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Abstract. A parsimonious representation of signals is a mathematic model parametrized with a
small number of parameters. Such models are useful for analysis, interpolation, filtering, feature
extraction, and data compression. A new parsimonious model is presented in this paper based
on scattering transforms. It is closely related to the eigenvalues and eigenfunctions of the linear
Schrödinger equation. The efficiency of this method is illustrated in this paper with examples
of both synthetic and real signals.
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1. INTRODUCTION

Representing signals or numerical data sequences with
mathematical models is a classical problem. Within a
certain chosen model structure, such a model is usually
characterized by a set of parameters fitted to the modeled
signal. Classical models of this nature are well known, for
instance, interpolating polynomials (Szego [1992], Seroul
[2000]), splines (De Boor [1978], Bartels et al. [1989]) and
Fourier series (Seeley [2006]). These examples have the
advantage of being computationally simple and are mostly
suitable for data interpolation. However, such models are
usually not parsimonious. A model is qualified parsimo-
nious if it is characterized by a small number of parameters
compared to the amount of data in the signal it represents.
Though not necessary for data interpolation, the parsi-
monious property is useful for the purposes of analysis,
filtering, feature extraction, and data compression.

The construction of (parsimonious) models can be based
on physical knowledge about the origin of the considered
signals, if such knowledge is available in some appropriate
form. However, such models depend on particular physical
situations and it is difficult to develop a general method for
their construction. This paper is about a general method
for parsimonious modeling, which is, of course, not relied
on any particular physical knowledge.

In this paper, a signal is a scalar function of a real
variable x ∈ R, typically representing the time. Many
general purpose models, including the above mentioned
interpolating polynomials, splines and Fourier series, can
be written in the form of

V (x) ≈
∑

n∈S

angn(x) (1)

with a chosen family of functions gn : R → R, linear
coefficients an ∈ R, and S being a (finite) countable index
set.

If the functions gn(x) form an orthogonal basis (like
Fourier series), it is very easy to fit the coefficients an to
any signal V (x). However, usually such orthogonal expan-
sions do not lead to parsimonious models. A parsimonious
model in this form would mean a small number of terms in
the linear expansion. To make an efficient representation
of a given signal V (x) with a small number of terms, the
(small number of) functions gn(x) should not be fixed in
advance, but be adapted to the particular signal. In prac-
tice, this adaptation has to be restricted to some chosen
set of functions {gn(x)}. The larger is this chosen set, the
more likely a given signal can be efficiently represented
by a small number of functions selected within this set. In
addition, the redundancy within {gn(x)} is also important.
For example, there is no redundancy in an orthogonal
Fourier basis, but the set {gn(x)} composed of sinusoid
functions with tightly discretized frequencies is redundant.
The redundancy of {gn(x)} improves model parsimony,
but makes the selection of functions within the set more
difficult: the optimal solution usually corresponds to a NP-
complete problem. Nevertheless, suboptimal algorithms
exist for this purpose (Chen et al. [1998], Gribonval and
Nielsen [2003], Fuchs [2004]).

Alternatively, nonlinearly parametrized functions can be
used to build parsimonious models. Most nonlinearly
parametrized models can be written in the form of

V (x) ≈
∑

n∈S

ang(x; bn) (2)

where g(x; bn) is a chosen function of x nonlinearly
parametrized by a real vector bn. Though S is still a
countable or finite set, the fact that the nonlinear pa-
rameters bn can take any real values implies that V (x)
is modeled with a linear combination of functions taken
from an uncountable set. Compared to (finite) count-
able sets {gn(x)}, the richness of an uncountable set (or
continuously parametrized nonlinear functions) is clearly
an advantage for building parsimonious models. This ap-
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proach is typically used in neural networks (Haykin [1998],
Ablameyko et al. [2003]). The drawback of this approach
is the difficulty to fit the nonlinear parameters bn to
given signals. Usually nonlinear optimization algorithms
are used, with random initial guesses for the values of bn.

The model presented in this paper closely follows the idea
originally introduced in (Laleg et al. [2007a]) and (Laleg
et al. [2007b]). It can be viewed as a linear combination of
functions taken from an uncountable set, though initially
it was not formulated as such. In addition to the advan-
tage related to uncountable set of functions as previously
explained, there exists an efficient algorithm for fitting the
model to signals, which will be presented in this paper.

The main mathematical tool used in the presented method
is scattering transforms. In physics, this tool is useful for
determining the characteristics of an object (shape, inter-
nal constitution, etc.) from the measurement of radiation
or particles scattered from the object (Colton and Kress
[1992]). In mathematics, it is used to study the solution
of some nonlinear differential equations (Ablowitz and
Clarkson [1991]). Though this theory itself is not new,
the novelty of this paper is to use it as a general tool
for parsimonious signal modeling. With respect to the
works reported in (Laleg et al. [2007a]) and (Laleg et al.
[2007b]), further development is made here on the analytic
aspect for signal representation, which is important for
parsimonious signal modeling.

This paper is organized as follows. The basic idea of
modeling using eigenvalues of linear operators is explained
in Section 2. The linear Schrödinger operator which is
at the basis of the proposed method is introduced in
Section 3. The new model based on the inverse scattering
transform is formulated in Section 4. Numerical examples
are presented in Section 5. The analytic aspect of the new
model is discussed in Section 6. Some concluding remarks
are drawn in Section 7.

2. MODELING WITH EIGENFUNCTIONS

Usually for models in the form of (1) or (2), the functions
gn(x) or g(x; bn) belong to a pre-specified set. To model a
given signal V (x), it may be more efficient to use functions
intrinsically related to V (x). Of course, these functions
should have (sufficiently simple) parametric forms inde-
pendent of the particular signal V (x), otherwise the best
function for representing V (x) would be itself. In order to
look for such functions, let us consider the simple linear
operator L related to the given signal V (x) such that, for
an arbitrary signal f(x),

Lf(x) = V (x)f(x), ∀x ∈ R

Are the eigenfunctions of this linear operator useful for
the previously exposed purpose? It turns out that these
eigenfunctions are simply Dirac functions: for any y ∈ R,
there exists a real value λ = V (y), such that

Lδ(x− y) = λδ(x− y), ∀x ∈ R

The singularity of the Dirac functions is not desirable in
most applications. To avoid this problem, it seems useful
to introduce a regularization term in the linear operator.
Let us consider

Lr = −ξ d
2

dx2
+ V (x) (3)

where ξ > 0 is a weighting coefficient of the regularization
term. It means that, for any signal f(x),

Lrf(x) = −ξ d
2

dx2
f(x) + V (x)f(x), ∀x ∈ R

For reasons that will become clear later, it is more conve-
nient to consider S = χLr with χ = 1/ξ and

Ṽ (x) = χV (x) (4)

The rescaled operator,

S = − d2

dx2
+ Ṽ (x) (5)

is known as the Schrödinger operator (Cycon et al. [2007])

where Ṽ (x) is usually referred to as a potential function.
This operator and the associated scattering transform
provide a surprisingly efficient tool for the purpose of
parsimonious modeling, as developed in the following
sections.

The eigenfunctions of this linear operator will be used to
build a model similar to (2). These eigenfunctions belong
to a continuously parameterized family of functions. More
details about this family will be given in Section 6.

3. THE LINEAR SCHRÖDINGER EQUATION AND
ITS EIGENVALUE PROBLEM

The mathematical facts introduced in this section are at
the basis of the method presented in this paper. Though
these facts are well known in the literature related to
scattering transforms, they are shortly recalled here in
order to help the reading of the following sections.

The function V : R → R involved in the definition of the
Schrödinger operator is assumed to satisfy

V (x) ≤ 0, ∀x ∈ R
∫

∞

−∞

(1 + |x|)|V (x)|dx <∞ (6)

Notice that the two functions V (x) and Ṽ (x) are simply
related by a positive factor χ through (4), the above

assumptions on V (x) hold equally for Ṽ (x).

The linear operator defined in (5) is closely related to the
linear Schrödinger equation, for x ∈ R,

− d2

dx2
ψ(x) + Ṽ (x)ψ(x) = λψ(x) (7)

In quantum mechanics, this equation is used to describe
the probability distribution of particles under the potential
function Ṽ (x) (Cycon et al. [2007]).

The assumed inequality (6) implies (see Koelink [2008])
that, as |x| → ∞, the solutions ψ(x) of the differential
equation (7) are asymptotically similar to those of

− d2

dx2
ψ(x) = λψ(x)

whose behavior depends on the sign of λ. Therefore, as
|x| → ∞,

ψ(x) ∼ exp(±i
√
λx), for λ > 0

ψ(x) ∼ exp(±
√
−λx), for λ < 0

It is thus clear that ψ(x) is bounded for any positive λ,
but usually unbounded for negative λ. It may happen that,
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for some particular negative values of λ, the corresponding
solution ψ(x) of the Schrödinger equation (7) is bounded.
The number of such particular negative values of λ, if
any, is finite and depends on the given potential function
Ṽ (x) ≤ 0.

The negative values of λ corresponding to bounded ψ(x)
are called discrete (or negative) eigenvalues (they consti-
tute the discrete spectrum and are associated to L2(R)
eigenfunctions). On the other hand, any positive value of
λ is called a continuous eigenvalue (or rather, an element
of the continuous spectrum). For each eigenvalue λ, the
corresponding solution of ψ(x) is called an eigenfunction.

Given the function Ṽ (x), the computation of the eigenval-
ues and eigenfunctions of the linear operator S is known
as the scattering problem related to the linear Schrödinger
equation (7). Accordingly, the inverse scattering problem

amounts to reconstructing the function Ṽ (x) from the
eigenvalues and eigenfunctions.

The main idea behind the method presented in this paper
can be stated as follows. If the function Ṽ (x) is a signal

to be modeled, then the reconstruction of Ṽ (x) from the
eigenvalues and eigenfunctions of the linear operator S can
be seen as a model of the signal. When the reconstruction
of Ṽ (x) is made from the eigenfunctions corresponding to
discrete eigenvalues only, this model has a form similar to
(2), as shown in the next section.

The assumption (6) may seem restrictive. In practice, the
processed signal is defined in a finite interval, it can thus
be appropriately extended outside this interval in order to
satisfy the inequality (6). The negativeness of V (x) may
require a shifting and/or mirroring of the original signal.

4. INVERSE SCATTERING AS A PARSIMONIOUS
MODEL

For the inverse scattering problem, the eigenfunctions need
to be appropriately normalized. For a given Ṽ (x), assume
that there are N negative eigenvalues λn, n = 1, . . . , N .
Define

κn =
√

−λn, n = 1, . . . , N

The associated eigenfunctions are normalized such that
∫

∞

−∞

ψ2
n(x)dx = 1

For any positive eigenvalue λ, define

k =
√
λ, λ > 0

As |x| → ∞, the eigenfunction associated to the positive
eigenvalue λ = k2, denoted by ψ(x; k), is asymptotically
a linear combination of exp(±ikx). Consider a particular
solution (known as Jost solution) such that, as x→ −∞,

ψ(x; k) ∼ exp(−ikx), d

dx
ψ(x; k) ∼ −ik exp(−ikx)

then, on the other side, as x→ ∞,

ψ(x; k) ∼ 1

T (k)
exp(−ikx) +

R(k)

T (k)
exp(ikx)

with two uniquely defined complex-valued functions T (k)
and R(k), known respectively as transmission and reflex-
ion coefficients.

With these notations, the solution of the inverse scattering
problem is (see Deift and Trubowitz [1979]):

Ṽ (x) = −4

N
∑

n=1

κnψ
2
n(x) +

2i

π

∫

∞

−∞

kR(k)ψ2(x; k)dk (8)

If it happens that R(k) = 0 for all k > 0, the function Ṽ (x)
is called a reflectionless potential. In this particular case
the function Ṽ (x) can be simply reconstructed from the
(finite number of) negative eigenvalues and the associated
eigenfunctions. In general, by omitting the second term
in (8), the reconstruction with the first term can be used
as an approximation:

Ṽ (x) ≈ −4

N
∑

n=1

κnψ
2
n(x) (9)

When this approximation is used as a model of Ṽ (x),
apparently it is similar to (1). In fact, this model is more
similar to (2), because the eigenfunctions ψn(x) are not
taken from a pre-specified countable set of functions, but
are defined by the eigenvalue problem of the Schrödinger
equation (7) for the given function Ṽ (x).

Intuitively, the quality of the approximation (9) is related
to the number of terms N . This number N is determined
by the signal Ṽ (x) itself, thus there would be no way to

tune the value of N if Ṽ (x) was the given signal. Remind

that the original signal to be modeled is V (x), and Ṽ (x)
is in fact a rescaled version of V (x) as introduced in (4).
It turns out that, for a given V (x), the coefficient χ allows

to tune the value of N for Ṽ (x) = χV (x): the larger is
χ, the larger is N . This convenient way for tuning the
quality of approximation was first introduced in (Laleg
et al. [2007a]).

To model the original signal V (x), the approximate recon-
struction (9) becomes

V (x) ≈ − 4

χ

N
∑

n=1

κnψ
2
n(x) (10)

5. NUMERICAL EXAMPLES OF SIGNAL
RECONSTRUCTION WITH EIGENFUNCTIONS

The purpose of this section is to illustrate the efficiency of
the proposed method with numerical examples. The real-
ization of these examples requires a numerical algorithm
for the computation of eigenvalues and eigenfunctions re-
lated to the linear Schrödinger equation. This numerical
aspect is discussed in Appendix A, since it is not the
central issue of this paper.

5.1 A single Gaussian function

Let us first consider a very simple example: the Gaussian
function

Ṽ (x) = −1.2 exp
(

−0.5x2
)

In Figure 1, −Ṽ (x) is plotted in solid line and its re-
construction from the single negative eigenvalue and the
associated eigenfunction is plotted in dashed line. This
reconstruction is already quite good.
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Figure 1. Reconstruction of 1.2 exp
(

−0.5x2
)

with one
eigenfunction.
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Figure 2. Reconstruction of 4 exp
(

−0.5x2
)

with 2 eigen-
functions.

Notice that, in Figure 1, −Ṽ (x) (instead of Ṽ (x)) and its

reconstruction are plotted, because Ṽ (x) itself is negative
and it is more comfortable to examine “positive” curves.
The same remark applies also to the figures of the following
examples.

To improve the reconstruction with more eigenfunctions,
a larger value of the coefficient χ should be used. The
function

Ṽ (x) = −4 exp
(

−0.5x2
)

leads to two negative eigenvalues. The reconstruction
with the corresponding two eigenfunctions is plotted in
Figure 2.

5.2 The mixture of two Gaussian functions

For a less trivial example, let us try with the mixture of
two Gaussian functions:

Ṽ (x) = −5 exp(−0.5(x+ 1.5)2) − exp(−0.5(x− 1.5)2)

With only 3 eigenfunctions, the reconstruction shown in
Figure 3 is surprisingly good.
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double Gaussians

−3 eigenfunctions

Figure 3. Reconstruction of 5 exp(−0.5(x + 1.5)2) +
exp(−0.5(x− 1.5)2) with 3 eigenfunctions.
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Figure 4. Reconstruction of a blood pressure signal with 9
eigenfunctions.

5.3 A blood pressure signal

After the previous synthetic examples, it is certainly more
convincing to examine the case of a real signal. In Figure 4
a blood pressure signal measured at the end of a finger
is plotted in solid line and its reconstruction with 9
eigenfunctions is plotted in dashed line.

This example illustrates the efficiency of the proposed
method as a general tool for signal approximation. This
efficiency relies on the fact that the eigenfunctions capture
the essential features of the signal.

6. ANALYTIC FORMULAS OF EIGENFUNCTIONS

The examples of the previous section have shown the
efficiency of the inverse scattering method for approximate
signal reconstruction. For the example of blood pressure
signal shown in Figure 4, it is obvious that the recon-
structed signal can be used as a filtered version of the
original signal. The eigenvalues used in the signal recon-
struction are related to essential features of the signal,
and thus convey important information for the analysis of
the signal (this fact has been investigated in (Laleg et al.
[2007a]), (Laleg et al. [2007b])). However, at this stage,
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an important piece is still missing to use this signal re-
construction as a parsimonious model: the eigenfunctions
ψn(x) associated to negative eigenvalues, which are numer-
ically computed (see Appendix A), are stored as numerical
sequences. Analytic formulas of these eigenfunctions are
necessary in order to parametrize the reconstruction (10)
with a small number of parameters. The purpose of this
section is to address this problem.

Remind that the N eigenfunctions ψn(x) associated to the
negative eigenvalues λn = −κ2

n are normalized so that
∫

∞

−∞

ψ2
n(x)dx = 1

It is known that such that

ψn(x) ∼ cn exp(−κnx) as x→ ∞ (11)

where cn ∈ R is called normalization coefficient.

Now consider the special case of a reflectionless potential
function Ṽ (x). It is shown in Gardner et al. [1974] that the
following equations hold in this case for m = 1, 2, . . . , N :

ψm(x) +

N
∑

n=1

cmcn
exp (−(κm + κn)x)

κm + κn

ψn(x)

= cm exp(−κmx) (12)

They constitute a system of N linear equations for the N
unknowns ψ1(x), ψ1(x), . . . , ψN (x). Let Q = [qm,n] be the
N ×N matrix filled with the entries

qm,n = cmcn
exp (−(κm + κn)x)

κm + κn

then






ψ1(x)
...

ψN (x)






= (Q+ I)−1







c1 exp(−κ1x)
...

cN exp(−κNx)






(13)

where I is the N ×N identity matrix. It is then clear that
each ψm(x) is a rational function of exp(−κnx) with n =
1, 2, . . . , N . Notice that these functions are parametrized
by κn, cn, n = 1, 2, . . . , N .

The 2N parameters κn, cn, n = 1, 2, . . . , N , are thus
sufficient to fully characterize a reflectionless potential
function. In general, the signal Ṽ (x) to be modeled is
not a reflectionless potential function. In order to use the
analytic form (13) of eigenfunctions in the general case,

the following approach is adopted. Let Ṽ (0)(x) = Ṽ (x),
then do the iterations, for l = 1, 2, . . . , L,

− d2

dx2
ψ(x) + Ṽ (l−1)(x)ψ(x) = λψ(x) κ(l)

n , ψ(l)
n (x)

Ṽ (l) = −4

N
∑

n=1

κ(l)
n

(

ψ(l)
n (x)

)2

where “ ” means the solution of the corresponding eigen-
value problem. Though the convergence of these iterations
is not yet formally proved, empirically Ṽ (l) tends to a
reflectionless potential function close to Ṽ (x). The original

signal Ṽ (x) is then replaced by Ṽ (L)(x) in order to apply
the analytic form (13) of eigenfunctions.

The parameters κn and cn characterizing the analytic
solution (13), are computed by solving an eigenvalue
problem (see Appendix A). The computation of cn is
more troublesome. The attempts using the asymptotic
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Figure 5. Reconstruction of a blood pressure signal with 9
analytic eigenfunctions, completely parametrized by
18 real coefficients (κn, cn, n = 1, . . . , 9).

relationship (11) are not fruitful, because computations
are made within finite intervals in practice. A better
solution is to use equations (12) where the coefficients cn
are seen as unknowns. The values of κn and the sampled
values of ψn(x) come from the numerical solution of the
eigenvalue problem, thus the only unknowns in (12) are
the coefficients cn. The drawback of this approach is
the nonlinearity due to the cross terms cmcn in these
equations.

Currently the best known solution is obtained by using the
relation

∫

∞

x

Ṽ (y)dy = −2

N
∑

n=1

cnψn(x) exp(−κnx) (14)

which holds for reflectionless potential functions. Its ad-
vantage is its linearity in cn. By evaluating both sides
at different sampled values of x, the values of cn can be
estimated by the least squares method.

The estimation of cn based on (14) is still a numerically
difficult problem. Because of the exponential factors, the
terms at the right hand side of (14) have very different
numeric values (though in theory ψn(x) exp(−κnx) tends
to finite values as |x| → ∞). Moreover, the values of
ψn(x) computed by solving the eigenvalue problem of the
linear operator (5) are subject to numerical errors. For
these reasons, currently the values of cn can be reasonably
estimated only when the number of negative eigenvalues
is small, say N < 10.

Let us consider again the example of the blood pressure
signal for which N = 9. After the estimation of the coeffi-
cients cn, the reconstruction of the signal with 9 analytic
eigenfunctions is illustrated in Figure 5. Obviously, due to
the previously explained numerical difficulty, this recon-
struction is not as good as the one shown in Figure 4 which
was obtained with numerically stored eigenfunctions. Ef-
forts are being undertaken to further improve this result.

Now let us go back to the general formulation (2). For the
presented new method, the functions g(x; bn) correspond
to the eigenfunctions ψn(x) which are rational functions of
exponential functions parametrized by κn and cn. Because
κn and cn are not taken from a pre-specified countable set,
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the eigenfunctions ψn(x) belong to an uncountable set of
nonlinear functions. This richness is essential for building
parsimonious models.

7. CONCLUSION

A new method has been presented in this paper for
parsimonious representation of signals, based on scattering
transforms. Its parsimony relies on two facts: the richness
of the functions used in the model, and the efficiency of the
associated algorithm for fitting the model to signals. This
method has been illustrated in this paper with examples
of both synthetic and real signals.

As a final remark, the relationship between the presented
method and the quantum neural networks (see Rigatos
and Tzafestas [2006]) is worth mentioning. The models
used in these two methods can both be written in the
form of (2), and they both use functions g(x; bn) related to
solutions of a linear Schrödinger equation. However, there
is an important difference between the two methods: for
the method presented in this paper, the functions g(x; bn)
are obtained by solving an eigenvalue problem related to
the signal to be modeled, whereas for quantum neural
networks, the functions g(x; bn) are usually estimated by
solving a non convex optimization problem.

Appendix A. NUMERICAL COMPUTATION OF
EIGENVALUES AND EIGENFUNCTIONS OF THE

LINEAR SCHRÖDINGER OPERATOR

The problem considered in this appendix is to find, numer-
ically, the eigenvalues λ and the associated eigenfunctions
ψ such that

− d2

dx2
ψ(x) + Ṽ (x)ψ(x) = λψ(x)

where Ṽ (x) is a signal given in the form of a sequence at
sampled values of x. There exist methods more or less
general for linear operators, such as the one presented
in (Nunez and Izquierdo [1993]). The method used for
realizing the examples of this paper consists in simply
replacing the second order derivative operator by a finite
difference approximation. For example, when using the
minimum order approximation at x = l∆,

d2

dx2
ψ(x) ≈ ψ((l + 1)∆) + ψ((l − 1)∆) − 2ψ(l∆)

∆2

where ∆ is the discretization step size, it amounts to solve
the numerical matrix eigenvalue problem

Aψ = λψ

for

A =
1

∆2















2 −1 0 · · · 0
−1 2 −1 · · · 0

0 −1 2
. . . 0

.

.

.
. . .

. . .
. . . −1

0 · · · · · · −1 2















+















Ṽ (∆) 0 · · · · · · 0

0 Ṽ (2∆) 0 · · · 0
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

0 · · · · · · · · · Ṽ (M∆)















where M is the sample length. In this paper, the highest
order approximation allowed by the available data sample
length is used.
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