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Abstract: Sufficient conditions of global attracting limit cycle existence for Lurie system with sign 
nonlinearity are presented. It is assumed that the linear part of the system is output stabilizable, the 
nonlinearity has linear negative term plus positive one proportional to the output sign. Conditions of 
oscillatority in the sense of Yakubovich for this class of systems are also reestablished.  Copyright © 
2008 IFAC 
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1. INTRODUCTION 
 
The problem of stability of Lurie type systems (i.e. the 
systems which are composed by linear subsystem closed by 
nonlinear output feedback) has seen a lot of attention during 
the last more than 60 years. This type of systems firstly 
appeared in paper of Bulgakov (1942), where the problem of 
absence of self-sustained oscillations was considered, and the 
system received its name after the famous work of Lurie and 
Postnikov (1944).  
The conditions of asymptotic stability of the origin was 
firstly proposed in (Yakubovich, 1962; Kalman, 1963; 
Popov, 1962) and (Sandberg, 1964; Zames, 1966), and after 
that it had many extensions (Aizerman and Gantmacher, 
1964; Narendra and Taylor, 1973). More complex problem 
of the solutions boundedness was widely addressed starting 
from (Yakubovich, 1965) (see also Răsvan (2007) in special 
issue (2007) for the latest achievements in the field of Lurie 
systems stability), in paper (Arcak and Teel, 2002) the input-
to-state stability conditions were obtained for Lurie systems 
with external inputs. 
In papers (Yakubovich, 1964; 1966) problem of forced 
(periodical) oscillations existence was posed and solved by 
Prof. V.A. Yakubovich. In a few years later he introduced 
(1973) a new definition of self-sustained oscillations (or 
auto-oscillation) and proposed conditions of this type of 
oscillations existence for Lurie systems (Yakubovich, 1975; 
Yakubovich and Tomberg, 1989) (in work (Yakubovich, 
1975) conditions of oscillatority for systems with 
discontinuous at the origin nonlinearity were presented). This 

type of oscillatority later received the name of Prof. 
Yakubovich (Leonov, et al., 1995). Recently those conditions 
of the oscillatority were extended to generic nonlinear 
systems decomposed in nonlinear dynamical subsystem 
closed by static nonlinear output feedback (Efimov and 
Fradkov, 2004; 2007).  
The oscillatority in the sense of Yakubovich is rather general 
conception which covers periodical, non periodical as well as 
chaotic oscillations. This is why very frequently the 
establishing of this property is not enough, since it does not 
provide information about kind of oscillations (estimates on 
oscillation amplitude can be obtained and in some cases 
frequency spectrum lower estimate can be derived), and 
further investigations on periodical oscillations existence 
were carried out. In works (Yakubovich 1964; 1966; Bliman 
and Krasnosel'skii, 1998) series of conditions for forced 
periodical oscillations existence were presented (in papers 
(Bliman and Krasnosel'skii, 1998) time-dependent periodical 
nonlinearity was considered). In works (Krasnosel'skii and 
Rachinskii, 2002; Stan and Sepulchre, 2005; 2007) 
autonomous Lurie system was considered and existence of 
limit cycle was proven applying bifurcation theory, that 
results to local conditions of limit cycle existence. In papers 
(Aguilar, et al., 2007; Bliman, et al., 2000; Loh and Vasnani, 
1994) authors applied describing functions like approaches 
for limit cycle existence substantiation (in paper (Bliman, et 
al., 2000) continuous nonlinearity was considered only), that 
provides easily verified practical frequency domain 
conditions of oscillations existence. However, describing 
function approach (Atherton, 1975) does not provide an exact 
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answer on question about periodical oscillations existence 
since the approach starts with assumption that solutions of 
the system are harmonic functions of time, that is not a 
correct assumption for the nonlinear Lurie system (the 
possibility of asymmetric oscillations existence for Lurie 
system with sign nonlinearity was analyzed in (Di Bernardo, 
et al., 2001), see also (Kuznetsov, 1995)). Existence of limit 
cycles for Lurie system with sign nonlinearity was 
considered in paper (Di Bernardo, et al., 2001) applying 
Poincaré map approach (that is also a local technique). In 
paper (Efimov and Fradkov, 2007) frequency of oscillations 
were derived for the second order system (existence of limit 
cycles for second order systems follows from Poincaré-
Bendixson theorem and its extensions (Mallet-Paret and Sell, 
1996)).  
Much more attention in the literature was devoted to Lurie 
systems with stable linear part closed by nonlinearity 
proportional to negative sign of the output, that is a typical 
situation in PID control systems with relays (Johansson, et 
al., 2002; Tsypkin, 1984). In paper (Megretski, 1996) 
conditions for global limit cycle existence and stability were 
firstly formulated for this type of systems, in this paper it was 
assumed that linear part of the system has unit step response 
close in some sense to non minimum phase second order 
linear stable system. An approach to establish the existence 
of globally stable limit cycle for piecewise linear systems is 
presented in work (Goncalves, et al., 2003). 
Thus, despite availability of wide range oscillatority theory 
(Andronov, et al., 1965; Bogolyubov and Mitropolsky, 1962; 
Nemytskii and Stepanov, 1989), for the best of our 
knowledge there is no global results on global limit cycle 
existence (globally attracting periodical invariant solution) 
for Lurie systems with locally positive feedback. In this 
paper we are going to develop results from (Efimov and 
Fradkov, 2007) for Lurie systems with positive sign 
nonlinearity feedback with order bigger than 2. Auxiliary 
definitions and statements are presented in section 2. Section 
3 contains conditions of the system oscillatority in the sense 
of Yakubovich (considering Lurie system with particular 
type of nonlinearity we propose more constructive conditions 
than obtained in (Yakubovich, 1975), additionally upper and 
lower estimates on oscillations amplitude are derived). 
Periodicity of the system solutions is investigated in section 
4. Example is presented in section 5. 
 
 
 2. PRELIMINARIES 
 
Consider SISO linear time-invariant finite dimensional 
system: 
 u= +x A x b , Ty = c x , (1) 

where nR∈x  is state, y R∈  is output, u R∈  is input, 
signal :u R R+ →  is piecewise continuous function of time 
t R+∈ , { : 0}R t R t+ = ∈ ≥ , R  is Euclidean space; A  is 

n n×  matrix with real elements, b  and c  are vectors in nR . 
A s s u m p t i o n  1 . Let system (1) be stabilizable by static 

output y  feedback and have relative degree 1, i.e. there exist 
symmetric positive definite matrix P  with dimension n n×  
and 0k >  such, that 
 0T

n+ + α ≤G P P G I , Tk= −G A bc , 0T >c b , 
where α  is some positive constant and nI  is identity matrix 
with dimension n n× . □ 
Note that by the standard results (see (Astolfi and Colaneri, 
2000), for example) in this case matrices pairs ( , )A b  is 

controllable and ( , )TA c  is observable. Requirement on 
relative degree is introduced for simplicity of consideration 
and the case with high relative degree can be treated in the 
same way. Under this assumption for system (1) with input 
u k y= −  there exists Lyapunov function ( ) TV =x x P x  with 

time derivative 2| |V ≤ −α x . Consider feedback input 
 ( )u k y sign y= − + ,  (2) 

 
/ | | if | | 0;

( )
0 otherwise ,

y y y
sign y

≠⎧
= ⎨
⎩

 

where we have linear negative output feedback item and 
positive discontinuous feedback one formed by sign function. 
Our interest in such form of feedback follows from the fact, 
that dynamics of many biological, chemical or physical 
oscillating systems can be expressed in terms of Lurie system 
(1), (2) (Efimov and Fradkov, 2004; Stan and Sepulchre, 
2005), that is passive system (matrix A  is stable (Zames, 
1966)) closed by feedback, which has globally stabilizing 
feedback term plus locally destabilizing term.  
Let for any initial value 0

nR∈x  the solution of system (1), 
(2) be denoted as 0( , )tx x  if it satisfies (1), (2) for almost all 
0 t T≤ ≤ < +∞ , by standard arguments it is absolutely 
continuous and defined at least locally (Filippov, 1988) 
( 0 0( , ) ( , )Ty t t=x c x x , we also will write ( )tx  and ( )y t  if 
origin of initial condition is clear from the context). If for all 
initial conditions 0

nR∈x  the corresponding solutions 

0( , )tx x  are defined for all 0t ≥ , then the system is called 
forward complete. Now we are in position to define the 
property of oscillatority in the sense of Yakubovich for 
system (1), (2). 
D e f i n i t i o n  1  (Yakubovich, 1973). Solution 0( , )tx x  

with nR∈0x  of system (1),(2) is called  ],[ +− ππ -
oscillation with respect to output )( xη=ψ  (where 

RRn →η :  is a continuous monotonous with respect to all 
arguments function) if the solution is defined for all 0≥t  
and for ∞+<π<π<∞− +−   

 0lim ( , )
t

t −

→+∞
ψ = πx ; 0lim ( , )

t
t +

→+∞
ψ = πx . 

Solution 0( , )tx x  with nR∈0x  of system (1),(2) is called 

oscillating, if there exist some output ψ  and constants −π , 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5928



     

+π  such, that 0( , )tx x  is ],[ +− ππ -oscillation with respect 
to the output ψ . Forward complete system (1), (2) is called 

oscillatory, if for almost all nR∈0x  the solutions of the 
system 0( , )tx x  are oscillating. Oscillatory system (1) is 

called uniformly oscillatory, if for almost all nR∈0x  for 
corresponding solutions 0( , )tx x  there exist common output 

ψ  and constants −π , +π  not depending on initial 
conditions. □ 
Function RRn →η :  is monotonous if it is monotonous for 
each particular scalar argument for all fixed values of other 
arguments. Oscillatority property is introduced for almost all 
initial conditions since system (1), (2) has some equilibrium 
points, stating from which the system solutions are not 
oscillating. 
A s s u m p t i o n  2 . Let  

 ( ) 1
0T Tsign k

−⎡ ⎤
− ≥⎢ ⎥

⎣ ⎦
c A b c b .  □ 

That is a technical condition which will be used in the next 
section to prove uniqueness of the equilibrium in the origin 
for system (1), (2). 
 
 
 3. YAKUBOVICH’s OSCILLATORITY  
 
We are interesting in uniform oscillatority conditions for 
system (1), (2). To do so we should prove uniqueness of 
equilibrium in the origin (it is obvious that it is an 
equilibrium for the system (1), (2)), global boundedness of 
the system solutions and local instability of the equilibrium.  
P r o p o s i t i o n  1 . Let assumptions 1, 2 hold, then system 
(1), (2) has the single equilibrium 0=x . ■ 
Proofs are excluded due to space limitations. 
P r o p o s i t i o n  2 . Let assumption 1 hold, then for all 
initial conditions 0

nR∈x  the solutions of system (1), (2) 

0( , )tx x  obey the estimates:  

 
1

max

max
0 0

min

0.25 ( ) 1

( )| ( , ) | 2 [ | |
( )

2 | | ] , 0 ,t

t

e t
−− αλ −

λ
≤ ×

λ

× + α ≥P

Px x x
P

P b

 

 0lim | ( , ) |
t

t R
→+∞

≤x x , 1max

min

( )2 | |
( )

R −λ
= α

λ
P P b
P

, 

where min ( )λ P  and max ( )λ P  are minimal and maximal 
eigen-values of matrix P . ■ 
In fact this proposition is a corollary of results from (Arcak 
and Teel, 2002), where more generic result on Lurie systems 
solutions boundedness was proven. Proposition 2 is 
presented since we need further some estimates derived 
there. 
P r o p o s i t i o n  3 . Let assumption 2 hold, then the origin 

0=x  is unstable equilibrium for system (1), (2), moreover 
for all initial condition 0 /{0}nR∈x  it holds that 

 0lim | ( , ) |
t

t r
→+∞

≥x x ,  

 
1 1

1 1 1
| |

1 | | ( ) | |T T
kr

k

− −

− − −
=

+

c
c c b c A

. ■ 

Summarizing the discussion presented so far note that under 
assumptions 1 and 2 all trajectories outside the origin 
converge to set 
 { : | | }nR r RΩ = ∈ ≤ ≤x x ,  

 
1 1

1 1 1
| |

1 | | ( ) | |T T
kr

k

− −

− − −
=

+

c
c c b c A

,  

 1max

min

( )2 | |
( )

R −λ
= α

λ
P P b
P

. 

Now we are ready to describe new oscillatority conditions for 
Lurie system (1), (2). 
T h e o r e m  1 . Let assumption 1, 2 hold and 1 0T − ≠c G b  if 
all eigen-values of matrix G  are real. Then system (1), (2) is 
an oscillating one and for almost all initial conditions 

0 /{0}nR∈x  the solutions 0( , )tx x  are ],[ +− ππ -
oscillations with respect to common output y , where 

 | | | |R R− +− ≤ π < π ≤c c . ■ 

R e m a r k  1 . New condition 1 0T − ≠c G b  (if all eigen-
values of matrix G  are real) excludes from consideration the 
confluent case, when formally system has an attracting 
invariant compact subset into Ω  (without equilibriums of 
system (1), (2)), but equilibriums of systems  
 s= +x G x b , 1s = ± , (3) 

lie exactly on switching surface where 0T =c x  inside the set 
Ω . If all eigen-values are real, then in general case there 
exist subsets of initial conditions such, that trajectories 
converge to equilibriums 0 1s −= −x G b , 1s = ±  of systems 

(3) without any intersections of surface 0T =c x . 
Asymptotically they reach for equilibriums 0x  where 
switches occur. System trajectory will have no exact limits in 
this case and it is oscillating with infinite time “period”. □ 
 
 
 4. LIMIT CYCLE EXISTENCE 
 
In general case oscillatority in the sense of Yakubovich 
implies that system is oscillating possibly with many stable 
or unstable closed trajectories. Further we are interesting in 
the case when the system has the single globally stable limit 
cycle which is obviously belongs to set Ω  (limit cycle is the 
set of values of an isolated periodic trajectory, which is not 
an equilibrium). Limit cycle is globally stable if almost all 
trajectories of the system asymptotically converge to it. Let 
us start with simple statement on globally stable limit cycle 
existence for second order system. 
P r o p o s i t i o n  4 . Let 2n = , assumptions 1,2 hold, 

1 0T − =c G b  and matrix G  have two complex conjugate 
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eigen-values 1,2 iλ = −α ± ω . Then under conditions of 
theorem 1 the system has globally stable limit cycle and 
1. The limit cycle has period 12T −= πω . 
2. The limit cycle has finite time of convergence. ■ 
The proof is straightforward and it is based on direct 
computations, it is excluded due to space requirements. 
Under conditions of proposition 2 the system has symmetric 
globally stable limit cycle. This limit cycle is robust with 
respect to additive asymptotically vanishing disturbances as 
it is stated in the following theorem. 
T h e o r e m  2 . Let assumption 1, 2 hold and there exist 
nonsingular matrix n nR ×∈R  such, that 

 
1 1 3

3

1,1 2
1

2,1 2,2 2

3,1 3,2 3,3

n n n

n

× ×
−

×

⎡ ⎤
⎢ ⎥

= = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

G 0 0

G R G R G G 0

G G G

,  

 
1 1

2

3

n ×⎡ ⎤
⎢ ⎥

= = ⎢ ⎥
⎢ ⎥
⎣ ⎦

0

b Rb b
b

, 

3

1
1

2

1

( )T

n

−

×

⎡ ⎤
⎢ ⎥

= = ⎢ ⎥
⎢ ⎥
⎣ ⎦

c
c R c c

0
,  

 1
2 2,2 2 0T − =c G b , 

where 1 3n n×0  denotes the matrix of zeros with dimension 

1 3n n× , 2 2
2,2 R ×∈G , 2

2 R∈b , 2
2 R∈c , 1 32n n n+ + =  

(all other matrices have corresponding dimensions). If 
matrix 2,2G  has two complex conjugate eigen-values, then 
the system (1), (2) has globally stable limit cycle. ■ 
Conditions of theorem 2 describes a scenarios of globally 
stable limit cycle arising. In this case Lurie system (1), (2) 
can be recomposed on three subsystems as it is in particular 
shown in Fig. 1. System 2 (which corresponds to dynamics 
of variable 2z ) plays a role of “clock” for the system 
producing globally stable limit cycle and defining period of 
oscillations. Discovering other ways of limit cycle arising for 
system 2 one can characterize different situations of globally 
stable limit cycle existence for Lurie systems. 

 

System 2 
System 1 

System 3 

 

z1 y z3 

Fig. 1. Structure scheme of recomposed system. 

f(t) 

 
R e m a r k  2 . It is clear that the result of theorem will be 
preserved for any bounded and asymptotically converging to 
zero external disturbance :f R R+ →  (it is supposed that f  
is Lebesgue measurable and essentially bounded function of 
time 0t ≥ ). Moreover solutions of the system will be 
bounded for any such bounded f . Applying excitation 
indices approach from (Efimov and Fradkov, 2004) one can 
investigate robustness of oscillatority property of the system 
against to f . □ 
R e m a r k  3 . System 1 in Fig. 1 can be replaced with any 

nonlinear globally asymptotically stable system with saving 
previously obtained conclusions about the system properties. 
System 3 also can be replaced with Lurie system (in paper 
(Yakubovich, 1966) the conditions were derived, which 
ensure existence of unique periodical solution for Lurie 
system with periodical external input) or with nonlinear 
convergent system, which also has unique periodical 
response on periodic input (see (Pavlov, et al., 2005) for 
convergent systems approach). □ 

 

 
 

x1 

x2 

x3 

 

 

 
 

x1 

x2 

x4 

  
 Fig. 2. Results of simulations. 
 
 
 5. SIMULATIONS 
 
Consider system (1), (2) with the following values of all 
parameters for 4n = : 

 

3.333 2.333 7.778 3.667
0.333 0.667 0.222 0.667

1 1 1.333 1
2.667 2.667 7.889 2.333

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− − −
⎢ ⎥
− −⎣ ⎦

A ,  

 

1
0
0
1

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
−⎣ ⎦

b , 

0
1

2
1

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
−⎣ ⎦

c , 1k = . 

Matrix A  is stable and it has eigen-values 
[1.414 1.414 2 1]i i− − −  (system (1) is passive), 1T =c b , 

1α =  and  

 

3.333 1.333 5.778 2.667
0.333 0.667 0.222 0.667

1 1 1.333 1
2.667 1.667 5.889 1.333

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− − −
⎢ ⎥
− −⎣ ⎦

G ,  
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11.48 11.389 4.440 11.054
11.389 12.024 4.173 11.157
4.440 4.173 7.049 6.016
11.054 11.157 6.016 11.607

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥
− −⎣ ⎦

P . 

Therefore, all conditions of assumption 1 are satisfied. Since 

( ) 1
0T Tsign k

−⎡ ⎤
− ≥⎢ ⎥

⎣ ⎦
c A b c b , then assumption 2 is also 

valid. Matrix G  has eigen-values 
[ 0.5 1.323 0.5 1.323 2 1]i i− + − − − −  and all conditions of 
theorem 1 are satisfied, thus system is oscillating. To apply 
theorem 2 let us choose 

 

0.556 0.333 0.556 0.444
0.444 0.333 0.556 0.556

0.667 0 0.333 0.333
1.778 0.333 0.222 1.222

− −⎡ ⎤
⎢ ⎥− − − −⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

R , 

then 1 3 1n n= =  and 

 

1 0 0 0
2 0 1 0
1 2 1 0
2 1 1 2

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥− − −
⎢ ⎥
− − −⎣ ⎦

G , 

0
0
1
1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
−⎣ ⎦

b , 

0
0
1
0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

c  

and matrix 2,2G  has eigen-values 
[ 0.5 1.323 0.5 1.323 ]i i− + − − . Therefore, according to 
theorem 2 the system has globally stable limit cycle. The 
results of the system simulation are shown in Fig. 2, where 
projection of the system trajectories on two hyper planes are 
presented. As it can be seen from Fig. 2 the system has limit 
cycle that approves the results of the paper.  
 
 
 6. CONCLUSION 
 
Conditions of oscillatority in the sense of Yakubovich are 
revisited for Lurie system with sign nonlinearities, 
additionally a scenarios of globally stable limit cycle arising 
in Lurie systems is described and characterized. Computer 
simulations approves analytical results of the paper. 
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