
Multiobjective Optimization of Control

Trajectories for the Guidance of a

Rail-bound Vehicle

M.Sc. Jens Geisler ∗ Dipl.-Math. Katrin Witting ∗∗
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Abstract: Self-optimization refers to the ability of a mechatronic system to autonomously
adapt the way it performs its functions to changing environmental and operational conditions
or user demands. In this work we propose to use multiobjective optimal control to enable the
self-optimization of the guidance of a rail-bound vehicle. We consider different strategies to
reduce the computational cost of the optimization. Most importantly, a two-degree-of-freedom
controller is used to separate optimal trajectory generation from disturbance compensation.
Also, in order to solve the multiobjective optimization problem, an approximation of the entire
set of optimal compromises of the objectives, the so-called Pareto set, is computed offline at
design time. From this, we can derive a collection of weighting vectors that capture the best
trade-off between the objectives for different situations. Given this set of preselected weights,
for the online optimization, the objective function can be taken to be a weighted sum that best
matches the situation at hand. For the guidance system we consider three objectives. Preliminary
offline simulation results are presented.

Keywords: Mechatronic systems, Guidance and control, Model predictive and
optimization-based control, Trajectory generation, Self-optimization, Multiobjective
optimization

1. INTRODUCTION

Modern mechatronic systems benefit from the rapidly ad-
vancing capacities of information processing and micro-
controllers. Mechatronic systems of tomorrow will have
the inherent ability to adapt their structures, objectives,
behaviors, and parameters to changing environmental and
operational conditions at runtime. These attributes are
summarized in the term “self-optimization” (s.o.). In order
to fully exploit the emerging possibilities, new approaches
and new methods are necessary that go far beyond the
currently familiar design methodologies. The collaborative
research center 614 - “Self-optimizing concepts and struc-
tures in mechanical engineering” - was set up to create
tools that support the development of such systems (cf.
Frank et al. (2004)).

In this work we present a new design pattern for s.o.
systems. The idea is to extend receding-horizon optimal
control to the explicit multiobjective case.

In contrast to classical (scalar) optimization where the
global minimizer of one single function f : R

n → R

is to be computed, several objective functions are taken
into account in multiobjective optimization (cf. Miettinen
(1999), Ehrgott (2000)). More precisely, a multiobjective
optimization problem is given by

min{F (x) : x ∈ S ⊆ R
n}, (MOP)

where F is defined as the vector of objective functions,
F (x) = (f1 (x) , . . . , fk (x)). S denotes the feasible region
for x. Here, the meaning of ’min’ is based on the partial
ordering ≤p. A vector u ∈ R

k is defined to be ≤p a vector
v ∈ R

k, if ui ≤ vi∀i = 1, . . . , k. A point x⋆ ∈ S is called
(globally) Pareto optimal for (MOP) if there is no x ∈ S
with F (x) ≤p F (x⋆) and fj(x) < fj(x

⋆) for at least one
j ∈ {1, . . . , k}.

In case of our application, in a first step the entire Pareto
set of solutions to the multiobjective optimal control
problem is computed. In an a priori decision making, we
choose several solutions within this set which suit different
situations, such as dry or wet rails, different kinds of
cross wind, etc. From the Pareto points chosen we can
derive a weighted sum of the objectives whose optimization
yields the same solution. The sets of weights are stored
in the controller and then the resulting single-objective
optimization problem can be efficiently solved online.
Adapting the weighting of multiple objective functions is
a powerful and intuitive method to manipulate the system
behavior in the presence of changing conditions.

Along with the extension to several objective functions we
also pay special attention to the fast system dynamics that
is commonly found in mechatronic systems. The feedback
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Fig. 1. Photograph of one RailCab vehicle without cover

control as well as the optimization are based on a linear
single-track model.

Our test application is the guidance system of an innova-
tive rail-bound vehicle, called RailCab (cf. Trächtler (2006)
and www.railcab.de). RailCabs are small autonomous
rail-bound vehicles that are propelled by a linear motor.
They feature an active guidance system that enables them
to determine the path through a new kind of passive switch
at their own discretion. Furthermore, it is a major compo-
nent for an increase in passenger comfort and a reduction
of the wear on wheels and rails (cf. Ettingshausen et al.
(2003)). An active suspension and tilting system provides
for increased comfort even on badly maintained tracks
and allows faster traveling speed in curves. A test track
including two RailCabs on a scale of 1:2.5 was built at
the University of Paderborn (see Fig. 1). The vehicles are
designed to provide the amenities of passenger cars on the
rails. As opposed to trains that run on a fixed schedule
the RailCabs will operate on demand and provide an unin-
terrupted point-to-point journey without changeovers. At
present, the RailCabs are used extensively as a testbed for
different control strategies in the context of the CRC614
(e.g., in Trächtler et al. (2006)).

The paper is structured as follows: Section 2 describes the
example application and the associated control problem.
Then, the structure of the proposed self-optimizing con-
troller is introduced in Section 3. The plant for the example
control problem is the lateral vehicle dynamics detailed
in Section 4. Section 5 deals with the objective functions
and the calculation of the Pareto set as well as resulting
control trajectories. Finally, some possible improvements
are discussed.

2. PROBLEM SETUP

The purpose of the guidance module in the RailCab vehi-
cles is to actively control the lateral displacement in the
rails. Laterally a rail-bound vehicle can move within the
clearance between the flanges and the rail-heads (Fig. 2).
In traditional railway systems the coupled wheel-set with
conic treads keeps the vehicle in an uncontrolled side-to-
side motion that leads to the flanges striking periodically
against the rail-heads. This causes noise as well as wear
on the wheels and rails. Also, high lateral accelerations
may occur which deteriorate driving comfort. To overcome
these negative effects, the active guidance system avoids
flange strikes and abrupt lateral accelerations by steering
the wheels accordingly.

Fig. 2. Illustration of clearance between flange and rail-
head and the bent/buckled rails

Fig. 3. CAD model of a single axle

2.1 The Guidance System for a Rail Vehicle

The guidance system is made up of two identical axle
modules. Each module comprises a center-pivot axle with
cylindrical loose wheels, an actuator, and several sensors
(Fig. 3). The axle is pivoted by a servo-hydraulic cylinder
with integrated displacement sensor. This allows direct
control of the steering angle. Four eddy-current sensors per
axle are used to measure the distance between flange and
rail-head on either side. Further, the guidance system is
equipped with a yaw velocity sensor and an accelerometer
for the lateral acceleration of the center of gravity of the
vehicle.

2.2 Multiobjective Control Problem

Real rails are not as ideally straight or curved as intended
by their architect; instead they will bend and buckle (Fig.
2). Thus, following the course of the rails implies a con-
stantly changing lateral acceleration of the vehicle which
constitutes an unwanted disturbance to the passengers’
comfort. But within the clearance we are free to choose an
arbitrary reference trajectory which can be optimized with
respect to several objectives. In this work we study the
simultaneous optimization of safety, passenger comfort,
and actuation energy.

3. OPTIMAL CONTROL FOR SELF-OPTIMIZING
SYSTEMS

Self-optimization is the ability of a mechatronic system
to variably adapt itself to different situations, environ-
mental conditions, and user demands. One strategy for
self-optimization is to adjust the priority of the control
objectives to the situation at hand. The general idea
of model-based optimal control is to use a plant model

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4381



for predicting the performance of potential future control
inputs usually over a finite horizon. In receding-horizon
control, optimization over an infinite horizon is avoided by
concatenating short sequences of optimal control inputs
as time progresses. Each control subsequence is the first
part of the solution to a finite-horizon open-loop optimal
control problem. The rest of the solution is discarded. For
each subproblem the current (estimated) system state is
taken as the initial condition.

Usually all optimal control problems are formulated using
multiple objective functions, which are often recast into
a single, scalar objective function by using a weighted
sum with fixed weights (e.g., in the LQR design). Since
the optimization is solved online there is no objection to
altering the weights on the fly as the circumstances change.

What we propose here is a receding-horizon control scheme
with a superordinated decision heuristics to adjust the
weighting of the objectives according to the current condi-
tions and user demands. The details of the decision process
shall not be of further interest in this discourse.

A similar systematic approach was proposed by Kerrigan
and Maciejowski (2002). They use a priority-based rather
than a weighting-based multiobjective optimization for re-
solving conflicting control objectives. In this context prior-
itizing means observing objective “B” only after objective
“A” is at its best, rather than a mere trade-off between the
two. To achieve this behavior a prioritized queue of single-
objective functions is sequentially optimized with each set
of solutions adding further constraints to the solution of
the subsequent objectives.

This approach has certainly some very intriguing aspects
as thinking in priorities often seems more natural than
trading-off. But the sequential optimization of all objec-
tives with a growing number of constraints comes at an
increased computational expense. We expect that via an
adequate design of the decision heuristics a similar be-
havior can be realized with variably weighted objective
functions. If the Pareto set is known, arbitrary priority
constraints can be imposed on the choice of the concrete
solution.

3.1 The Two-degree-of-freedom Approach to Systems with
Fast Dynamics

The most important drawback of many optimal control
schemes – such as model predictive control (MPC) – is
their computational expense which is due to the numerical
optimization that has to be performed at every sampling
instant (cf. Mayne et al. (2000)). For mechatronic systems
with fast mechanical and electrical dynamics, computation
time is an important issue.

Various propositions have been made on how to make
MPC fit for the real-time control of systems with fast
dynamics. But most publications focus on streamlining the
optimization algorithms (see e.g. Wright (1997)). In many
cases the gain in computational efficiency comes at the
cost of further restrictions on the structure of the problem.
This leads to many highly specialized algorithms for a very
limited number of applications. Another approach is to
avoid online optimization altogether by precomputing the
so-called piecewise affine explicit form of MPC solutions

Fig. 4. Diagram of two-degree-of-freedom controller

resulting in a gain-scheduling control law (cf. Cairano et al.
(2006)) so that the ability to tune the controller online is
completely lost.

To avoid the necessity for online optimizations at the rate
of the fast plant dynamics, Ronco et al. (2001) propose a
combination of predictive control and linear state feedback
in a so-called two-degree-of-freedom controller design. An
example of a successful application of the two-degree-
of-freedom control design can be found in Kehl et al.
(2007) where this approach is used to realize an automatic
steering control of a passenger car for reproducible path-
following in aggressive test scenarios.

The structure of the controller we propose here is illus-
trated in Fig. 4. Disturbance rejection and regulation of
the prediction error are handled by a fast gain-scheduled
state feedback law that guarantees stability while demand-
ing only little computational resources. Gain-scheduling is
necessary to allow varying system dynamics at different
vehicle speeds (see Sec. 4.1). Further details of the feed-
back controller will not be discussed here. For now we
assume the closed-loop behavior to be ideal.

The role of the optimal predictive controller becomes
that of a trajectory generator which provides feasible
reference trajectories that satisfy the dynamic equations,
system and actuator constraints, and optimally follow
the command input. The trade-off between the different
objectives is determined by the decision heuristics in
response to the current situation.

The function of the observer is to reconstruct the complete
system-state from noisy measurements. The “track data”
supplies the trajectory generator with information about
the course of the rails which can be iteratively estimated
(cf. Münch et al. (2005)).

3.2 Fast Generation of Optimal Trajectories

Another drawback of traditional dynamic optimization
is the explicit use of the states x and inputs u in the
objective function which makes the computations very
time-consuming. One very elegant way to reduce the
number of optimization variables is to parametrize both
states and inputs in terms of a differentially flat system
output y and its derivatives up to a certain order q.
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A system ẋ = f (x, u) with x ∈ R
n, u ∈ R

m is said to
be differentially flat if there exists a (fictitious) output
y ∈ R

m with the following properties (cf. Fliess et al.
(1999)):

y = h
(

x, u, u̇, ü, . . . , u(p)
)

(1)

x= α
(

y, ẏ, ÿ, . . . , y(q)
)

u= β
(

y, ẏ, ÿ, . . . , y(q+1)
)

Thus, flatness is exploited by substituting all occurrences
of states and inputs in the objectives and constraints
by α resp. β. This eliminates the differential constraints
from the optimization problem while the model equations
do not need to be discretized or integrated either. The
optimization problem is solved in the lower-dimensional
space and then the optimal states and inputs are recovered
from the inverse mapping. Chaplais and Petit (2003)
state that this inversion greatly simplifies the optimization
procedure. In Milam et al. (2000) this method is used in
combination with a two-degree-of-freedom control design;
its superior performance in comparison to a traditional
MPC approach is demonstrated.

4. LATERAL DYNAMICS OF THE RAILCAB
VEHICLE

The plant model is the central element of model-based
control. In our case of a rail-bound vehicle with two
steerable axles, a linear model of 4th order is used.

4.1 The Augmented Single-track Model

Lateral vehicle dynamics have been of interest for a long
time and are accordingly well studied. A standard is the
well-known single-track model (cf. Mitschke (1990)). In
order to reflect the particular features of our vehicle, the
standard model equations had to be modified:

• The front and rear steerable axles were accounted for
by a second input.

• Due to the perfectly symmetric design of the vehicle,
the center of mass lies exactly halfway between the
axles, a feature which allows some simplifications.

• Because the lateral positions of the axle centers are
the variables to be controlled, two extra states had to
be introduced which are also the system outputs.

As the resulting linear model is only valid for small
angles, the lateral dynamics is formulated in the shape of
deviations from the global course of the ideal track (Fig.
5). The course of the ideal track as it was planned by its
architect is characterized by a slowly varying orientation
and curvature κ. The curvature is defined as the change
of orientation with respect to the arc-length κ = | dϕ/ds|
and its rate of change is assumed to be slow with respect
to the system dynamics (κ̇ ≈ 0). The quasi-static nature of
the vehicle traveling along the ideal track makes it possible
to treat the dynamic equations of the deviations (relative
dynamics (2) with (3)) independently of the ideal track
dynamics. For the sake of brevity, the common ∆ for
denoting relative values is omitted in this paper. Instead,
the actual values, as measured on board the vehicle, are
indicated by a star (⋆).

Fig. 5. Variables of the single-track model

ẋ=A · x+B · u (2)

y =C · x+D · u

x=
[

yf yr ψ̇ β
]T
, u = [ δf δr ]

T

A=
















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


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







, B =















0 0
0 0
l cα
2 θ

−
l cα
2 θ

cα
mv

cα
mv















(3)

C =

[

1 0 0 0
0 1 0 0

]

, D = 0

The state vector is made up of the lateral distance between
the front and rear axle centers and the ideal track yf

resp. yr, the relative yaw rate ψ̇ = ψ̇⋆ − v κ, and the
relative side slip angle β = β⋆; the control inputs are the
relative steering angles δf = δ⋆

f − κ l/2 − κmv2/(2 cα),

δr = δ⋆
r + κ l/2 − κmv2/(2 cα) of the front and rear

axles, respectively (cf. Fig. 5). The matrices depend on the
physical parameters of the vehicle: axle base l, longitudinal
velocity v, combined mass of chassis and body m, moment
of inertia for yawing motions θ, and cornering stiffness cα.

While the curvature of the ideal track is assumed to be
a priori known, local deviations have to be gauged or
estimated. We use a special estimation technique that con-
stantly adapts estimates of the track at discrete sampling
points. This algorithm will not be discussed here, instead
we take the “map of local deviations” as given.

4.2 Derivation of States and Inputs from Flat Outputs

As in our example system the inputs act only on the last
two lines of the state equation (3) while the outputs are the
first two states, inversion is effected by a straightforward
rearrangement and (sub)matrix-divisions. Formulation of
the system states and inputs in terms of the flat outputs
is given in (4):
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ψ̇ =
ẏf

l
−
ẏr

l
, β =

yr

l
−
yf

l
+
ẏr

2 v
+
ẏf

2 v
(4)

δf =
yr − yf

l
+
ẏf

v
+
ÿr

(

m
4 − θ

l2

)

+ ÿf

(

m
4 + θ

l2

)

cα

δr =
yr − yf

l
+
ẏr

v
+
ÿr

(

m
4 + θ

l2

)

+ ÿf

(

m
4 − θ

l2

)

cα
alat,f = ÿf , alat,r = ÿr

Here alat is the relative lateral acceleration that is used in
the objective function f2.

5. MULTIOBJECTIVE OPTIMIZATION OF THE
TRAJECTORY

The optimal reference trajectories y for the front and rear
axles are parametrized by nh spacial discretization points
y = y(si = i∆s); i = 0 . . . nh − 1 with a trajectory length
of sh = (nh − 1)∆s. This has the advantage that track
data, such as the deviation from the ideal track and the
clearance, can be stored in the same grid. It allows direct
evaluation at the discretization points with no need for
interpolations (as used e.g. in (5) and (9)). Also, since the
spacial grid is velocity-independent, the trajectories can
still be used when the vehicle accelerates. The derivatives
of the trajectory that are needed for the inverse model are
approximated only at the discretization points by central

differences: ẏi ≈ 0.5v(yi+1 − yi−1)/∆s and ÿi and y
(3)
i ,

accordingly.

5.1 The Objectives

In this work we consider three important objectives that
every machine has to fulfill: safety, comfort, and efficiency.
They are mathematically expressed as:

f1 = ‖y
tr,f

− y
f
‖2 + ‖y

tr,r
− y

r
‖2 (5)

f2 = ‖alat,f‖2 + ‖alat,r‖2 (6)

f3 = ‖δ̇f‖1 + ‖δ̇r‖1 (7)

All three objectives are computed for the prediction hori-
zon sh in the norms of vectors with length nh. The objec-
tive function for safety (f1) is defined as the 2-norm of the
deviation of the vehicle from the track centerline (y−ytr).
On the centerline the chances of the flange striking the rail-
head are minimal in the case of unbiased disturbances. The
2-norm was chosen to reflect the probabilistic nature of
the uncertainties. Passenger comfort is measured in terms
of the forces, and hence the accelerations, that act on
the body. Thus, the comfort objective (f2) is expressed
as the 2-norm of lateral accelerations alat. The 2-norm
is a common choice for assessing comfort in the presence
of stochastic excitations. Finally, efficiency of a hydraulic
actuator is directly related to the velocity of displacement.
Therefore, the average energy consumption of the actuator
is represented by the 1-norm of the rate of change of the
steering angle δ̇ in f3.

To guarantee continuity of the first and second derivatives
at the beginning of the trajectory, an initial cost is imposed
on the first two discretization points (8) that rates the
deviation from the preceding trajectory. Here, k is the
currently computed trajectory, s0 being its start position.

fini = ‖yf,k(s0, s1) − yf,k−1(s0, s1)‖2 (8)

+‖yr,k(s0, s1) − yr,k−1(s0, s1)‖2

The only hard constraint we consider in this work is the
clearance rclr that limits the maximum deviation of the
trajectory points from the track centerline:

|y − ytr| < rclr (9)

5.2 Calculation of the Pareto Set

In order to calculate the entire Pareto set of the three ob-
jectives (5)-(7), we use the software package GAIO 1 which
contains set-oriented methods for, amongst others, (con-
tinuous) multiobjective optimization. The methods can be
divided into two main classes: the subdivision techniques
(see Dellnitz et al. (2005), Schütze (2003), Schütze et al.
(2003)) and the recovering techniques (see Schütze (2004),
Schütze et al. (2005), Dell’Aere (2006)). The subdivision
techniques are of global nature and suitable for derivative-
free optimization, but restricted to moderate dimensions.
The recovering techniques are of local nature, but appli-
cable in higher dimensions both in parameter space and
in image space (typically 1 ≤ k ≤ 5). Both types of
algorithms come up with a fine covering of the (global)
Pareto set in a comparatively short time.

As in case of our application the objective functions are
convex and the problem rapidly becomes high-dimensional
(we have twice as many optimization variables as dis-
cretization points on each trajectory, x = [y

f
, y

r
] ∈ R

2nh

with nh ≥ 25), the so-called algorithm for ’Recovering
in image space’ (see Dell’Aere (2006)) fits best. This al-
gorithm belongs to the above-mentioned recovering tech-
niques and is a specific set-oriented continuation method
that – based on an initial solution (e.g., given by the vector
of function values for a single optimum of one of the objec-
tives) around which a box is created – inserts step by step
all those neighboring boxes that contain images of Pareto
points. The insertion of neighboring boxes in image space
is based on the idea of choosing proper targets T ∈ R

k

within these boxes and solving the distance minimization
problem

min
x

||F (x) − T ||.

The algorithm finally gives a covering of the entire Pareto
set as on the one hand it has been shown that every
Pareto set locally is part of a k− 1 -dimensional manifold
(Hillermeier (2001)) and on the other hand is connected
as our objectives are convex (Miettinen (1999)).

The determination of the entire Pareto set is computa-
tionally costly and therefore cannot be computed online.
But the big advantage of a precomputation of the entire
Pareto set to the problem is that good trajectories can be
determined much easier than by testing the optimization
of several weighted sums. Computing the weights for the
objectives, one can design an online MPC that switches
situationally between different weighted sums of the ob-
jectives.

1 Global Analysis of Invariant Objects, http://math-www.uni-
paderborn.de/˜agdellnitz
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Fig. 6. Pareto front for the three objectives

5.3 Optimization Results

The following examples were computed with nh = 25 and
∆s ≈ 0.25m yielding an optimization horizon of sh = 6m.
Fig. 6 shows the Pareto set in image space (f1 vs. f2
vs. f3), the so-called Pareto front. The Pareto front is a
narrow, ribbon-like surface that exhibits a nearly linear
characteristics in the f2-f3-projection while the other two
projections display the shape of a banana. Along this
ribbon, an improvement of safety causes a deterioration in
both comfort and energy which means that the objectives
for comfort and energy have a similar impact on the
solution. This is due to the fact that a smooth trajectory
also requires less vigorous steering action. In analogy, the
curves 2) and 3) are close together in preimage space (Fig.
7) where some trajectories for the front axle are plotted.
The solid gray lines represent the clearance bounding all
possible solutions. The trajectories 1) through 3) are the
single optima for f1 through f3 respectively, while 4) and
5) depict two examples of Pareto-optimal compromises. As
one can see in Fig. 6, the corresponding Pareto front im-
ages do lie in the middle section of the surface. They were
chosen to be safe resp. comfortable/energy- efficient but
not to the extreme. Choosing Pareto points too close to the
extrema makes no sense because safety will only slightly
improve while comfort and energy deteriorate significantly,
and vice versa. Finding such Pareto-optimal compromises
is very intuitive and at the same time mathematically
funded if the entire Pareto front is available.

6. OUTLOOK

In this work we have discussed the way a modified MPC
strategy can be used to design a self-optimizing guidance
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Fig. 7. Different reference trajectories for the front axle

system. The method proposed is a basic framework allow-
ing a number of enhancements and improvements. Since
central differences are not very accurate for approximating
the derivatives, it is planned to parametrize the trajec-
tories by splines. Also, further elaboration of the online
optimization algorithm and of the decision-making process
are necessary. Additional technical constraints may be
considered, such as a limited steering angle or maximum
possible slip angle. Finally, the control strategies shall be
applied to the real test vehicle.
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ting. Selbstoptimierende Systeme des Maschinenbaus
- Definitionen und Konzepte. HNI-Schriftenreihe 155,
Bonifatius GmbH, Paderborn, 2004.

C. Hillermeier. Nonlinear Multiobjective Optimization -
A Generalized Homotopy Approach. Birkhäuser, Berlin,
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