control of singular systems with
multiple time-varying delays. New sufficient conditions for
checking exponential stability are developed. The results can
be extended to uncertain systems.
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