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Abstract: Model identification of polynomial NARX models involves a lengthy and compu-
tationally intensive procedure for selecting the model structure among a possibly large set of
candidate regressors. If the model structure is under-parameterized to reduce the burden of the
model selection phase, unsatisfactory results are generally obtained. This inaccuracy problem
can be somewhat circumvented by focusing the identification process on the obtainment of an
accurate local model over a specific frequency range. Such frequency tailoring is achieved in
the nonlinear modeling framework by direct error filtering, as opposed to the data pre-filtering
practice adopted in the linear context. This work discusses the application of error filtering
to classical NARX model identification methods. A simulation example is provided to show
the performance of the proposed approach in deriving accurate local models, despite an under-
parameterized model structure. It is also shown that a proper error filtering may increase the
model accuracy in simulation with respect to available identification techniques.

Keywords: System identification, Nonlinear systems, Frequency domain, Volterra series,
Filtering techniques, Data processing.

1. INTRODUCTION

A widely used class of models in black-box nonlinear sys-
tem identification is the Nonlinear AutoRegressive Mov-
ing Average model with eXogenous inputs (NARMAX)
[Leontaritis and Billings, 1985], in view of its represen-
tation capabilities and the flexibility of the model struc-
ture. The NARMAX model is an input-output recursive
model where the current output depends on lagged inputs,
outputs and noise terms through a suitable (typically
polynomial) nonlinear function. The simpler NARX model
is often preferred, although the absence of a disturbance
model may result in bias problems. If a polynomial func-
tional expansion is employed, a linear-in-the-parameters
(or at least pseudo-linear, in the NARMAX case) structure
results, which lends itself to easy interpretation and to the
application of well-known identification algorithms of the
Least Squares (LS) family. Another advantage of the poly-
nomial NARX/NARMAX model class is the availability
of nonlinear frequency analysis tools based on high order
frequency response functions [Billings and Tsang, 1989,
Peyton Jones and Billings, 1989].

However, a full polynomial NARMAX model can eas-
ily involve a great number of terms, thus exceeding
acceptable model complexity, not to mention the nu-
merical ill-conditioning problems that may arise due to
over-parameterization [Ljung, 1999, Aguirre and Billings,
1995b]. Structure selection is thus a critical issue in

1 This paper has been supported by the Italian MIUR project
Identification and Adaptive Control of Industrial Systems.

NARX/NARMAX identification, and several approaches
have been proposed in the literature. Iterative algorithms
are typically used to build up the model using regres-
sion and orthogonalization techniques [Haber and Unbe-
hauen, 1990]. An example of such methods is the forward-
regression orthogonal estimator (FROE) [Korenberg et al.,
1988, Billings et al., 1989]. Other works suggest the use
of pruning techniques to reduce model complexity and of
simulation error minimization criteria to improve model
robustness [Piroddi and Spinelli, 2001, 2003]. The inter-
ested reader is also directed to Mendes and Billings [2001],
Kukreja et al. [2006], Peng et al. [2006] for some recently
proposed alternative approaches.

In any case, the dimension of the set of candidate re-
gressors clearly impacts on the computational load of the
selection procedure, so that one has to trade model flexi-
bility for algorithm efficiency. Various heuristic techniques
can be used to reduce such set. For example, Spinelli
et al. [2006] proposes a cluster based technique with this
objective. This work, in a different perspective, aims at
concentrating the model accuracy on a specified frequency
band, on the grounds that a simplified model structure
may be capable of achieving sufficient ‘local’ accuracy and
therefore the selection procedure can narrow the search
over a restricted regressor set. Notice that this ‘local’
accuracy requirement may also be the result of control
specifications oriented at operating in that frequency band
in closed-loop [Ljung, 1999]. Model accuracy in a specific
frequency band can be obtained by weighting the predic-
tion error minimization cost function with a suitable filter
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(error filtering). In the linear systems framework this is
equivalent to simply pre-filtering the input/output data
used for identification with the same filter. In nonlin-
ear modeling, direct error filtering must be used instead
[Spinelli et al., 2005]. This work addresses the problem
of model structure selection with error filtering, suitably
extending the FROE algorithm and discusses, by way of
a simple example, the possible implications of using error
filtering in nonlinear identification. In order to deal with
frequency-related issues in the nonlinear modeling context,
Generalized Frequency Response Functions (GFRFs) will
be employed, which are based on the frequency domain
Volterra series expansion [Schetzen, 1980].

2. POLYNOMIAL NARX MODELS

Consider the Nonlinear AutoRegressive model with eX-
ogenous inputs (NARX) [Leontaritis and Billings, 1985]
y(k) = f (y(k − 1), . . . , y(k − ny), u(k − 1), . . . ,

u(k − nu))) + ξ(k), (1)
where y(·), u(·), ξ(·) are the output, input and noise
signals, respectively, and ny, nu are the associated input
and output maximum lags. The sequence ξ(·) is assumed
to be a white noise, while f(·) is a suitable nonlinear
function. In polynomial NARX models, f(·) is assumed
to be a polynomial function. As a result, model (1) can be
reformulated as a linear regression:

y(k) = ϕT (k)ϑ+ ξ(k), (2)
where the elements of vector ϕ(k) are the regressors, that
contain linear and nonlinear combinations of the delayed
input and output signals, and ϑ is the parameter vector
containing the coefficients of the polynomial expansion.

A classical algorithm for the identification of NARX (and
NARMAX) models is the FROE [Billings et al., 1989],
which iteratively increments the model structure until a
specified prediction accuracy is obtained, starting from
an empty model and adding a new regressor at each
iteration. The Orthogonal Least Squares (OLS) approach
is employed to decouple the estimation of new parameters
from that of the parameters already included in the model.
In this way, at each step the significance of each candidate
regressor can be separately evaluated by computing the
Error Reduction Ratio (ERR) criterion, which can be
shown to be proportional to the improvement in the Mean
Squared Prediction Error (MSPE) that the candidate m-
th regressor would achieve if added to the model:

ERRm =
MSPE(Mi)−MSPE(Mi+1)

1
N

∑N
k=1 y

2(k)
(3)

where Mi is the model obtained at the i-th iteration and
Mi+1 is the candidate model at the subsequent iteration,
with the inclusion of the m-th regressor. At each iteration,
the regressor with the highest ERR value is added to the
model.

3. DATA PRE-FILTERING AND ERROR FILTERING
IN NONLINEAR IDENTIFICATION

This Section briefly summarizes the analysis provided in
Spinelli et al. [2005], concerning the differences between
data pre-filtering and error filtering in nonlinear iden-
tification. The results are based on the Volterra series
representation, which is also briefly recalled for clarity.

3.1 Volterra series representation of nonlinear systems

As linear systems may be formulated using a convolution
integral, so nonlinear systems may be represented by
means of the Volterra series expansion [Schetzen, 1980]

y(k) =
∞∑
n=1

yn(k),

yn(k) =
∞∑
k1=0

...

∞∑
kn=0

hn(k1, ..., kn)
n∏
l=1

u(k − kl),

where hn(k1, ..., kn) is the n-th order Volterra kernel of the
nonlinear system.

An equivalent representation of the nonlinear system in
the frequency domain may be obtained by an extended
Fourier transform. More precisely, the output of the n-th
order kernel can be expressed as

yn(k) =
(

1
2π

)n ∫
...

∫ π

−π
Hn(ejω1 , ..., ejωn)

U(ω1)...U(ωn)ej(ω1+...+ωn)kdω1...dωn

where Hn(ejω1 , . . . , ejωn) denotes the GFRF of order n,
which is defined as the Fourier transform of the n-th
order kernel [Schetzen, 1980]. The GFRFs of polynomial
NARMAX models can be computed by means of the
harmonic (or probing) method [Billings and Tsang, 1989,
Peyton Jones and Billings, 1989].

3.2 Data pre-filtering vs. error filtering

In the following, we will assume that the identification data
is generated by a ‘true system’ expressed as a Volterra
series expansion

S : y(k) =
∞∑
n=1

(
1

2π

)n ∫
...

∫ π

−π
H◦n(ejω1,..., ejωn)

n∏
l=1

U(ωl)ejωlkdωl + e(k), (4)

where the noise source e is a zero mean, white gaussian
noise with variance λ2. Let also the model class M(ϑ) be
correspondingly represented as

M(ϑ) : y(k) =
∞∑
n=1

(
1

2π

)n ∫
...

∫ π

−π
Hn(ejω1,..., ejωn ;ϑ)

n∏
l=1

U(ωl)ejωlkdωl + ξ(k). (5)

The corresponding optimal one step ahead predictor is
given by

M̂(ϑ) : ŷ(k|k − 1;ϑ) =
∞∑
n=1

(
1

2π

)n ∫
...

∫ π

−π
Hn(ejω1,..., ejωn ;ϑ)

n∏
l=1

U(ωl)ejωlkdωl

therefore, the prediction error can be expressed as a func-
tion of the differences between the actual and estimated
GFRFs

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2727



ε(k;ϑ) = y(k)− ŷ(k|k − 1;ϑ) =
∞∑
n=1

(
1

2π

)n ∫
...

∫ π

−π
∆Hn(ejω1,..., ejωn ;ϑ)

n∏
l=1

U(ωl)ejωlkdωl + e(k) (6)

where

∆Hn(ejω1,..., ejωn ;ϑ) =
H◦n(ejω1,..., ejωn)−Hn(ejω1,..., ejωn ;ϑ).

The filtered prediction error (see [Spinelli et al., 2005] for
further details) can be written as

εL(k;ϑ) = L(q)ε(k;ϑ) =
∞∑
n=1

(
1

2π

)n ∫
...

∫ π

−π
L(ejω1+...+jωn)∆Hn(ejω1,..., ejωn ;ϑ)

n∏
l=1

U(ωl)ejωlkdωl + L(q)e(k). (7)

Assuming that the considered model class is such that
∆Hn(ejω1,..., ejωn ;ϑ?) is identically zero for some ϑ?, the
estimate will be consistent, i.e., the minimization of the
prediction error norm and of the filtered prediction error
norm will lead to the same model, at least asymptotically,
as in the linear case. However, if S /∈M, then the identified
model will be biased and the filter L(q) may be chosen
to affect the frequency distribution of the estimation er-
ror. While in the linear case the error filtering effectively
focuses the identification algorithm on the assigned fre-
quency band, it can be shown that the weighting factor
operating on each kernel of a nonlinear model is actually
a function of the kernel order, so that different kernels are
fitted accurately on different bands.

Not surprisingly, error filtering and data pre-filtering are
not interchangeable in the nonlinear modeling context.
The prediction error sequence obtained after data pre-
filtering can be expressed as [Spinelli et al., 2005]

εDF (k;ϑ) = L(q)y(k)− ŷDF(k|k − 1;ϑ) =
∞∑
n=1

(
1

2π

)n ∫
...

∫ π

−π
∆HDF

n (ejω1,...ejωn ;ϑ)

n∏
l=1

U(ωl)ejωlkdωl + L(q)e(k) (8)

where

∆HDF
n (ejω1 , ..., ejωn ;ϑ) =

L(ej(ω1+...+ωn))H◦n(ejω1,..., ejωn)
− L(ejω1)...L(ejωn)Hn(ejω1,..., ejωn ;ϑ).

Clearly, minimizing the error in this case would lead
to biased solutions where each kernel would tend to a
weighted version of the correct one

Hn(ejω1 , ..., ejωn ;ϑ?) =
L(ej(ω1+...+ωn))
L(ejω1)...L(ejωn)

H◦n(ejω1 , ..., ejωn).

Notice also that such weighting factor would depend both
on the characteristics of the filter L(q) and on the order of
the considered kernel.

In view of the above discussion, data pre-filtering should be
avoided in nonlinear model identification, whereas direct
error filtering can still be applied to influence the accuracy
bands of the kernels of the identified model.

4. NARX IDENTIFICATION WITH ERROR
FILTERING

Recalling (2), we can express the filtered prediction error
for NARX models as
εL(k;ϑ) = L(q)y(k)−L(q)ŷ(k;ϑ) = yL(k)−ϕTL(k)ϑ, (9)

where yL(·) is the filtered output signal and ϕL(·) de-
notes the vector of filtered regressors. Assume that N

data samples {u(k), y(k)}Nk=1 are used for model iden-
tification. Then, the objective of the identification pro-
cedure is to find ϑ that minimizes the cost functional
J = 1

N

∑N
k=1 ε

2
L(k;ϑ).

In the general NARMAX case some regressors may depend
on past estimated output ŷ(k − κ;ϑ) values, so that the
minimization of J cannot be addressed with plain Least
Squares, and an iterative algorithm must be employed.
Most conveniently, in the NARX case all the regressors
depend on past input u(k−κ) and output y(k−κ) values
only, so that the filtered regressors can be computed at the
onset of the minimization procedure. In other words, for
polynomial NARX models, error filtering simply amounts
to pre-filtering the output and the regressors constructed
from the original input/output data and solving the linear
regression:

yL(k) = φTL(k)θ + ξL(k), (10)
where subscript L denotes filtering through function L(q).

Exploiting the least squares formulation (10), structure
selection can also be enacted by adopting the OLS ap-
proach. A filtered version of the ERR criterion is actually
employed in this case, denoted Filtered ERR (FERR) in
the sequel. The FERR can be interpreted as the reduction
in the Mean Squared Filtered Prediction Error (MSFPE)
due to the inclusion of the m-th term as a fraction of the
maximum MSFPE (variance of the filtered output)

[FERR]m =
MSFPE(Mi)−MSFPE(Mi+1)

1
N

∑N
k=1 y

2
L(k)

. (11)

This selection criterion can be used to iteratively build up
the model structure in a forward-regression fashion, simi-
larly to the FROE (i.e., starting from an empty model and
adding at each step the regressor with the highest value
of the [FERR]m) or in a mixed forward- and backward
regression type of procedure. A termination condition can
be formulated as the obtainment of a sufficient accuracy
threshold, such as 1−

∑m
i=1 [FERR]i < δ. Notice that 1−∑m

i=1 [FERR]i is precisely the portion of the unexplained
variance of the filtered output.

In the following, we will denote EF-FROE the extension
of the FROE algorithm that includes error filtering. As
already mentioned, for NARX models the EF-FROE is
equivalent to the FROE applied on the filtered regressors
instead of the original ones. The reader is referred to
Billings et al. [1989] for a description of the implemen-
tation of the FROE algorithm in explicit form, which may
be easily adapted to the EF-FROE as well.
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5. IDENTIFICATION OF UNDER-PARAMETERIZED
MODELS USING ERROR FILTERING

This Section illustrates the differences between error filter-
ing and data pre-filtering approaches for nonlinear model
structure identification on a simple simulation example.
The aim is to show that the error filtering approach is actu-
ally capable of achieving at least ‘local’ accuracy when the
model structure is under-parameterized, where approaches
based on data pre-filtering or ‘global’ criteria may fail.
Notice that in realistic experimental settings model under-
parameterization is the norm.

Consider as system generating the identification data the
following (noiseless) NARX system
S : y(k) = ao1y(k − 1) + ao2y(k − 2) + bo1u(k − 1)+

+ bo2u(k − 2) + couu,1u
2(k − 1) + couu,2u

2(k − 2)
(12)

where ao1 = 1.09, ao2 = −0.099, bo1 = 1, bo2 = −0.9,
couu,1 = 0.15, couu,2 = 0.35, and the input signal is
assumed to be a non-zero mean gaussian white noise,
u(·) ∼ WN(0.01, 0.01). A data set of 5000 samples is
generated for identification purposes. Suppose that, in
order to ease the computational burden of the FROE, we
want to restrict the set of candidate regressors to [y(k−1)
u(k−1) u2(k−1) u(k−1)y(k−1) y2(k−1)]. Clearly, there is
little chance to obtain global model accuracy given the lack
of some 2nd order terms, but local model accuracy can still
be achieved in specific frequency bands. For this purpose,
a second order low-pass digital Butterworth filter with
bandwidth [0, 0.05] and a high-pass filter with bandwidth
[0.01, 1] have been considered in the following.

Model accuracy has been evaluated on both the 1st and
2nd order GFRFs, computed as follows. The 1st order
frequency response function H1(ω) coincides with the
ordinary response function of the linear part of the system
(obtained by canceling out all terms of order greater than
1). The 2nd order frequency response function H2(ω1, ω2)
is obtained by means of the harmonic or probing method
[Billings and Tsang, 1989]. More precisely, consider the full
model structure implied by the assigned set of candidate
regressors
M(ϑ) : y(k) = ay(k − 1) + bu(k − 1) + cyyy

2(k − 1)+
+ cyuy(k − 1)u(k − 1) + cuuu

2(k − 1),
(13)

and let the input signal be defined as the sum of two
harmonic functions at different frequencies

u(k) = ejω1k + ejω2k. (14)
Omitting the terms of order higher than 2, which are
inessential in the computation, the corresponding output
has the form
y(k) = H1(ω1)ejω1k +H1(ω2)ejω2k +H2(ω1, ω1)ej2ω1k

+ 2H2(ω1, ω2)ej(ω1k+ω2k) +H2(ω2, ω2)ej2ω2k.
(15)

Substituting u(k) and y(k) in equation (13), and equating
only the terms in ej(ω1k+ω2k), one obtains

2H2(ω1, ω2) = 2aH2(ω1, ω2)e−j(ω1+ω2)

+ 2cyyH1(ω1)H1(ω2)e−j(ω1+ω2) + cyu(H1(ω1)

+H1(ω2))e−j(ω1+ω2) + 2cuue−j(ω1+ω2),
(16)

which in turn gives the following 2nd order frequency
function
H2(ω1, ω2) = [cyyH1(ω1)H1(ω2) + 0.5cyu(H1(ω1)

+H1(ω2)) + cuu]× e−j(ω1+ω2)

1− ae−j(ω1+ω2)
.

(17)

The 2nd order frequency response function of system S can
be obtained with analogous reasoning

Ho
2 (ω1, ω2) =

couu,1e
−j(ω1+ω2) + couu,2e

−j2(ω1+ω2)

1− ao1e−j(ω1+ω2) − ao2e−j2(ω1+ω2)
. (18)

For ease of graphical representation, the latter two func-
tions will only be compared on the line ω1 = ω2.

The EF-FROE method has been applied to the given
data set, using both the defined filters. The estimated
models (and the corresponding performance indexes) are
reported in Table 1. Notice that a 3-parameter model was
selected in the low-pass filtering case, while all linear and
2 quadratic terms are included in the model obtained with
high-pass filtering. Comparing the performance indexes,
it appears - not surprisingly - that the prediction task is
much more difficult in the high frequency range, while the
simulation performance turns out to be comparable. The
plain FROE has also been employed on the same data set
and the estimated model reported in Table 1 for reference.
Interestingly enough, the model structure is different from
both the previously identified ones.

Figures 1-2 explain more clearly the performance dif-
ferences in the three cases by comparing the true and
estimated frequency response functions of 1st and 2nd
order. Apparently, the FROE cannot manage to model
all the dynamics of the system throughout the whole
frequency range and performs a sort of average, resulting
in significant bias in both frequency response functions.
On the contrary, the EF-FROE with low-pass filtering
achieves a remarkable accuracy in the low frequency range,
as can be seen by inspecting the magnitude and phase
plots for both frequency responses: the estimated 1st order
response matches the true one - both in magnitude and
phase - up to 10−2 rad/s, while the estimated 2nd order
response provides a very satisfactory fit of the true one
even up to 2 × 10−1 rad/s. The performance of the high-
pass filtering version of the algorithm is clearly affected by
the lack of information about the system gain conveyed
by the filtered regressors. Still, the estimated model pro-
vides a very good fit of the high-frequency portion of the
1st order response. As far as the 2nd order response is
concerned, the magnitude is captured less accurately by
the EF-FROE than the FROE, but the phase is matched
almost perfectly, while the model estimated by the FROE
provides both quantitatively and qualitatively incorrect
information. This seems to indicate that the EF-FROE
is more successful in capturing the actual high frequency
singularities of the 2nd order response.

Notice finally that if the y2 term is not included in the
candidate regressor set, on the grounds that both the
system and the candidate model structure should have
the same number of fixed-points (one, in this case), the
model performance degrades significantly regardless of
which algorithm is employed, since the model structure
is not capable of compensating for the missing quadratic
terms in the system.
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Table 1. Estimated parameters depending on the structure selection method.

Method a b cyy cyu cuu MSPE MSSE

True terms 1.09,-0.099 1,-0.9 - - 0.15,0.35 - -
FROE 1.3945 0.98226 -0.6043 - 0.27308 3.2456E-003 ∞
EF-FROE (LP) 0.98866 0.12676 - - 0.61873 1.1076E-005 (*) 7.6660E-003
EF-FROE (HP) 0.33577 0.93007 -0.013074 0.067878 - 1.1205E-003 (*) 4.2160E-001
DF-FROE (LP) 0.99791 0.11781 - - - 1.5935E-005 (**) 3.6666E-002 (**)
DF-FROE (HP) 0.31885 0.97556 0.23063 0.07.2715 - 1.1010E-003 (**) 2.0925E-003 (**)
SEMP 0.958 - - - 1.7262 1.5067E-002 8.2971E-002

(*) Criterion computed on the filtered error. (**) Criterion computed on the filtered data.

Fig. 1. Estimation of the 1st order GFRF: true function
(solid line), FROE (dashed line), EF-FROE with low-
and high-pass filtering (dash-dot and dotted line,
respectively).

Fig. 2. Estimation of the 2nd order GFRF: true function
(solid line), FROE (dashed line), EF-FROE with low-
and high-pass filtering (dash-dot and dotted line,
respectively).

The inadequacy of the conventional data pre-filtering
practice in combination with the FROE (briefly denoted
DF-FROE for Data Filtering FROE), is witnessed by
Figures 3-4, particularly in the low-pass filtering case.
Notice that Figure 4 reports only the high-pass data pre-
filtering case, due to the purely linear structure of the
identified model (see Table 1).

Finally, Figure 5 shows the performance obtained on the
same example with the SEMP (Simulation Error Mini-
mization with Pruning) algorithm [Piroddi and Spinelli,

Fig. 3. Estimation of the 1st order GFRF: true function
(solid line), FROE (dashed line), DF-FROE with low-
and high-pass data pre-filtering (dash-dot and dotted
line, respectively).

Fig. 4. Estimation of the 2nd order GFRF: true function
(solid line), FROE (dashed line), DF-FROE with
high-pass data pre-filtering (dotted line).

2001]. Only the 2nd order frequency response function is
here reported since the obtained model structure does not
allow the computation of the 1st order one (see Table 1).
The SEMP is a computationally much more demanding
algorithm with respect to the FROE, but usually guaran-
tees a more robust and parsimonious modeling, thanks to
the extended prediction horizon inherent in the simulation
approach. Apparently, a much better performance with
respect to that of the plain FROE is achieved, albeit with
only two parameters. However, the EF-FROE in the low-
pass filtering case obtains an even better simulation model,
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Fig. 5. Estimation of the 2nd order GFRF: true function
(solid line), FROE (dashed line), SEMP (dash-dot
line).

which is also the most similar to the true one, since only
terms of the correct clusters are selected and the estimated
parameters approach the cluster coefficients (a cluster
groups all terms with the same type of nonlinearity, see
[Aguirre and Billings, 1995a] for the related definitions).
In other words, the EF-FROE employs more efficiently the
under-parameterized model structure thanks to the fre-
quency range restriction. This implies that low frequency
error filtering, by concentrating on the dominant low fre-
quency dynamics, may also provide an efficient method for
deriving simulation models.

6. CONCLUDING REMARKS

A forward-regression orthogonal estimator for the identifi-
cation of polynomial NARX models has been developed
that incorporates error filtering. Similarly to data pre-
filtering in the linear framework, error filtering may be em-
ployed as a means to weigh the error function of the iden-
tification algorithm in order to focus the model accuracy
on a specified frequency band. In addition, thanks to this
selectivity in the frequency domain, the algorithm can pro-
vide satisfactory results even with an under-parameterized
model structure. This can be employed either to increase
accuracy (in a selected frequency range) given the can-
didate regressor set, or to obtain a comparable accuracy
(again, in a selected frequency range) with a reduced can-
didate regressor set. This second usage seems particularly
promising in view of the computational load inherent in
model structure selection algorithms, which increases with
the size of the candidate regressor set. Finally, the low
frequency error filtering approach can also be used to de-
rive simulation models, since it disregards high frequency
non-dominant dynamics. A simple simulation example has
been discussed to illustrate the proposed approach.
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