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Abstract: Optimal control problems under conflict or uncertainties are considered on a
finite time interval. Resolving dynamical procedures are suggested. They are based either on
constructions of stable bridges produced with the help of step-by-step programmed absorptions
or on applications of the backward dynamic programming method. Results of simulations
illustrating the suggested methods are exposed.

1. INTRODUCTION

The paper deals with optimal control problems and prob-
lems of the theory of differential games considered on a
finite time interval. Solution technique is presented for
problems formed in the framework of the approach, which
is developed in the scientific school of N.N. Krasovskii.
A distinctive feature of these methods is defined by the
use of backward dynamic constructions in controlled sys-
tems and application of the theory of generalized solu-
tions of Hamilton-Jacobi equations, which was created by
A.I. Subbotin in the last decades of the 20-th century.

2. SOLUTION OF DIFFERENTIAL GAMES OF
PRESCRIBED DURATION

The first part of the paper deals with game pursuit
problems on a finite time interval. The pursuit problem is
formulated as a positional differential game. The proposed
solution method is based on the concept of extremal shift,
developed by N.N. Krasovskii and his pupils (Krasovskii
[1970], Krasovskii, and Subbotin [1988], Kurzhanski et al.
[2002], Kryazhimskii, and Osipov [1973], Subbotin, and
Chentsov [1981], Subbotina et al. [1986]). According to this
concept, the central element of the resolving construction
is the maximal stable bridge, i.e. the set W 0 of all positions
(t∗, x∗) of the game from which the pursuit problem is
solvable. The solving control U∗(t, x) can be constructed
as a positional strategy extremal to W 0 (Krasovskii, and
Subbotin [1988]).

Efficient analytical descriptions of W 0 are possible for sim-
ple problems only. So, development of numerical methods
? This work was supported by the Russian Foundation for Basic
Researches, Projects 05-01-00601, 05-01-00609; the Program for the
Sponsorship of Leading Scientific Schools, Grant NSCH-8512.2006.1;
and IIASA.

Fig. 1. Stable bridge.

for constructing W 0 is of importance. The definition of the
set W 0 is not constructive itself. However, it is important
that the set W 0 is stable and this property can be used
for numerical finding of W 0. The paper (Tarasyev, and
Ushakov [1983]) presents a method of approximate calcu-
lation ofW 0 based on backward step-by-step constructions
of stability properties. Examples of calculating W 0 for
some plane problems of pursuit are given.

2.1 Statement of the encounter game problem

On [t0,ϑ] a conflict controlled system is given
ẋ = f(t, x, u, v), x(t0) = x0, u ∈ P, v ∈ Q (1)

x ∈ Rm is a phase vector, u and v are the vectors of control
and disturbance (control of the 1st and 2nd players),
P ⊂ Rp, Q ⊂ Rq are compact. System (1) satisfies the
traditional assumptions of the theory of differential games
In the phase space Rm, a compact set M is given, which
is the target for the 1st player. Taking into account the
conditions imposed on system (1) and the set M , we
can assume that the game takes place in a compact set
D ⊂ [t0, ϑ]×Rm, which is large enough.

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 11334 10.3182/20080706-5-KR-1001.2346



Let WM = [t0, ϑ]×Rm be a cylinder in [t0, ϑ]×Rm.
Problem 1. The first player needs to find a strategy
U∗(t, x) such that all motions x(t) of system (1) gen-
erated by this strategy together with various admissible
controls v(t) of the second player satisfy the condition:
(τ, x(τ)) ∈WM at some moment τ ∈ [t0, ϑ].

Fig. 2. An illustrative scheme of problem 1.

2.2 Unification in problems of pursuit

The basic property used to construct the solution of
problem 1 is the property of stability of the set W 0. The
stability property admits wide variety of formulations. The
efficiency of approximate calculation of W 0 depends on
what formulation of stability is chosen. In the mid of
1970-s in articles by N.N. Krasovskii (Krasovskii [1976,
1977]) a unification formulation of the stability property
was proposed. In this formulation, a family of differential
inclusions (d.i.) was considered

ẋ ∈ Fs(t, x), s ∈ S, (2)
Fs(t, x) = F (t, x) ∩Πs(t, x),

F (t, x) = co{f(t, x, u, v) : u ∈ P, v ∈ Q},
Πs(t, x) = {f ∈ Rm : 〈s, f〉 6 H(t, x, s)}.

The stability of the set W in the space of positions (t∗, x∗)
of the game is defined as the property of weak invariance
of W with respect to differential inclusions (2).

The unification formulation of stability has proved to be
convenient in many purposes, and in particular, for elab-
oration of algorithms for constructing solutions of differ-
ential games. Various aspects of unification are studied in
articles ( Alekseichik [1970], Ushakov [1980], Grigorieva et
al. [1996]). In the 1980-s, a generalized unification model
of differential game was introduced.

2.3 A generalized unification model

Let us fix a set Ψ = {ψ}, a family of multivalued maps
(t, x) 7→ Fψ(t, x), ψ ∈ Ψ, and a ball G = {g ∈ Rm : ‖g‖ 6
6 K}. Assume

A.1. Fψ(t, x) ⊂ G is closed and convex for ∀(t, x, ψ) ∈
∈ D ×Ψ

A.2. for ∀(t, x, s) ∈ D × S
min
ψ∈Ψ

hFψ(t,x)(l) = H(t, x, l),

where hF (l) is the support function of the set F = Fψ(t, x).

A.3. The maps (t, x) 7→ Fψ(t, x) are continuous on D
uniformly with respect to ψ ∈ Ψ.

Γs(t, x) = {f ∈ Rm : 〈s, f〉 = H(t, x, s)}

Fig. 3. A family of maps (t, x) 7→ Fψ(t, x).

For some systems of the form (1), one can introduce a
family of maps (t, x) 7→ Fpsi(t, x), ψ ∈ Ψ, satisfying A.1,
A.2, A.3, where Ψ is finite. Namely, it takes place for the
system

ẋ = f(t, x, u) + C(t, x)v, u ∈ P, v ∈ Q (3)
where Q is a convex polyhedron in Rm. For Ψ, one can take
a set {v∗} of vertices of the polyhedron Q, and for Fψ(t, x)
one can take the sets Fv∗(t, x) = co{f(t, x, u) : u ∈ P} +
C(t, x)v∗.

Let us recall the definition of u-stable bridge in terms of
the generalized unification scheme. Let Xψ(t; t∗, x∗) be
the attainability set at the moment t of the differential
inclusion ẋ ∈ Fψ(t, x), x(t∗) = x∗.

Fig. 4. An attainability set of d. i. ẋ ∈ Fψ(t, x), x(t∗) = x∗.

Definition 1. A set W ⊂ [t0, ϑ] × Rm is called u-stable
bridge in the problem 1 if

1. W (ϑ) = {x ∈ Rm : (ϑ, x) ∈W} ⊂M ;

2. For any t∗, t∗ (t0 6 t∗ < t∗ 6 ϑ), (t∗, x∗) ∈ W ,
ψ ∈ Ψ one has Xψ(t∗; t∗, x∗)∩W (t∗) 6= ∅ or Xψ(τ ; t∗, x∗)∩
∩M 6= ∅ for some τ ∈ [t∗, t∗].

2.4 An approximating system of sets

Let us consider the maximal u-stable bridge W 0. For ap-
proximate backward construction of W 0, let us introduce
a partition Γ = {t0, t1, . . . , ti, ti+1, . . . , tN = ϑ} of the
interval [t0, ϑ]. For each interval [ti, ti+1), we substitute
the differential inclusion

ẋ ∈ Fψ(t, x) (4)
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with the initial value x(ti), by the differential inclusion

ẋ ∈ Fψ(ti, x(ti)) (5)
with the initial value x(ti).

This substitution implies the corresponding transforma-
tion of the attainability sets Xψ(ti+1; ti, x(ti)) for differ-
ential inclusion (4) to the following convex closed sets for
differential inclusion (5):

X̃ψ(ti+1; ti, x(ti)) = x(ti) + ∆iFψ(ti, x(ti)),
∆i = ti+1 − ti > 0.

This transformation turns out to be convenient. For an
arbitrary set Φ from Rm, we introduce the set

X̃−1
ψ (ti; ti+1,Φ) =

= {x(ti) ∈ Rm : X̃ψ(ti+1; ti, x(ti)) ∩ Φ 6= ∅}.

In the phase space Rm, let us consider a system of sets
{W̃ (ti) : ti ∈ Γ}:
W̃ (tN ) = MεN , W̃ (ti) = Mεi+1 ∪ π(ti; ti+1, W̃ (ti+1)),

i = N − 1, N − 2, . . . , 1, 0.

Here π(ti; ti+1, W̃ (ti+1)) =
⋂
ψ∈Ψ

X̃−1
ψ (ti; ti+1, W̃ (ti+1)), ε0,

ε1, . . . , εN (ε0 = 0) is a monotone increasing sequence.

To the system {W̃ (ti) : ti ∈ Γ} in the phase space Rm, one
can put into correspondence a system {(ti, W̃ (ti)) : ti ∈ Γ}
in the space of positions (t, x) of the game. For the last
system, one can introduce a suitable definition of the limit

lim
∆(Γ)→0

{(ti, W̃ (ti)) : ti ∈ Γ} = W ∗

Condition 1. Let the set M in Rm be a union of closed
balls whose radiuses are bounded from below by a positive
number.
Theorem 1. Let the target set M in problem 1 satisfy
condition 1. Then W ∗ = W 0.

Thus, the system (ti, W̃ (ti)) : ti ∈ Γ) approximates the set
W 0.

2.5 A modification of the homicidal chauffeur game

Example 1. Consider the system ẋ1 = −w1

R
x2u1 + w2v1

ẋ2 =
w1

R
x1u1 + w2v2 + w1u2 + γ

where x = (x1, x2) ∈ R2 is a phase vector, u ∈ P = {u∗ =
(u1, u2) : ‖u∗‖ 6 1} is a vector of control of the 1-st player,
v ∈ Q = {v∗ = (v1, v2) : ‖v∗‖ 6 1} is a vector of control of
the 2-nd player. The target set M is the circle of radius 1.
The approximations of u-stable bridges are presented on
Fig.5-6 for the following parameters

A. [t0, ϑ] = [0, 10], R = 1, w1 = 1.2, w2 = 1, γ = 0

B. [t0, ϑ] = [0, 32], R = 4, w1 = 1.5, w2 = 1, γ = 0.5

3. OPTIMAL CONTROL PROBLEMS OF
PRESCRIBED DURATION

The section deals with a new numerical method for con-
structing the value functions to optimal control problems

Fig. 5. The stable bridge in the modified homicidal chauf-
feur game, case A.

Fig. 6. The stable bridge in the modified homicidal chauf-
feur game, case B.

of prescribed duration. We consider the problems with po-
sitional running cost over motions of controlled dynamical
systems on a finite time interval. The presenting algorithm
is based on a backward procedure involved generalized
characteristics of the Bellman equation. Note that the
value function takes the key part in constructions of opti-
mal feedbacks solving the problems. The optimal synthesis
can be constructed as aiming in directions of generalized
gradients of the value function.

3.1 Statement of the optimal control problem and basic
notions

Problem 2. We consider optimal control problems where
dynamics are described by the equation

ẋ(t) = f(t, x, u), x[t0] = x0, u ∈ P. (6)

Here t ∈ [0, T ] is time, x ∈ Rn is a phase vector, controls
u belong to the given compact set P ⊂ Rm. Assume that
the cost functional has the form

It0, x0(x(·), u(·)) = (7)

= min
θ∈[t0,T ]

{
σ(θ, x(θ; t0, x0, u(·))) +

θ∫
t0

g(t, x(t), u(t))dt
}
,

(8)
where x(·) = x(·; t0, x0, u(·)) : [t0, T ] 7→ Rn is a trajectory
of the system (6) started at an initial state (t0, x0) under
an admissible control u(·) : [t0, T ] 7→ P .
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We consider the problems of prescribed duration (T − t0)
provided the optimal result V (t0, x0) (the value) is equal
to

V (t0, x0) = inf
u(·)∈Ut0

It0, x0(x(·; t0, x0, u(·)), u(·)) (9)

at any initial state (t0, x0) ∈ [0, T ]× Rn. The symbol Ut0
denotes the set of all measurable functions u(·) : [t0, T ] 7→
P called programs.

Let symbols ΠT and clΠT denote the regions in space
Rn+1:

ΠT = (0, T )×Rn, clΠT = [0, T ]×Rn.

We assume that the data are Lipschitz continuous with re-
spect to the phase variables (t, x), and satisfy extendability
conditions. The sets

Arg min
(f,g)∈F (t,x)

[〈p, f〉+ g] =

= {(f0(t, x, p), g0(t, x, p))},
are assumed to be singletons, for any (t, x) ∈ P , p ∈ Rn.
Namely, each set contains the unique element equal to
(f0(t, x, p), g0(t, x, p)). Here

E(t, x) = (f(t, x, P ), g(t, x, P )) ⊂ Rn ×R.
The symbol 〈·, ·〉 denotes the inner product.

The value function V (t, x) is nonsmooth, as a rule. It is
known (Subbotin [1995]), that the value function V (t, x) of
the considered optimal control problem coincides with the
unique minimax solution of the following Cauchy problem
for the Bellman equation

∂V (t, x)/∂t+ min
u∈P

[
〈DxV (t, x), f(t, x, u)〉+ (10)

+g(t, x, u)
]

= 0, (t, x) ∈ ΠT ,

with the boundary condition
V (T, x) = σ(T, x), ∀x ∈ Rn, (11)

and with the additional restrictions
V (t, x) ≤ σ(t, x), ∀(t, x) ∈ ΠT . (12)

Here

DxV (t, x) =
(
∂V (t, x)
∂x1

, . . . ,
∂V (t, x)
∂xn

)
.

3.2 Generalized characteristics for the Bellman equation

Consider the Hamiltonian H(t, x, s)
H(t, x, s) = min

u∈P

[
〈s, f(t, x, u)〉+ g(t, x, u)

]
. (13)

Let us recall that the classical characteristics for the
Bellman equation (10) are solutions of the system of
ODEs: 

dx̂

dt
= Dp̂H(t, x̂, p̂),

dp̂

dt
= −Dx̂H(t, x̂, p̂),

dẑ

dt
= 〈p̂, Dp̂H(t, x̂, p̂)〉 −H(t, x̂, p̂),

(14)

and satisfy the boundary conditions:
x̂(T, y) = y, p̂(T, y) = Dyσ(T, y), ẑ(T, y) = σ(T, y),

at t = T ; here vectors y ∈ Rn are parameters.

The symbols DpH(t, x̂, p̂), DxH(t, x̂, p̂) denote the vectors
DpH(t, x̂, p̂) = (∂H(t, x̂, p̂)/∂p1, . . . , ∂H(t, x̂, p̂)/∂pn),
DxH(t, x̂, p̂) = (∂H(t, x̂, p̂)/∂x1, . . . , ∂H(t, x̂, p̂)/∂xn).

Due to the Lipschitz continuity of the data of the consid-
ered optimal control problem, the Hamiltonian H(t, x, s)
is Lipshitz continuous, too. Notions of generalized charac-
teristics were introduced in different manners, for exam-
ple, (Clarke [1983], Blagodatskikh [1984], Melikyan [1998],
Bardi et al. [1999]). We introduce the following notion.

The set ∂Clx H(t, x̂, p̂) ∈ Rn of the form

∂Clx H(t, x̂, p̂) = co{∀ lim
(t′,x′)→(t,x̂)

DxH(t′, x′, p̂)}. (15)

is called the Clarke partial subdifferential in x of the
Hamiltonian (see, Clarke [1983]).

Here the symbol co denotes convex hull, the points
(t′, x′, p̂) are regular points of the Hamiltonian H(t, x, s),
where H(t, x, s) is differentiable in variables (t, x).

Let us introduce characteristic inclusions as follows

dx̂

dt
= DpH(t, x̂, p̂) = f0(t, x̂, p̂),

dp̂

dt
∈ −∂Clx H(t, x̂, p̂),

dẑ

dt
= 〈p̂, DpH(t, x̂, p̂)〉 −H(t, x̂, p̂) = −g0(t, x̂, p̂),

(16)

Let us also introduce the boundary conditions:
x̂(t, y) = y, p̂(t, y) ∈ ∂Clx σ(t, y), ẑ(T, y) = σ(t, y), (17)

for any (t, y) ∈ ΠT , where V (t, y) = σ(t, y). The variables
y ∈ Rn play roles of parameters.
Definition 2. Absolutely continuous functions

(x̂(·), p̂(·), ẑ(·)) : [0, T ]→ Rn ×Rn ×R,
satisfying the differential inclusions (16) and the boundary
condition (17) are called generalized characteristics for the
Bellman equation (10).

3.3 An auxiliary optimal control problem

Generalized characteristics (16)-(17) can be used to cal-
culate the optimal result (9). A justification of the cal-
culations is based on connections between extremals and
co-extremals of the Pontryagin maximum principles and
characteristics of the Bellman equation (Pontryagin et al.
[1962], Bellman [1957]). A key part of the construction is
the following auxiliary optimal control problem on time
interval [t∗, t∗] ⊂ [0, T ]:
Problem 3.

ẋ(t) = f(t, x, u), x[t∗] = x∗, u ∈ P ; (18)

It∗, x∗(x(·), u(·)) = (19)

= σ(t∗, x(t∗; t∗, x∗, u(·))) +

t∗∫
t∗

g(t, x(t), u(t))dt; (20)

V ∗(t∗, x∗) = inf
u(·)∈Ut∗

It∗, x∗(x(·; t∗, x∗, u(·)), u(·)) (21)
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Results of the monographs (Clarke [1983], Subbotina
[2006]) imply validity of the following propositions.
Theorem 2. Let the data of the problem (18)-(21) provide
existence, boundedness and continuity of partial deriva-
tives of the Hamiltonian H(t, x, s) (13). Then, for any
point (t∗, x∗) ∈ ΠT , the set of all extremals xe(·) =
x(·; t∗, x∗, ue(·)) satisfying the Pontryagin maximum prin-
ciple coincides with the set X(t∗, x∗, t∗) of components
x̂(·, y) of classical characteristics for the Bellman equation
crossing at the point (t∗, x∗), i.e.

X(t∗, x∗, t∗) = {x̂(·, y) : x̂(t∗, y) = x∗, x̂(t∗, y) = y}.
The set of corresponding co-extremals pe(·) = p(·; t∗, xe(t∗),
ue(·)) coincides with the set of components p̂(·, y) of clas-
sical characteristics satisfying the boundary conditions:

y ∈ Y (t∗, x∗, t∗) = {y : x̂(t∗, y) = y, x̂(t∗, y) = x∗},
p̂(t∗, y) = Dyσ(t∗, y).

Theorem 3. Let the data of the problem (18)-(21) provide
existence, boundedness and continuity of partial deriva-
tives of the Hamiltonian H(t, x, s) (13). Then, for any
point (t∗, x∗) ∈ ΠT , the optimal result V ∗(t∗, x∗, t∗) for
the controlled system (18) on the interval [t∗, t∗] can be
represented as follows

V ∗(t∗, x∗, t∗) = inf
y0, p0

V (t∗, y0) +
∫
t∗t
∗g0(τ, x̂(τ), p̂(τ))dτ,

where
y0 ∈ Y (t∗, x∗, t∗), p0 = p̂(t∗, y0) = Dyσ(t∗, y0).

3.4 A representation formula of the value function

Let us introduce a new tool of nonsmooth analysis needed
to get necessary and sufficient optimality conditions to the
problem (2), and apply it to a representation formula of
optimal result V (t, x) (21).

Let us consider a local Lipschitz continuous function V ′(·) :
ΠT → R, a point (t, x) ∈ ΠT , a vector h ∈ Rn, and regular
points (t+ δk, x+ δkh

′
k) of the function V ′(t, x).

Definition 3. The set

∂1,hV
′(t, x) = co

{
lim

δk↓0,h′k→h,k→∞

(
∂V ′(t+ δk, x+ δkh

′
k)

∂t
,

DxV
′(t+ δk, x+ δkh

′
k)

)}
,

is called the subdifferential of V ′(t, x) in the direction
(1, h) ∈ Rn+1.

Theorems 2, 3, and the notion of the directional subdiffer-
ential (3) are the basis of the following proposition (see,
Subbotina [2006]).
Theorem 4. For any initial point (t, x) ∈ ΠT , the value
function V (t, x) (9) has the representation

V (t, x) = min
x0(·),p0(·)

σ(y)+ (22)

+

T∫
t

g0(τ, x̂0(τ, y), p̂0(τ, y)) dτ,

where x̂0(·, y) are generalized characteristics (16), (17)
crossing at point (t, x) : x̂0(t, y) = x. Moreover, for all
τ ∈ [t, T ], the characteristics satisfy the relations:

(−H(τ, x̂0(τ, y), p̂0(τ, y)), p̂0(τ, y)) ∈ (23)
∈ ∂1,f0(τ,x̂0(τ,y),p̂0(τ,y))V (τ, x̂0(τ, y)).

3.5 Algorithms

An algorithm for numerical approximation of the value
function V (t, x) to the problem (6)-(9), which based on
theorems 2-4, is created for the case of the smooth data
(see, Subbotina, and Tokmantsev [2006]).

Consider a partition ∆ = {t0, t1, . . . , tN = T} of the
given finite time interval. The characteristic system (16) is
integrated on intervals [ti, ti+1], i = 0, N − 1, in the back-
ward time. According to (22) the numerical approximation
Ṽ (ti, x) of the value function is constructed at points x̂
on the characteristics at instants ti ∈ ∆. Let us stress
that all boundary conditions are defined on the boundary
manifolds (17). So, one can consider the backward dynamic
programming procedure as a generalization of the Cauchy
characteristics method.

The inequalities (23) are used also to create optimal
feedbacks U0(t, x):

U0(t, x) ∈ {u0 ∈ P : (f(t, x, u0), g(t, x, u0)) =
=
(
f0(t, x̂0(t, y), p̂0(t, y))), g0(t, x̂0(t, y), p̂0(t, y)

)
, (24)

x = x̂0(t, y), p̂0(t′, y) ∈ ∂yV (t′, y), ẑ0(t′, y) = σ(t′, y)}.

Results of realization of the algorithms are exposed in the
next subsection.

3.6 Examples

Example 2. Let dynamics of the controlled system be
described by the equation

ẋ1 = x2,

ẋ2 = u,

‖u‖ ≤ 1; t ∈ [0, 1].
The cost functional has the form

It0, x0(x(·), u(·)) = min
θ∈[t0,1]

{
(x1(θ) + θ − 1)2/2 + x2

2(θ)/2+

θ∫
t0

u2(t)dt
}
.

Parameters of approximation are ∆t = 0.02, ∆x = 0.027,
∆p = 0.03. Below on Fig.7 two graphs are exposed at the
time moment t = 0.0.
Example 3. Consider dynamics of the controlled system in
the form

ẋ1 = x2,

ẋ2 = − sinx1 + u,

‖u‖ ≤ 1; t ∈ [1, 2].
The cost functional is

It0, x0(x(·), u(·)) = min
θ∈[t0,2]

{
− (x1(θ) + θ − 2)2

2
−

(x2
2(θ))/2− 3θ(2− θ)−

θ∫
t0

√
1− u2(t)dt

}
.
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The charascteristic system has the form{
dx̂1/dt = x̂2, dx̂2/dt = − sin x̂1 − p̂2/

√
(p̂2)2 + 1;

dp̂1/dt = p̂2, dp̂2/dt = −p̂1 dẑ/dt = 1/(
√

1 + (p̂2)2.

The boundary conditions are
x̂1(T, y) = y1, x̂2(T, y) = y2,

p̂1(T, y) = −y1, p̂2(T, y) = −y2, ẑ(T, y) = −(y2
1 + y2

2)/2.
Parameters of approximation are ∆t = 0.02, ∆x = 0.16,
∆p = 0.02. Below on Fig.8 two graphs are exposed at the
time moment t = 1.0.

Fig. 7. The upper graph is the graph of the value function,
and the lower graph is the graph of the cost functional
generated by the optimal feedback.

Fig. 8. The right graph is the graph of the value function,
and the left graph is the graph of the cost functional
generated by the optimal feedback.
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