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Abstract: Recent papers in the field of LMI-based robust control have provided extensions of
known results for linear time-invariant systems to the case of periodically time varying linear
systems. These results, theoretically satisfactory because formulated in terms of optimization
problems of polynomial complexity, may still have limited applications in practice because the
number of variables and constraints is very large. The present paper proposes a new formulation
of these results that allows to reduce the computational burden both by reducing the number
of decision variables and the size of the constraints. Along with this numerical improvement,
the paper produces a new modeling of periodic discrete-time systems in descriptor form that is
believed promising for future research.

Keywords: Periodic systems, LMI, Robust Control, H2

1. INTRODUCTION

In the context of control of time-varying systems, an im-
portant sub-class is the periodic case. Many processes in
chemistry, biology and mechanics are indeed conceived to
follow a periodic path to achieve their goals. Control of
this periodic path following problem formulates then as
a control issue for models with periodically time-vaying
parameters. As long as small errors are assumed along
the trajectory, and in case of sampled-data control, linear
periodic time-varying (LPTV) discrete-time models form
a first approximation of such systems (see Bittanti and
Colaneri [2007], Peaucelle et al. [2007c]). But this is not all,
another situation when LPTV discrete-time systems occur
is for multi-rate sampled-data systems (see for example
Lall and Dullerud [2001], Sagfors et al. [2000]). Develop-
ment of analysis (and then design) results for such models
is therefore of major importance. Moreover, since linear
models are only approximations of the original problem,
results should be able to prove robust performances with
respect to uncertainties.

Beyond the application issues, LPTV discrete-time models
have also been intensively studied in the literature because
of possible extensions of efficient tools known for linear
time-invariant (LTI) systems. Most results therefore have
interpretations in terms of lifted or cyclic LTI represen-
tations of the LPTV systems (see Bittanti and Colaneri
[2000]). But these LTI representations have the disadvan-
tage of being often complex to manipulate, in particular
for uncertain systems, and methods working directly on
the original periodic state-space representations have been
produced recently for that purpose De Souza and Trofino
[2000], Farges et al. [2007a,b]. Compared to results pro-
duced by the lifted representation these new results have

(as for the cyclic representation case) the disadvantage
to produce conditions of high numerical complexity. This
explains by the use of Lyapunov-type variables of size
nN × nN where n is the size of the state a each sample
of time and N is the length of the period. This is in
contrast with lifted representation type results in which
the Lyapunov-type variable is of size n × n utilizing the
fact that convergence properties can be assessed by the the
behavior of only one representative state in each period.

The goal of the paper is to provide linear matrix in-
equality (LMI) conditions for robust stability of such
systems combining both properties described above: sim-
plicity for deriving robust results and reduced numerical
complexity. Two main ideas are used for this purpose.
One is descriptor-like modeling which, as illustrated in
De Oliveira and Skelton [2001], Ebihara et al. [2005], Peau-
celle et al. [2007a], proves efficient for simple derivation of
robust conditions with reduced conservatism. The second
is a technique taken from Lu et al. [2005] that allows in
the LPTV context to reduce significantly the number of
LMIs for the H2 problem.

The outline of the paper is as follows. Section 2 provides
the descriptor-like modeling of LPTV systems and per-
formance analysis LMI results are derived based on that
representation. H2 performance is studied in details but
stability and H∞ performance are described as well. Sec-
tion 3 is dedicated to robustness issues for the case of poly-
topic uncertainties. Robustness is achieved by means of
slack-variables techniques (De Oliveira and Skelton [2001],
Ebihara et al. [2005]) allowing parameter-dependent Lya-
punov functions and thus reduced conservatism. Section 4
illustrates the theoretical results on a numerical example.
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Notations: For two symmetric matrices, A and B, A >
(≥)B means that A − B is positive (semi-) definite. AT

denotes the transpose of A, A∗ is the conjugate transpose.
1n and 0m,n denote the respectively the identity matrix of
size n and null matrix of size m× n. If the context allows
it the dimensions of these matrices are often omitted. For
a given matrix B ∈ Rm×n such that rank(B) = r, we
define B⊥ ∈ Rn×(n−r) the right orthogonal complement
of B by BB⊥ = 0 and B⊥B⊥T > 0. The notation 〈A〉
stands for the symmetric matrix A+AT . For concatenated
vectors the following notation is adopted: vec ( x y ) =(
xT yT

)T
.

2. DESCRIPTOR MODELS AND LMIS

2.1 Lifted descriptor model

Assume the N -periodic linear system

xk+1 = Akxk + Bkwk , zk = Ckxk + Dkwk (1)

where for all k ≥ 0 the parameters satisfy the following
periodic condition Ak+N = Ak, Bk+N = Bk, Ck+N = Ck,
Dk+N = Dk. xk ∈ Rnk are the instantaneous states,
wk ∈ Rmk are disturbance inputs and zk ∈ Rpk is a control
output. All vectors are assumed to be possibly of variable
length along the period. This is for example the case
for periodic models representing multi-rate sampled-data
systems, Lall and Dullerud [2001], Sagfors et al. [2000].

Systems such as (1) have two classical LTI representa-
tions, Bittanti and Colaneri [2000]. One, called cyclic,
amounts to the relations between the actual states of
the system obtained as the concatenation of all instan-
taneous states over one period vec

(
xiN · · · x(i+1)N−1

)
.

The other, called lifted, considers only one instant of each
period to be the representative of the systems’ state, the
remaining instants being seen as intermediate variables.
Our approach is intermediate between these two.

The sequence {xiN}i≥0 is chosen to be the the representa-
tive state of the system (chosen as such because includes
the initial conditions x0). Any other choice {xiN+j}i≥0

with j ∈ {0 . . . N − 1} is admissible as well (it has no
influence on the results in the nominal case but does
modify results for the robust case as illustrated in the
examples). Stability of the system is in the following
defined with respect to convergence of the representa-
tive state. Nevertheless, the other intermediate states are
kept in the model and gathered in the following sequence
{ηi = vec

(
xiN+1 · · · x(i+1)N−1

)
}i≥0.

Define as well ŵi = vec
(
wiN · · · w(i+1)N−1

)
and ẑi =

vec
(
ziN · · · z(i+1)N−1

)
respectively the vectors of dis-

turbances inputs and control outputs over a period. Us-
ing these notations, the dynamics of the system in-
volve the signals stacked in a unique vector qi =
vec

(
xiN ηi x(i+1)N ŵi ẑi

)
and are fully modeled by the

descriptor-like form

M̂qi = 0 , ∀i ≥ 0 (2)

where M̂ =
[

Â B̂ 0n,p

Ĉ D̂ −1p

]
=



A0 −1n1 0 B0 0 0 0
. . . . . . . . .

0 AN−1 −1nN
0 BN−1 0 0

C0 0 0 D0 0 −1p0 0
. . . . . . . . . . . .

0 CN−1 0 0 DN−1 0 −1pN−1


.

n =
∑N

k=1 nk, m =
∑N

k=1 mk and p =
∑N

k=1 pk define the
overall dimensions of the model.

2.2 Stability analysis

Since all intermediate states of a periodic system are
bounded as long as the representative state xiN and the
disturbances ŵi are bounded, stability may be proved in
the Lyapunov context as follows.
Theorem 1. Asymptotic stability of the N -periodic system
xk+1 = Akxk where Ak+N = Ak is equivalent to the
existence of a Lyapunov function Vi = xT

iNPxiN with P >
0 such that Vi+1 < Vi, (∀xiN 6= 0). An LMI formulation of
this result is

P > 0 , Â⊥T

[−P 0 0
0 0n−nN

0
0 0 P

]
Â⊥ < 0. (3)

Proof. Stability of the linear periodic system is equiv-
alent proving Schur stability of the monodromy matrix
ΦN−1,0 = AN−1 · · ·A1A0 which is such that x(i+1)N =
ΦN−1,0xiN . Let P > 0 be the Lyapunov matrix that proves
the Schur stability of ΦN−1,0 then ΦT

N−1,0PΦN−1,0 < P .
Noticing that

Â⊥T =
[
1 AT

0 (A1A0)T . . . (AN−1 · · ·A1A0)T
]

this last inequality is exactly (3).

Since Schur stability of monodromy matrices is indepen-
dent of the initial instant used to define it (ΦN+j,1+j Schur
stable for all j), the result is independent of the choice of
the representative state.

2.3 H2 performance analysis

Theorem 2. The H2 norm of the N -periodic system is the
solution to the LMI optimization problem

min
√

1
N Trace(T )

subject to the constraints

M̂⊥T


−P 0 0 W 0
0 0n−nN

0 0 0
0 0 P 0 0

WT 0 0 −T 0
0 0 0 0 1p

 M̂⊥ < 0 (4)

where X > 0 ∈ RnN×nN , T ∈ Rmw×mw and W ∈ Rn1×mw .

Before producing the proof, a technical lemma is stated.
It is a reformulation of the technique in Lu et al. [2005]
that allows to reduce the size of LMIs for H2 discrete-time
analysis. The lemma is proved in Peaucelle et al. [2007b].
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Lemma 3. Let Zi=1...5, Mi=1...4 be given matrices of ap-
propriate dimensions with Z2 ≥ 0 and Z3 ≥ 0 positive
semi-definite. The following two conditions hold simulta-
neously

xT

 Z1 0 Z5

0 −Z2 0
ZT

5 0 Z4

x < 0,
∀x 6= 0 :

[ M1 M2 M4 ]x = 0
(5)

yT

 Z1 0 Z5

0 −Z3 0
ZT

5 0 Z4

 y < 0,
∀y 6= 0 :

[ M1 M3 M4 ] y = 0
(6)

if and only if there exists a matrix Z23 such that

zT


Z1 0 0 Z5

0 −Z2 Z23 0
0 ZT

23 −Z3 0
ZT

5 0 0 Z4

 z < 0
∀z 6= 0 :

[ M1 M2 M3 M4 ] z = 0
(7)

Proof. The proof of Theorem 2 is made assuming N = 3
for simplicity. The general case has no more complexity.

Recall the grammian-based formulation of the H2 per-
formance problem, Bittanti and Cuzzola [2000]. If ‖Σ‖2

denotes the H2 norm of the system, then

‖Σ‖2
2 = 1

N

∑N−1
k=0 Trace(DT

zkDzk + BT
wkPk+1Bwk) (8)

where the grammians Pk are N -periodic (Pk+N = Pk) and
solution of

AT
k Pk+1Ak − Pk + CT

zkCzk = 0. (9)

Combining all equalities (9) for k = 0 . . . 2 gives

P0 =

 A2A1A0

C0

C1A0

C2A1A0


T  P0 0 0 0

0 1p0 0 0
0 0 1p1 0
0 0 0 1p2


 A2A1A0

C0

C1A0

C2A1A0

 (10)

and formula (8) also reads as ‖Σ‖2
2 = 1

N

∑N−1
k=0 Trace(Tk)

where

T0 =

 A2A1B0

D0

C1B0

C2A1B0


T  P0 0 0 0

0 1p0 0 0
0 0 1p1 0
0 0 0 1p2


 A2A1B0

D0

C1B0

C2A1B0

 (11)

T1 =

[
A2B1

D1

C2B1

]T [
P0 0 0
0 1p1 0
0 0 1p2

] [
A2B1

D1

C2B1

]
(12)

T2 =
[

B2

D2

]T [
P0 0
0 1p2

] [
B2

D2

]
(13)

All four equality signs of the last equations can be replaced
by > inequality signs in which case 1

3

∑3
k=1 Trace(Tk)

defines an upper bound on the H2 norm. Minimization
over the resulting LMI constraints will give the exact H2

performance. In the following the upper bound on P0 is
denoted P . The remaining of the proof demonstrates the
LMIs defined in this way are equivalent to the LMI (4).

Based on the fact that
[
−1n3 B2 0

0 D2 −1p2

]⊥
=

[
B2

1m2

D2

]
, the

matrix inequality issued from (13) may be reformulated as:

qT
2

[
P 0

−T2

0 1p2

]
q2 < 0,

∀q2 6= 0 :[
−1n3 B2 0

0 D2 −1p2

]
q2 = 0 (14)

where q2 = vec ( x3 w2 z2 ). Trivially it also reads as:

qT
2

[
P 0

−T2

0 1p2

]
q2 < −zT

0 z0 − zT
1 z1

holds for all vectors such that q2 6= 0 and
x2 = 0 , x1 = 0 ,
z1 = 0 , z0 = 0 ,

[
−1n3 B2 0

0 D2 −1p2

]
q2 = 0.

Whatever A1, A2, C1, C2, these last equality constraints
are equivalent to

−1n1 0 0 0 0 0 0
A1 −1n2 0 0 0 0 0
0 A2 −1n3 B2 0 0 0
0 0 0 0 −1p0 0 0
C1 0 0 0 0 −1p1 0
0 C2 0 D2 0 0 −1p2

 q̂2 = 0 (15)

where q̂2 = vec ( x1 x2 x3 w2 z0 z1 z2 ) 6= 0. For compact-
ness of next formulas, decompose the matrix in (15) in
three bloc-columns with notations

MT
1 =

−1n1 AT
1 0 0 CT

1 0
0 −1n2 AT

2 0 0 CT
2

0 0 −1n3 0 0 0

 , M4 =
[

0n,p

− 1p

]

and M32 =
[
0 0 BT

2 0 0 DT
2

]T
. With these, the fact (14)

is equivalent to

q̂T
2

 0n−n3 0
P

−T2

0 1p

 q̂2 < 0,
∀q̂2 6= 0 :

[ M1 M32 M4 ] q̂2 = 0
(16)

With similar considerations, starting from the fact that−1n2 0 B1 0 0
A2 −1n3 0 0 0
0 0 D1 −1p1 0
C2 0 0 0 −1p2


⊥

=


B1

A2B1

1m1

D1

C2B1

 ,

define M31 =
[
0 BT

1 0 0 DT
1 0

]T
and get that the

inequalities issued from (12) can be formulated as:

q̂T
1

 0n−nN
0

P
−T1

0 1p

 q̂1 < 0,
∀q̂1 6= 0 :

[ M1 M31 M4 ] q̂1 = 0
(17)

Let MT
30 =

[
BT

0 0 0 DT
0 0 0

]
, MT

2 =
[
AT

0 0 0 CT
0 0 0

]
the same reasoning as above applied to (11) and (10) gives
respectively:

q̂T
0

 0n−nN
0

P
−T0

0 1p

 q̂0 < 0,
∀q̂0 6= 0 :

[ M1 M30 M4 ] q̂0 = 0
(18)

q̂T

−P 0
0n−nN

P
0 1p

 q̂ < 0,
∀q̂ 6= 0 :

[ M2 M1 M4 ] q̂ = 0
(19)
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Due to Lemma 3 condition (16) combined with (17) implies
the existence of a matrix T12 such that

q̃T
1


0n−nN

0
P

−T̂1

0 1p

 q̃1 < 0,
∀q̃1 6= 0 :[
M1 M̃1 M4

]
q̃1 = 0

(20)

where M̃1 = [ M31 M32 ], T̂1 =
[

T1 T12

TT
12 T2

]
and T12 is the

matrix variable created when applying the lemma. Lemma
3 is applied again to condition (18) combined with (20) and
implies the existence of a matrix T̂02 such that

q̃T
0

 0n−nN
0

P
−T

0 1p

 q̃0 < 0,
∀q̃0 6= 0 :[
M1 M̃0 M4

]
q̃0 = 0

(21)

where M̃0 =
[
M30 M̃1

]
and T =

[
T0 T̂02

T̂T
02 T̂1

]
. At this

point it is clear that taking N > 3 would not complexily
the proof, it only needs performing the last operation as
many times as there are samples in a period.

Lemma 3 (with modified order in the columns) can be
applied to condition (19) combined with (21). Noticing
that M̂ =

[
M2 M1 M̃0 M4

]
, it implies the existence of

W such that

q̃T


−P 0 0 W 0
0 0n−nN

0 0 0
0 0 P 0 0

WT 0 0 −T 0
0 0 0 0 1p

 q̃ < 0 , ∀q̃ 6= 0 : M̂ q̃ = 0

which is exactly condition (4). The proof ends with the
trivial fact Trace(T ) =

∑N−1
k=0 Trace(Tk).

A similar result as upper is obtained for H∞ performance.
For space limitation reasons, it is no given here, details can
be found in the extended version: Peaucelle et al. [2007b].

3. ROBUSTNESS ISSUES

In the following we concentrate on the H2 problems but
results apply the same to stability and H∞ analysis. Before
entering the core of the robustness issue, note that

M̂⊥ =
[
1n+nN

0 ĈT

0 1m D̂T

] [
Â B̂

]⊥
, (22)

hence the H2 cost problem writes also as the minimization
of Trace(T ) subject to

[
Â B̂

]⊥T
Ξ

[
Â B̂

]⊥ ≤ 0 where

Ξ =

 −P 0 0 W
0 0n−nN

0 0
0 0 P 0

WT 0 0 −T

 +
[

ĈT

D̂T

] [
ĈT

D̂T

]T

. (23)

Polytopic uncertainty is considered. The system data is as-
sumed unknown and bounded in the convex set generated
by a finite number of vertices such that

M̂(ζ) =
∑v̄

v=1 ζvM̂ [v] :
∑v̄

v=1 ζv = 1 , ζv ≥ 0 (24)

where the vertices M̂ [v=1...v̄] have the structure defined in
section 2.1. Given P [v=1...v̄], W [v=1...v̄] and T [v=1...v̄], let
the following parameter-dependent matrices

P (ζ) =
v̄∑

v=1

ζvP [v],W (ζ) =
v̄∑

v=1

ζvW [v], T (ζ) =
v̄∑

v=1

ζvT [v].

Robustness is proved in the following using these parame-
ter-dependent matrices. To this end denote Ξ[v] the ma-
trix defined as in (23) with vertex matrices P [v], W [v],
T [v], Ĉ [v], D̂[v] and denote Ξ(ζ) the one with parameter-
dependent matrices P (ζ), W (ζ), T (ζ), Ĉ(ζ), D̂(ζ).
Theorem 4. If ρ∗ is the solution to the following LMI
optimization problem

min ρ : ∀v ∈ {1 . . . v̄}
Trace(T [v]) ≤ ρ , Ξ[v] +

〈
F

[
Â[v] B̂[v]

]〉
< 0 (25)

with decision variables ρ, P [v=1...v̄], W [v=1...v̄], T [v=1...v̄]

and F , then γnc =
√

ρ∗/N is an upper bound on the H2

norm of all systems in the uncertainty set.

Proof. The inequalities in (25) are convex with respect
to the vertex matrices with notations [v], therefore if they
hold for all vertices they also hold for all values in their
convex hull:

∀ζ ∈ { ζv ≥ 0 ,
∑v̄

v=1 ζv = 1 }

Trace(T (ζ)) ≤ ρ , Ξ(ζ) +
〈
F

[
Â(ζ) B̂(ζ)

]〉
< 0

Post and pre-multiply the last inequality by
[
Â(ζ) B̂(ζ)

]⊥
and by its transpose respectively to get[

Â(ζ) B̂(ζ)
]⊥T

Ξ(ζ)
[
Â(ζ) B̂(ζ)

]⊥ ≤ 0,

which is the parameter-dependent version of (4) when
utilizing fact (22).

The matrix F introduced in Theorem 4 is a slack vari-
able that makes tractable the robust parameter-dependent
problem. Yet, it has the disadvantage to add many ad-
ditional variables in the LMI optimization. These should
therefore be studied in details: without conservatism the
matrix F factorizes as FT = F̂

[
Ĝ Ĥ

]
where

F̂ =

 F0 0
. . .

0 FN−1

 , Ĥ =

 H0,0 H0,N−1

. . .
HN−1,0 HN−1,N−1

 ,

Ĝ =

 G0,0 −1n1 G0,N

. . . . . .
GN−1,0 GN−1,N−1 −1nN

 .

For the same reasons as in the proof of Theorem 4, the
slack variable F needs to satisfy inequality[

Ĝ Ĥ
]⊥T

Ξ(ζ)
[
Ĝ Ĥ

]⊥ ≤ 0

which, according to the exposed results, implies that√
ρ/N is an upper bound on the H2 norm of the virtual

system
[

Ĝ Ĥ 0n,p

Ĉ(ζ) D̂(ζ) −1p

]
qi = 0 , ∀i ≥ 0.

A feature of this virtual system is that it contains more
dynamics than the original system (xiN+k depends of all
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previous states down to xiN ) and it is non-causal (xiN+k

depends of the future states up to x(i+1)N ). Theorem 4
is therefore referred to in the following as the non-causal
slack variable result. To explore the effects of introducing
non-causal virtual system, three other optimization prob-
lems are defined as well

• Dynamic causal slack variable result (the virtual system
is causal): γd =

√
ρ∗/N where ρ∗ is the solution of the

optimization problem (25) with F constrained as FT = F0,0 F0,1 0 F0,N+1 0
. . . . . . . . .

FN−1,0 FN−1,N−1FN−1,N FN−1,N+1 FN−1,2N


• Static slack variable result (the virtual system is periodic
with no memory of previous intermediate states): γs =√

ρ∗/N where ρ∗ is the solution of the optimization
problem (25) with F constrained as FT = F0,0 F0,1 0 F0,N+1 0

. . . . . . . . .
0 FN−1,N−1 FN−1,N 0 FN−1,2N


• Zero slack variable result (the virtual system has all
its dynamics and perturbation inputs equal to zero):
γz =

√
ρ∗/N where ρ∗ is the solution of the optimization

problem (25) with F constrained as

FT =

 0 F0,1 0 0 0
. . . . . . . . .

0 0 FN−1,N 0 0


Trivially one has γnc ≤ γd ≤ γs ≤ γz. Conservatism
reduction due to non-causal, dynamic slack variables,
goes along with an increasing complexity of the LMIs.
This increasing complexity is due to increased number of
variables (the matrices Fij). It depends only on the order
nN of the periodic system, but does not depend on the
number of vertices of the polytopic set. The dimension of
LMIs is identical for all four results.

This contrasts with the complexity of other existing con-
servative formulations of the same problem. These are
recalled now (results are partially improved compared to
their original formulation by allowing the Tk matrices to
be parameter-dependent).
Proposition 5. (Quadratic stability). If ρ∗ is the solution
of the optimization problem

min ρ :
∑N−1

k=0 Trace(T [v]
k ) ≤ ρ (26)

constrained by PN = P0 and for all v = 1 . . . v̄, k = 0 . . . N :

A
[v]
k

T
Pk+1A

[v]
k − Pk + C

[v]
k

T
C

[v]
k < 0

B
[v]
k

T
Pk+1B

[v]
k − T

[v]
k + D

[v]
k

T
D

[v]
k < 0

then γq =
√

ρ∗/N is an upper bound on the H2 norm of
all systems in the uncertainty set.
Proposition 6. (Farges et al. [2007a]). If ρ∗ is the solution
of the optimization problem (26) constrained by PN = P0

and for all v = 1 . . . v̄, k = 0 . . . N :

[
−P

[v]
k + C

[v]
k

T
C

[v]
k 0

0 P
[v]
k+1

]
+

〈[
F̃1k

F̃2k

] [
A

[v]
k −1

]〉
< 0[

−T
[v]
k + D

[v]
k

T
D

[v]
k 0

0 P
[v]
k+1

]
+

〈[
F̃3k

F̃4k

] [
B

[v]
k −1

]〉
< 0

then γf =
√

ρ∗/N is an upper bound on the H2 norm of
all systems in the uncertainty set.

Moreover, similarly to the above, γfz is defined as resulting
of the same optimization problem but constraining the
slack variables as F1k = 0, F2k = F4k and F3k = 0.
Trivially γfz ≤ γf . Both γz and γfz are defined because
these restrictions on slack variables allow simple derivation
of control design results (see Farges et al. [2007a]).

The ”quadratic stability” type result (a unique quadratic
Lyapunov function is used for all uncertainties) proves
easily to be always more conservative than the other
results (γq ≥ γz and γq ≥ γfz). It is also the formulation
with lower numerical complexity. Unfortunately, there is
no such possibility to order the results of Farges et al.
[2007a] with those of the current paper. But it is possible
to compare them in terms of numerical complexity.

• γnc: v̄(n0+m)(n0+m+1)/2+n(n0+n+m) variables
and v̄(n + n0 + m) rows in the LMIs;

• γf :
∑N−1

k=0 v̄ (nk(nk + 1)/2 + mk(mk + 1)/2) + (nk +
2nk+1 + mk)nk variables and v̄(3n + m) rows in the
LMIs.

The second formulation is more complex in terms of size
of the constraints and, if the number of vertices v̄ is large,
it is also more demanding in terms of number of variables.
The new formulation proposed in the paper is we believe
promising in terms of compromise between conservatism
reduction and increased numerical complexity.

4. NUMERICAL EXAMPLE

The same numerical example as in Farges et al. [2007a] is
considered. Its dimensions are such that nk = 2, pk =
mk = 1 for all k ≥ 0 and N = 3. It contains two
uncertain parameters which are constrained as |α| ≤ 0.01
and 0 ≤ β ≤ 1. The system is open-loop unstable but
the following periodic state-feedback control (uk = Kkxk,
Kk+N = Kk) is applied

K1 = [0.0167 − 0.0175] , K2 = [0.8495 − 2.6782] ,
K3 = [−4.9538 − 3.6797] .

Robust H2 performance analysis is performed on the
closed-loop system. Results obtained when applying Pro-
positions 5 and 6 are given in Table 1. The last row in
the table gives the number of decision variables in each
LMI problem as well as the size of the LMI constraints.
The last column gives as well an estimation of the worst-
case H2 cost. It is obtained by performing a fine grid over
the parameter space and computing the H2 norm of each
system.

The results obtained when applying Theorem 4 are given
in Table 2. Recall that the formulas depend on a choice
of the representative state. It was chosen as being the
signal {xiN+0}i≥0 in the theoretical part of the paper.
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Table 1. Quadratic stability and results based
of Farges et al. [2007a]

γqs γfz γf γwc

19.8482 9.7155 7.7257 6.8430

nb vars/rows 25/45 73/99 103/99 ∞

Yet, one can also choose any other sequence {xiN+j}i≥0

where j ∈ {0 . . . N − 1}. The rows of Table 2 indicate the
numerical results obtained for these various choices of j.
The choice of the representative state has as expected an
influence on the results in the robust case.

Table 2. Influence of the structure of slack
variables and of representative state choice

j γnc γd γs γz

0 7.1730 7.4646 8.3482 13.2156
1 7.4100 8.1173 8.2347 11.8943
2 7.4003 8.1236 8.2607 10.4779

nb vars/rows 127/57 109/57 91/57 73/57

The results illustrate the improvements due to non-causal
and dynamic slack variables. Results may be further im-
proved by artificially increasing the period of the system.
Table 3 gives the values of the H2 guaranteed costs γnc

for N = 6, N = 9 and N = 12 (the period is respectively
repeated two, three and four times in the descriptor model
of Section 2.1). For these tests {xiN+2}i≥0 is selected to
stand for the representative state.

Table 3. Influence of repeated period

N 3 6 9 12
γnc 7.4003 6.9470 6.8837 6.8641

nb vars/rows 127/57 385/93 787/129 1333/165

γd 8.1236 7.9398 8.1027 8.1610
nb vars/rows 109/57 295/93 571/129 937/165

As the period of the system is artificially augmented, the
results obtained by Theorem 4 become less conservative
and get closer to the worst case H2 cost γwc = 6.8430.
Unfortunately this is only the case for the non causal
version of the slack variables. For the dynamic causal
version there is no such decreasing behavior (neither for
the static and zero versions).

5. CONCLUSION

The paper provides a new formulation of LMI-based robust
analysis of LPTV systems. As illustrated on examples,
the results are promising both in terms of reduction
of numerical complexity and in terms of conservatism
reduction. With respect to this last issue, the use of non-
causal slack-variables merits deeper studies for example
to relate these to non-causal scalings of Hagiwara [2006].
The values γz which where obtained on the numerical
examples are not convincing. As said, the formulas related
to γz computation are those for which extensions for state-
feedback design are the most trivial. Thus prospective
work devoted to state-feedback design is needed. A first
attempt is done in Ebihara et al. [2008].
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