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Abstract: This note addresses the problems related to the design of fault detection filters
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the design purpose, different algorithms are provided. The achieved results are finally illustrated
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1. INTRODUCTION AND PROBLEM
FORMULATION

Consider a linear time invariant (LTI) system given by

ẋ = Ax + Bu + Edd + Eff (1)

y = Cx + Du + Fdd + Fff (2)

where x ∈ <n, y ∈ <m and u ∈ <ku are the system state
vector, input and output vectors respectively. d ∈ <kd

represents the unknown input vector and f ∈ <kf is the
vector of the faults to be detected. It is well known that
the first step to a successful model based fault detection
(FD) is the so-called residual generation. To this end, the
fault detection filter (FDF) scheme is widely used (Frank
[1997], Chen and Patton [1999], Kinnaert [2003]). Given
system (1)-(2), an FDF is a dynamic system of the form

˙̂x = Ax̂ + Bu + L(y − Cx̂−Du) (3)

r = V (y − Cx̂−Du) (4)

where r is the so-called residual vector and L, V are the
observer gain and the post-filter which should be selected
such that r is independent of u and x(0) for t → ∞. The
dynamics of FDF (3)-(4) is governed by

ė = (A− LC) e + (Ed − LFd)d + (Ef − LFf )f (5)

r = V (Ce + Fdd + Fff) , e = x− x̂. (6)

For a reliable FD, it is desirable that the residual vector
would only be influenced by the fault. For this purpose, L
and V should be so designed that the FDF is stable and

Grd(s) = V (C(sI −A + LC)−1(Ed − LFd) + Fd) = 0
(7)

Grf (s) = V
(
C(sI −A + LC)−1(Ef − LFf ) + Ff

)
6= 0.

(8)
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An FDF satisfying (7) is known as unknown input FDF
(UIFDF) and the design issue as Perfect Unknown Input
Decoupling Problem (PUIDP), which has been intensively
studied in the past two decades, see for instance Chen
and Patton [1999], Gertler [1998] and Blanke [2003].
The major objective of this note is to provide a practical
UIFDF solution to the PUIDP.

In the past two decades, a number of significant UIFDF
schemes have been reported. In the pioneer work by Mas-
soumnia [1986], geometric approach was used for the de-
sign of UIFDF. In Ding and Frank [1990], factorization
approach aided UIFDF design was proposed. Wuenenburg
[1990] and Patton and Hou [1998] reported successful
UIFDF design using different forms of the matrix pencil
method. In addition, Chen and Patton [1999] have applied
the well-established unknown input observer (UIO) tech-
nique for the UIFDF design.

Recently, during the attempt to integrate the UIFDF
design into a MATLAB based FDI toolbox developed in
our institute (Ding et al. [2006]), we notice that (a) by
different design schemes the existence conditions are given
in different ways and in terms of different system structural
properties (b) these conditions may differ from (in fact
stronger than) the well recognized conditions

rank (Grd(s)) < m (9)
for FDF satisfying (7) as well as

rank (Grd(s)) < rank [ Grd(s) Grf (s) ] (10)
for FDF satisfying (7) and (8), as given in Ding and Frank
[1990] or recently in Frisk [2001] and Varga [2002] (c)
the implementation of those algorithms may be involved
and requires in particular special knowledge of linear
control theory like, for instance, the geometric approach
or matrix pencil method. This observation motivated our
study reported in this note. Using some results well known
in linear system theory, we shall present an existence
condition for the UIFDF and then give a modified form
of UIFDF whose existence condition is identical with (10).
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This modified UIFDF is a reduced order one. Based on
this result, we shall also give an algorithm for designing
minimum order UIFDF which is of considerable practical
interests.

Throughout this note, the standard notation, for instance,
the one adopted in Kailath [1980], will be used. This
note is organized as follows. In Section 2, UIFDF design
is addressed. Section 3 is devoted to the design of a
reduced order UIFDF whose existence condition is given
by (10). In Section 4, an algorithm is provided for the
design of minimum order UIFDF. Section 5 is dedicated
to the extension of the results. And finally in Section 6, an
example is given to illustrate the achieved results.

2. ON THE UIFDF DESIGN

For the sake of simplicity, let us first assume that Fd = 0.
Later on, in Section 5, we will generalize our results for
Fd 6= 0.

For our purpose, we first introduce a well known result on
the design of L such that for given

ẋ = (A− LC)x + Edd, y = Cx (11)
the pair ((A−LC), Ed) becomes maximally uncontrollable
by d, which is equivalently to the fact that the pair ((A−
LC)T , ET

d ) is maximally unobservable. The terminologies
maximally uncontrollable and maximally unobservable are
used to express the uncontrollable and unobservable sub-
spaces with the maximal dimensions (Kailath [1980], Won-
ham [1979]).

Lemma 1 Kailath [1980] : Suppose L makes (A−LC, Ed)
maximally uncontrollable by d, i.e. ((A − LC)T , ET

d ) is
maximally unobservable. Then by a suitable choice of
output and state bases, V̄ and T , the resulting realization
can be described by

T (A− LC) T−1 =
[

Ā11 Ā12

0 Ā22

]
, TEd =

[
Ēd1

0

]
(12)

C̄ = V̄ CT−1 =
[

C̄1 0
0 C̄2

]
where the realization (Ā11, Ēd1, C̄1) is perfectly control-
lable.

Remark: A system (A,B, C) is called perfectly control-
lable if

∀λ,

[
A− λI B

C 0

]
has full row rank.

Now, we apply Lemma 1 for our UIFDF study.

Let Lmax be the observer gain that makes (A−LmaxC,Ed)
maximally uncontrollable by d. When C̄2 6= 0, we con-
struct, according to Lemma 1, the following FDF[

ż1

ż2

]
=

[
Ā11 − L11C̄1 Ā12 − L12C̄2

0 Ā22 − L22C̄2

] [
z1

z2

]
+TBu + T

(
Lmax + L0V̄

)
y (13)

r = [ 0 v2 ]
(

V̄ y −
[

C̄1 0
0 C̄2

] [
z1

z2

])
, v2 6= 0 (14)

with

TL0 =
[

L11 L12

0 L22

]
(15)

and L11, L22 ensuring the stability of Ā11 − L11C̄1 and
Ā22 − L22C̄2. Introducing

z =
[

z1

z2

]
, e = Tx− z =

[
e1

e2

]
gives[

ė1

ė2

]
=

[
Ā11 − L11C̄1 Ā12 − L12C̄2

0 Ā22 − L22C̄2

] [
e1

e2

]
+

[
Ēd1

0

]
d

(16)

r = [ 0 v2 ]
[

C̄1 0
0 C̄2

] [
e1

e2

]
= v2C̄2e2. (17)

It is evident that residual signal r is perfectly decoupled
from d. Thus, (13)-(14) is an UIFDF. For our purpose, we
now study the existence condition for UIFDF (13)-(14).

Lemma 2 Kailath [1980] : Under the same conditions as
given in Lemma 1, we have

• C̄2 6= 0 if and only if rank (C) > rank (Ed)
• (Ā22, C̄2) is equivalent to

(Ā22, C̄2) ∼
([

Ā221 0
Ā222 Ā223

]
,
[
C̄21 0

])
where (Ā221, C̄21) is perfectly observable, the eigen-
values of matrix Ā223 are the invariant zeros of
(A,Ed, C) and they are unobservable.

Following Lemma 2, we know that Ā22 − L22C̄2 becomes
stable only if (A,Ed, C) has no unstable invariant zero.
Moreover, the PUIDP is solvable if and only if

rank (C) > rank (Ed)
which leads to

rank

[
A− sI Ed

C 0

]
< n + m. (18)

As a result, the following theorem and corollary are proven.

Theorem 1: Given system (5)-(6) with Fd = 0, then there
exists an FDF that solves the PUIDP if and only if

rank

[
A− sI Ed

C 0

]
< n + m

and (A,Ed, C) has no unstable invariant zero.

Corollary 1: Given system (5)-(6) with Fd = 0, then
there exists an FDF that satisfies (7)-(8) if

rank

[
A− sI Ed

C 0

]
< rank

[
A− sI Ef Ed

C Ff 0

]
≤ n + m

(19)
and the invariant zeros of (A,Ed, C) are stable.

Comparing the existence conditions given in Theorem 1
and Corollary 1 with the ones given in (9) and (10), we
can clearly see that the existence conditions (18) as well as
(19) are stronger than (9) and (10) due to the additional
requirement on the invariant zeros of (A,Ed, C). This
motivates our further study described in the next section.

3. DESIGN OF REDUCED ORDER UIFDF

The basic idea behind our effort is to construct the
residual generator only using those state variables which
are decoupled from d and stable. For this purpose, we
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consider FDF in (13). Instead of constructing a full order
observer, we now define the sub-system related to z2, i.e.

ż2 =
(
Ā22 − L22C̄2

)
z2 + T2Bu + T2

(
Lmax + L0V̄

)
y
(20)

r = v2

(
V̄2y − C̄2z2

)
(21)

with

T :=
[

T1

T2

]
, V̄ :=

[
V̄1

V̄2

]
.

It is evident that (20) is a reduced order UIFDF which is
decoupled from d. In order to solve the problem with un-
stable invariant zeros, suppose, without loss of generality,
that (Ā22, C̄2) is of the form

Ā22 =
[

Ā221 0
Ā222 Ā223

]
, C̄2 =

[
C̄21 0

]
(22)

as described in Lemma 2, i.e.

T (A− LC) T−1 =

 Ā11 Ā121 Ā122

0 Ā221 0
0 Ā222 Ā223

 (23)

C̄ = V̄ CT−1 =
[

C̄1 0 0
0 C̄21 0

]
, TEd =

 Ēd1

0
0

 . (24)

Corresponding to the decomposition given in (24), we now
further split z2, L22 and T2 into

z2 =
[

z21

z22

]
, L22 =

[
L221

L222

]
, T2 =

[
T21

T22

]
and construct the following residual generator
ż21 =

(
Ā221 − L221C̄21

)
z21 + T21Bu + T21

(
Lmax + L0V̄

)
y

(25)
r = v2

(
V̄2y − C̄21z21

)
.

It is straightforward to prove that for e21 = T21x− z21

ė21 =
(
Ā221 − L221C̄21

)
e21, r = v2C̄21e21.

That means residual generator (25) is stable and perfectly
decoupled from d.

Theorem 2: Given system (5)-(6) with Fd = 0, and
suppose that

rank

[
A− sI Ed

C 0

]
< n + m. (26)

Then residual generator (25) delivers a residual signal
decoupled from d.

In this way, we have removed the requirement on the
invariable zeros of (A,Ed, C) . As a result, the following
corollary is evident.

Corollary 2: Given system (5)-(6) with Fd = 0, then
there exists a reduced order FDF that satisfies (7)-(8) if

rank

[
A− sI Ed

C 0

]
< rank

[
A− sI Ef Ed

C 0 0

]
≤ n + m

(27)

Remark: Note that residual generator (25) is in fact a
so-called fault diagnosis observer Chen and Patton [1999].
To be consistent with the term FDF used in the last section
and considering the basic idea behind the design scheme,
we call it reduced order FDF.

Below, we summarize the major results for the reduced
order UIFDF design into two algorithms, which can be
easily programed.

Algorithm 1: Computation of observer gain Lmax for
generating maximally uncontrollable subspace

Step 0: Setting initial condition: find a maximal solution
of

ET
d V0 = 0

for V0

Step 1: find a maximal solution of
Wi

[
CT Vi−1

]
= 0,

for Wi

Step 2: find a maximal solution of[
ET

d

WiA
T

]
Vi = 0,

for Vi

Step 3: check
rank (Vi) = rank (Vi−1)

If no, increase i = i + 1 and go to Step 1, otherwise set
Ṽ = Vi,

Step 4: find a solution of

AT Ṽ =
[
CT Ṽ

] [
K
P

]
for (K, P )

Step 5: solve
K = LT

maxṼ

for the observer gain Lmax.

Remark: The term maximal solution is used to denote
the maximally dimensional solution X of an equation
MX = 0 (or XM = 0 for a given M). Step 0 to Step 3
are the algebraic version of the algorithm proposed by Bhat-
tacharyya [1978], Wonham [1979] for the computation of
the supremal(AT , CT )-invariant subspace contained in the
null-space of ET

d . As a result, the dual representation of
system (11) becomes maximally unobservable.

Algorithm 2: Computation of reduced order UIFDF

Step 1: Determine Lmax that makes (A− LmaxC,Ed, C)
maximally uncontrollable by using Algorithm 1

Step 2: Transform (A − LmaxC,Ed, C) into (12) by a
state and an output transformation (controllability and
observability decomposition)

Step 3: Transform (Ā22, C̄2) into (22) by a state trans-
formation (observability decomposition)

Step 4 Select L221 ensuring the stability of Ā221−L221C̄21

Step 5: Construct residual generator (25)

4. DESIGN OF MINIMUM ORDER UIFDF

Construction of minimum order residual generators is of
strong practical interest for the real time application.
In this section, we shall propose a design procedure for
constructing minimum order UIFDF based on the results
achieved in the last two sections.

Assume that the existence condition (26) for a PUIDP
is satisfied. Then, applying Algorithm 2 leads to an ob-
servable pair

(
C̄21, Ā221

)
, see (22). In Ding et al. [1998,

1999] and Ding [2007], it has been proven that for a given
observable system (C,A) the minimum order of any LTI
residual generator is the minimum observability index.
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Moreover, an algorithm has been proposed for the con-
struction of the minimum order residual generator, which
is summarized in the following algorithm.

Algorithm 3: Computation of minimum order LTI
residual generator

Given a system

ẋ = Ax + Bu, y = Cx

where C ∈ Rm×n, A ∈ Rn×n, x ∈ Rn and y ∈ Rm denote
the minimum observability index by σmin

Step 1: Solve

vs


C

CA
...

CAσmin

 = 0

for vs ∈ R1×mσmin , vs = [ vσmin,0 vσmin,1 · · · vσmin,σmin ]
Step 2: Form

G = [ Go g ] , Go =


0 0 · · · 0
1 0 · · · 0
...

. . . . . .
...

0 · · · 1 0
0 · · · 0 1

 ∈ Rσmin×(σmin−1)

g =

 g1

...
gσmin

 ∈ Rσmin ,

L =−


vσmin,0

vσmin,1

...
vσmin,σmin−1

− gvσmin,σmin

H =


vσmin,1 vσmin,2 · · · vσmin,σmin

vσmin,2 · · · · · · 0
... · · · · · ·

...
vσmin,σmin 0 · · · 0




C
CA
...

CAσmin−1

B

w = [ 0 · · · 0 1 ] ∈ Rσmin , v = vσmin,σmin

where g is so selected that G is stable
Step 3: Construct residual generator

ż = Gz + Hu + Ly, r = vy − wz. (28)

Remark: The dynamics of residual generator (28) is
governed by Ding [2007]

ζ̇ = Gζ, r = wζ.

Now, applying the above result and Algorithm 3 to the
observable pair

(
C̄21, Ā221

)
delivers a residual generator

of the order σ2,min with σ2,min denoting the minimum
observability index of the pair

(
C̄21, Ā221

)
. To show that

σ2,min is also the minimum order of (reduced order)
UIFDF, we call the reader’s attention to the following
facts: given system model (11)

• any pair (L, V ) that solves the PUIDP leads to

(A− LC, Ed, V C) ∼([
Ã11 Ã12

0 Ã22

]
,

[
Ẽd1

0

]
,

[
C̃11 C̃12

0 C̃22

])

• the subspace spanned by
(
Ã11, Ẽd1, C̃11

)
includes the

perfect controllable subspace (Ā11, Ēd1, C̄1) given in
Lemma 1

• by a suitable selection of a pair
(
L̃1, Ṽ1

)
,(

Ã11 − L̃1C̃11, Ẽd1, Ṽ1C̃11

)
∼([

Ã11,11 Ã11,12

0 Ã11,22

]
,

[
Ẽd1,1

0

]
,

[
C̃11,11 C̃11,12

0 C̃11,22

])
where

(
Ã11,11, Ẽd1,1, C̃11,11

)
is perfect controllable.

• Due to the special form of([
Ã11,22 X

0 Ã22

]
,

[
C̃11,22 X

0 C̃22

])
(29)

with X denoting some block of no interest, it is evi-
dent that the minimum order of the residual generator
for the pair (29) is not larger than the minimum order
of the residual generator for the pair

(
Ã22, C̃22

)
• the pair (29) is equivalent to the pair (Ā22, C̄2) given

in Lemma 2.

Based on these facts, the following theorem becomes clear.

Theorem 3: Given system (5)-(6) with Fd = 0. Using Al-
gorithms 1 - 3, L, V can be found that delivers a minimum
order UIFDF.

5. AN EXTENSION

Remember that the results achieved in the last three
sections are on the assumption Fd = 0. In this section,
we extend these results to the case when Fd 6= 0. To this
end, we rewrite system model (1)-(2) into

 ẋ

ḋ

ḟ

 =

[
A Ed Ef

0 0 0
0 0 0

] [
x
d
f

]
+

[
B
0
0

]
u +

[ 0
I
0

]
ḋ +

[ 0
0
I

]
ḟ

(30)

y = [ C Fd Ff ]

[
x
d
f

]
+ Du. (31)

Noting that

rank

 A− sI Ed Ef 0 0
0 −sI 0 I 0
0 0 −sI 0 I
C Fd Ff 0 0

 =

rank

[
A− sI Ed Ef

C Fd Ff

]
+ kd + kf

rank

[
A− sI Ed 0

0 −sI I
C Fd 0

]
= rank

[
A− sI Ed

C Fd

]
+ kd

it holds
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rank

 A− sI Ed Ef 0 0
0 −sI 0 I 0
0 0 −sI 0 I
C Fd Ff 0 0

 ≤ n + m + kd + kf

⇐⇒ rank

[
A− sI Ed Ef

C Fd Ff

]
≤ n + m

rank

[
A− sI Ed 0

0 −sI I
C Fd 0

]
< n + kd + m ⇐⇒

rank

[
A− sI Ed

C Fd

]
< n + m.

Recalling the definition of invariant zeros, the results given
in Theorem 1 and Corollary 1 can be extended to the
following corollary.

Corollary 3: Given system (1)-(2), then the PUIDP is
solvable if and only if

rank

[
A− sI Ed

C Fd

]
< n + m.

Moreover, there exists a (reduced order) UIFDF that sat-
isfies (7)-(8) if

rank

[
A− sI Ed

C Fd

]
< rank

[
A− sI Ed Ef

C Fd Ff

]
≤ n + m.

Using system model (30)-(31), we can also apply Algo-
rithms 1-3 to design UIFDF for system (1)-(2).

6. DESIGN EXAMPLE

In this section we apply the proposed Algorithms 1 - 3
to design full order, reduced order as well as minimum
order UIFDF for inverted pendulum model. We consider
the linear model of the system which is linearized at θ = 0.
θ = 0 is the upright position of the pendulum. There are
three sensors measuring the cart position r, cart velocity
ṙ and the pendulum position θ and the corresponding
faults are fr, frd and fθ. Similarly perfect measurements
are assumed, that means no measurements noises are
considered. The state variable vector is (r, θ, ṙ, θ̇). The
system matrices given blow are taken from Ding [2006].

A =

 0 0 −1.95 0
0 0 0 1.0
0 −0.12864 −1.9148 −0.0082
0 21.4745 26.31 −0.1362

 , B =

 0
0

−6.1343
84.303


C =

[ 1 0 0 0
0 1 0 0
0 0 1 0

]
, D = 03×1, Ed = B Fd = D

Ef = [B 04×3] , Ff =

[ 0 1 0 0
0 0 1 0
0 0 0 1

]

It is also noticed that the system[
A− sI Ed

C Fd

]
has no transmission zeros. The existence conditions for the
solution of PUIDP given in Corollary 1 are satisfied. The
parameters computed for full, reduced and minimum order
UIFDF are given as follows.
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Fig. 1. Response of Full order Residual Generator to
simultaneous faults

Full order UIFDF: The parameters for Full order
UIFDF (13) are computed as follows

Lmax =

 0 0.0000 −1.9500
0 0.0000 −13.7429
0 0.7131 0.2470
0 0.0519 0.0180


Similarly the state and output transformations are

[
T1

T2

]
=

 0 0 −0.1630 0
0.0055 0.9473 0.3193 0.0232
0.0676 0.3191 −0.9428 −0.0686
0.9977 −0.0269 0.0621 0.0045


[

V̄1

V̄2

]
=

[ 0 0 1
0 1 0
1 0 0

]
where

T1 ∈ <1×4, T2 ∈ <3×4

V̄1 ∈ <1×3, V̄2 ∈ <2×3

TL0 =

−1.0000 0.5000 0.5000
0 11.0500 11.8438
0 0.8796 5.1779
0 −0.1223 7.0497


V = [ 0 v2 ] = [ 0 0.500 1.000 ]

Reduced order UIFDF: The parameters of Reduced
order UIFDF (20) are given as follows

C̄2 =
[

0.9473 0.3191 −0.0269
0.0055 0.0676 0.9977

]

L11 = −1.000, L22 =

[ 11.0500 11.8438
0.8796 5.1779
−0.1223 7.0497

]
and v2, V̄2, T2 in equation (20) is given above.

Minimum order UIFDF: The parameters of minimum
order UIFDF (28) are obtained as follows

L = [0 0 1.000] G = −1, H = 0
w = 1, v = [0 0 1];
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Fig. 2. Response of Reduced order residual generator to
simultaneous faults
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Fig. 3. Response of minimum order residual generator to
simultaneous faults

The simulation results for all three types of FDF are
shown in Fig. (1) - (3). The faults are simulated using step
functions activated at different time instants. The results
for reduced order UIFDF are similar to full order UIFDF,
which means that reduced order UIFDF can be efficiently
used instead of Full order UIFDF. Perfect decoupling of
disturbances and sensitivity to faults in the simulation
results, also help us that minimum order UIFDF can be
used for this purpose as well. The price we paid for this
decoupling is the actuator fault is not detected. However
this is not the case in general. It is because of the system
structure as the disturbance and the actuator input are
forming the same subspace. So by decoupling the residual
from the disturbance indeed we make it insensitive to the
the actuator fault.

7. CONCLUSION

In this work we have presented the solutions of problems
related to design of fault detection filters which are per-
fectly decoupled from unknown inputs. The major focus
has been on the study of existence conditions for the
solution of perfect unknown input decoupling problem
using reduced order UIFDF. The algorithms for reduced
order unknown input fault detection filter and minimum
order UIFDF are provided. The simulation results show
the effectiveness of the proposed approaches.
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