
RACT: Randomized Algorithms Control
Toolbox for MATLAB 1

Andrey Tremba ∗ Giuseppe Calafiore ∗∗ Fabrizio Dabbene ∗∗∗,2
Elena Gryazina ∗ Boris Polyak ∗ Pavel Shcherbakov ∗

Roberto Tempo ∗∗∗

∗ Institute of Control Sciencies, Moscow, Russia
∗∗DAUIN Politecnico di Torino, Italy

∗∗∗ IEIIT-CNR Politecnico di Torino, Italy

Abstract: This paper introduces a new Matlab package, Ract, aimed at solving a class of
probabilistic analysis and synthesis problems arising in control. The package offers a convenient
way for defining various types of structured uncertainties as well as formulating and analyzing
the ensuing robustness analysis tasks from a probabilistic point of view. It also provides a
full-featured framework for LMI-formulated probabilistic synthesis problems, which includes
sequential probabilistic methods as well as scenario methods for robust design. The Ract
package is freely available at http://ract.sourceforge.net, and only requires the Yalmip
toolbox to be installed in the Matlab environment.

Keywords: Probabilistic robustness; Randomized methods; Robust controller synthesis; LMIs;
Uncertainty description.

1. INTRODUCTION

Probabilistic and randomized techniques for analysis of
uncertain systems and design of robustly performing con-
trol systems have attracted considerable interest in recent
years, and a significant amount of theoretical and algo-
rithmic results have appeared in the literature. A rather
comprehensive source of pointers to available results in
this field is given in the books Tempo et al. (2005) and
Calafiore and Dabbene (2006) and in the surveys Calafiore
et al. (2007); Calafiore and Dabbene (2007a); Tempo and
Ishii (2007).

The starting idea in the probabilistic approach to the
analysis of uncertain systems is to characterize the uncer-
tain parameters as random variables, and then to evaluate
the system performance in terms of probabilities. Anal-
ogously, probabilistic synthesis is aimed at determining
the design parameters so that certain desired levels of
performance are attained with high probability. This prob-
abilistic approach is complementary to the mainstream
methods in robust control, which seek worst-case perfor-
mance guarantees and consider the uncertainties as de-
terministic unknown-but-bounded quantities. These latter
methods may have limitations due to conservatism and
computational complexity in real-world situations where
a large number of uncertain parameters enter the system
description in a possibly nonlinear way.
In order to diffuse and to make these techniques easily
accessible to the interested researchers, we made an effort
to unify them into a coherent set of Matlab routines
1 This work was supported by a bilateral international project
funded by Consiglio Nazionale delle Ricerche (CNR) and Russian
Academy of Sciences (RAS). The support of an FIRB grant from
the Italian ministry of education and research is also acknowledged.
2 Corresponding author (fabrizio.dabbene@polito.it).

that constitute the Ract toolbox. This paper presents,
by means of examples, the main features and function-
alities available in this toolbox. Detailed instructions are
provided in the User’s Manual (Tremba et al. (2007)). The
Ract toolbox contains only text m-files and its installa-
tion simply amounts to adding some specific folders to
the Matlab path. The freely available Yalmip toolbox
(Lofberg, 2004) and an SDP (sedmidefinite programming)
solver also need to be installed in the Matlab environ-
ment.

2. DEALING WITH UNCERTAINTY

Ract provides easy and efficient tools for defining and
sampling a random uncertain object. An uncertain object
is a particular object (e.g., transfer function, polynomial
or LMI) which depends in a complex and structured way
on a set of uncertain parameters, which are represented by
random variables with given distribution, referred to as ba-
sic uncertainties. A natural way to represent an uncertain
object is to define the uncertainties that compose it and
the structure of the object itself separately. For both anal-
ysis and synthesis problems, Ract requires to generate a
(usually large) number of samples of the uncertain object.
To this end, the following functional paradigm is adopted.
First, Ract provides a series of basic uncertainties (scalar,
vector and matrix ones with different given distributions)
by means of a special Matlab class. Then, the user defines
an m-file for each uncertain object (or uncertain problem),
following some intuitive composition rules. The structure
of these “user-defined” m-files (user-function) follows a
clear template form. Once these user-function files are
defined, the desired randomized algorithm can be utilized
by a simple call to the specific Ract routine, with the

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 390 10.3182/20080706-5-KR-1001.2339

handle 3 to the user-function as argument. This functional
approach appears to be quite flexible and provides a nice
compromise between speed of execution on one side and
usability on the other; the range spans from writing a
Randomized Algorithm (RA) code from scratch for every
single problem to using a symbolic toolbox and uncertainty
substitution (perhaps more user-friendly, but computa-
tionally an extremely slow alternative).

2.1 Basic random variable definition and sampling

The basic uncertainties are handled by means of the new
Matlab class ubase. For example, a uniformly distributed
vector q∆ ∈ R2, bounded in an `p-ball with parameter
p = 2, ‖q∆ − q0‖2 ≤ 0.5, q0 = (1, 2)T is constructed using
the command

>> q=ubase('q_delta','real_vector_uniform',...
'nominal', [1; 2], 'p_norm', 2, 'rho', 0.5)

In the syntax of ubase, the variable name (or a small
description of it) is listed first, then a string with the
probability distribution, and finally a series of paired dis-
tribution parameter names and corresponding values. For
the previous example, these parameters are respectively:
a column 4 nominal vector q0, the value of the `p–norm
parameter p and a scaling factor rho.

The full list of these commands is (see >>help ubase for
more details) is given below:

• real scalar uniform — real scalar random vari-
able (r.v.) uniformly distributed in an interval;

• complex scalar uniform — complex scalar r.v.
uniformly distributed in a disk in the complex plane;

• real scalar gaussian — real scalar r.v. with
Gaussian distribution;

• real vector uniform — real random vector uni-
formly distributed in the lp-ball;

• complex vector uniform — complex random vec-
tor uniformly distributed in the lp-ball;

• real vector gaussian — real random vector with
Gaussian distribution;

• real stable discrete poly uniform — the vector
of coefficients of a monic discrete stable polynomial
uniformly distributed in the coefficient space;

• real matrix uniform — real random matrix uni-
formly distributed in induced norm;

• complex matrix uniform — complex random ma-
trix uniformly distributed in induced norm;

• real matrix uniform elem — real, uniformly dis-
tributed element-wise interval matrix.

For the example at the beginning of this section, the
routine for generating a given number of samples (say,
four) of a basic uncertainty is ubasesample, having the
form

>> q_samples = ubasesample(q, 4)

q_samples =

0.5385 0.9808 1.0803 1.3677

1.7268 1.9473 1.8840 2.1518

3 A function handle is a Matlab value that provides a way of calling
a function indirectly. For instance, the handle to a function named
myfunc.m can be created using the syntax @myfunc.
4 Ract treats all uncertain and nominal vectors as column vectors.

These samples are packed into a matrix, column-wise along
the second dimension. Scalars and matrices are treated
using the same formalism: scalar samples are packed
into a column vector and matrix samples are packed
along the 3rd dimension (the k-th sample casts as M k =
M samples(:,:,k)). The nominal value is extracted by
setting the second argument equal to zero.
Example 1. (Uncertain object construction and sampling).
As a simple example of an uncertain object, we consider
the following uncertain polynomial:

p(s, q1, q2) = s4 + (4 + q2)s3 + (6 + 3q2)s2+
+(5 + q1 + 3q2)s + 2 + q1 + q2,

(1)

with q1 being uniformly distributed in the interval |q1| ≤
1.5, and the second uncertainty q2 having Gaussian distri-
bution with mean 0.15 and variance 0.25.

The m-file describing the uncertain object consists of three
main sections (the gray-colored lines constitute the tool-
box template and should not be edited):

function Out = ex_unc_poly(Init, UncVar)

if Init

UncVar = cell(0);

%% Section 1 - Define basic uncertainties

UncVar{1} = ubase('q1', 'real_scalar_uniform',
'nominal', 0, 'range', 1.5);

UncVar{2} = ubase('q2', 'real_scalar_gaussian',
'mean', 0.15, 'std', 0.5);

%% End of Section 1

Out = UncVar;

return;

end

%% Section 2 - Extract samples

%% of basic uncertainties

q1 = UncVar{1};

q2 = UncVar{2};

%% End of Section 2

%% Section 3 - Compose a sample of

%% uncertain polynomial:

Out{1} = [1, 4+q2, 6+3*q2, 5+q1+3*q2, 2+q1+q2];

%% End of Section 3

The first section is the initialization part, where both
uncertain variables q1, q2 are defined, together with their
distribution parameters. The second section shows sam-
ple extraction: the cell array UncVar is passed on to
the function as argument, and contains samples of the
two uncertain variables defined above. In this section,
the sample values are assigned back to their respective
variables. Finally, a sample of the uncertain polynomial is
returned in the third section. To summarize, suppose that
the m-file above has been saved as ex unc poly.m. Then,
sampling the uncertain object (in this case, the polynomial
p(s, q1, q2)) is performed in a one-line command, with the
number of samples as second argument

>> poly_samples = uevaluate(@ex_unc_poly, 2)

poly_samples =

[1x5 double]

[1x5 double]

The result is a one-dimensional cell array, with k-th sample
poly samples{k}. ♦

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

391

3. RANDOMIZED ALGORITHMS FOR
ROBUSTNESS ANALYSIS

In this section we briefly discuss the Ract routines for
probabilistic robustness analysis.

Formally, we let ∆ ∈ D represent the random uncertainty
affecting the system, where D is the support of the random
object ∆ (for instance, D can be the space of `-dimensional
real vectors, or the space of block-structured matrices with
a norm bound) and denote with f∆(∆) the probability
density function (pdf) of ∆. Let further J(∆) : D → R
be a performance function for the uncertain system, i.e.
a function measuring the performance of the system for a
given value of ∆. For instance J(∆) can be the H2 or the
H∞ norm of the system.

Classical robustness analysis deals with the question if a
given performance requirement J(∆) ≤ γ holds for the
whole uncertain system family. In other words, a “yes-or-
no” answer is required. In contrast, in the probabilistic
robustness approach, the system uncertainty is adopted to
be random, and the fundamental concept of probability of
performance is introduced as

Prob {∆ ∈ D : J(∆) ≤ γ} , (2)
where the probability is measured according to the under-
lying uncertainty distribution. Hence, the classical deter-
ministic requirement is softened and formulated as one of
the two following tasks:
1. Performance verification: What is the probability that
the property of interest holds?
2. Worst-case performance: For which performance level
γ, the probability of performance holds with a desired
probability?

In general, the exact computation of probability (2) turns
out to be even more complicated than solving its de-
terministic counterpart. However, this probability can be
estimated with given confidence and accuracy by means of
randomized algorithms, as explained next.

3.1 RA for probabilistic performance verification

First, we specify the characteristics that a RA for proba-
bilistic performance verification should comply with.
Definition 1. (RA for performance verification).
Let ε ∈ (0, 1), δ ∈ (0, 1) be assigned probability levels.
Given a performance level γ, the RA should return with
probability 1 − δ an estimate pest of the probability of
performance

p
.= Prob{J(∆) ≤ γ},

which is within ε-accuracy from p, i.e.
Prob{|p− pest| ≤ ε} ≥ 1− δ.

The estimate pest should be constructed based on a finite
number N of random samples of ∆.

Notice that a simple RA for performance verification is
directly constructed by means of the classical Monte Carlo
method as follows:

pest =
1
N

N∑

i=1

I[J(∆(i)) ≤ γ],

where N =
⌈

1
2ε2 ln 2

δ

⌉
is dictated by the Chernoff bound

(Chernoff (1952)), ∆(i) are independent identically dis-
tributed (iid) samples, and the indicator function I[·] = 1
when its argument is true, and zero otherwise.

This algorithm is implemented in the Ract routine
perfver, and its use in demonstrated in the following
example on stability of an uncertain polynomial.
Example 2. (Stability analysis of an uncertain polynomial).
Consider the uncertain polynomial

p(s, q) = s3 + q1s
2 + q2q3s + q2, (3)

|1− q1| ≤ 1.1, |1− q2| ≤ 1, |1− q3| ≤ 0.5,

where q is uniform over its domain. Suppose we wish to
check if the polynomial is robustly stable in a probabilistic
sense, i.e., we are interested in estimating the probability
of stability.

To utilize the Ract framework, an m-file sample poly.m
containing the description of the uncertain polynomial (3)
is created, following the three-section template previously
described. Then, to compute an estimate of the probability
of stability of the uncertain polynomial p(s, q), with accu-
racy level ε = 0.01 and confidence δ = 0.001, we simply
invoke the command perfver

>> p_est = perfver(@sample_poly, 'hurwitz',
0.01, 0.001)

Number of samples by Chernoff bound is: 38005

With probability 0.999, |p - 0.45973| <= 0.01

ans =

0.4597

In the argument list of perfver, first we have the handle
to the function defining the uncertain object (polynomial
in this case), then the handle to the property indicator
function (or built-in name of such a function, other options
are for instance ’schur’ for Schur stability test, ’posdef’
for positive definitness etc.), and finally the probability
levels ε and δ. ♦

3.2 RA for probabilistic worst-case performance

The second robustness analysis problem considered is
assessing the worst-case performance level of the system.
In this case, we shall consider a RA that enjoys the
following features.
Definition 2. (RA for worst-case performance).
Let p∗ ∈ (0, 1), δ ∈ (0, 1) be assigned probability levels.
The RA should return with probability 1−δ a performance
level γest such that

Prob{J(∆) ≤ γest} ≥ p∗.

The performance level γest should be constructed based on
a finite number N of random samples of ∆.

In words, a RA for probabilistic worst-case performance
should determine a performance level γest which is guar-
anteed for most of the uncertainty instances. This can be
obtained via the empirical maximum

γest = max
i=1,...,N

J(∆(i)),

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

392

where N =
⌈

ln 1/δ
ln 1/p∗

⌉
is given by the so-called “log-over-

log” bound, which provides the number of required iid
samples (Tempo et al. (1997)).

This algorithm is implemented in the Ract function
perfwc, and its use is perfectly analogous of that of
perfver: the user has to create two functions: the first
one containing the definition of the uncertain problem,
and the second one defining the performance criterion.
For numerical examples and implementation details see
Tremba et al. (2007). In the argument of the function
perfwc, first we list the handle to the uncertain object
function, then the handle to the criterion, the probability
p∗, and, finally, the confidence level δ.

4. RANDOMIZED ALGORITHMS FOR SYSTEM
DESIGN

The application domain of the probabilistic approach is
not limited to analysis problems, but has been extended
to deal with the synthesis of robustly performing control
systems. This is actually the most interesting and promis-
ing area of application of randomized techniques. Some
of the methods recently proposed in the literature have
been implemented in Ract. In particular, the toolbox is
focused on design techniques based on the interplay of ran-
dom sampling in the uncertainty space, and deterministic
convex optimization in the design parameter space.

Formally, let θ ∈ Θ ⊆ Rnθ denote the vector of design
variables, and let ∆ ∈ D denote the uncertain parameters.
In Section 3.1, the performance function is denoted by
J(∆), and the performance objective is to verify the
inequality J(∆) ≤ γ for a desired performance level
γ. If the system depends on a design parameter θ, the
performance function should also depend on θ, that is,
J = J(∆, θ). For generality and ease of notation, in
this section we denote all the design and performance
constraints by the design inequality f(∆, θ) ≤ 0, where
f(∆, θ) : D × Θ → R is a scalar-valued function 5 related
to the system with design parameters θ. For instance, if the
design objective is to determine θ such that J(∆, θ) ≤ γ,
we simply take f(∆, θ) = J(∆, θ)− γ.

The main assumption of this section is that the function
f(∆, θ) should be convex in θ for all ∆ ∈ D. Another tech-
nical assumption is that the solution set should contain
a full-dimensional ball of radius r (e.g., see Calafiore and
Polyak (2001)). The design vector θ such that the inequal-
ity f(∆, θ) ≤ 0 is satisfied “for most” (in a probabilistic
sense) of the outcomes of ∆ is called a probabilistic robust
design.

We next define the two problems that we aim to solve:
1) find a probabilistic robust design (i.e., solve a feasibility
problem)
2) optimize a probabilistic feasible design (that is, solve
an optimization problem).

5 We remark that considering scalar-valued constraint functions is
without loss of generality, since multiple constraints f1(∆, θ) ≤
0, . . . , fnf (∆, θ) ≤ 0 can be reduced to a single scalar-valued

constraint by setting f(∆, θ)
.
= maxi=1,...,nf

fi(∆, θ).

The randomized algorithms we discuss in this section
provide a numerically viable way to compute approximate
solutions for the two problems above.

4.1 RA for probabilistic robust design

First, we specify the features that a randomized algorithm
for probabilistic robust design should comply with.
Definition 3. (RA for probabilistic robust design).
Let p∗ ∈ (0, 1) be a probability level. The RA should return
with probability 1−δ a design parameter θpr ∈ Θ such that

Prob{∆ ∈ D : f(θpr, ∆) < 0} ≥ p∗. (4)
The design parameter θpr should be constructed based on
a finite number of random samples of ∆.

The following meta-algorithm implements this RA.
Algorithm 1. (Sequential RA for robust design)
Given p∗, δ ∈ (0, 1), returns with probability at least 1− δ
a design vector θpr such that (4) holds.

(1) Initialization.
. Set k = 0 and choose θ0 ∈ Θ;
. Determine the sample-size function N(k)

N(k) = Nss(p∗, δ, k) .=

⌈
log π2(k+1)2

6δ

log 1
p∗

⌉
; (5)

(2) Probabilistic oracle.
. For i = 0 to N(k)

· Draw a sample ∆(i)

· If f(∆(i), θk) > 0 set ∆k = ∆(i), feas=false
and goto 3.

. End;

. Set feas=true, return θpr = θk and Exit;
(3) Update.

. Update θk+1 by (θk,∆k).

. Set k = k + 1 and goto 2.

Notice that the core of the above algorithm is the Prob-
abilistic Oracle. A call to the probabilistic oracle may
have two possible outcomes. If the for loop is run up to
i = N(k), the oracle exits returning feas=true, meaning
that the query point θk passed the feasibility test on the
N(k) trials. In this latter case the point θk is labeled as
probabilistic feasible solution: in fact, in Oishi (2007) it is
shown that, if the sample size function N(k) is chosen as in
(5) then, with probability greater than 1− δ, the returned
solution θpr satisfies (4).

Otherwise, if the for loop in the oracle is interrupted at
some i < N(k), then the probabilistic oracle exits return-
ing feas=false, along with a “certificate of violation” ∆k,
f(θk, ∆k) > 0.

Then, the candidate solution θk is updated by means
of one of three algorithms: gradient, ellipsoid or cutting
plane. The user can check any problem against all of these
methods, choosing the most appropriate ones, as all of
them have advantages and drawbacks Calafiore and Polyak
(2001); Polyak and Tempo (2001); Kanev et al. (2003);
Oishi (2007); Calafiore and Dabbene (2007b).

However, it should be remarked that implementing these
three algorithms in their general formulation would need
the knowledge of a (sub)gradient of the function f with

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

393

respect to θ (for fixed ∆). For this reason, and stemming
from the consideration that many problems in control can
be rewritten in linear matrix inequality (LMI) form, in
Ract we have chosen LMIs as our main tool. That is, we
consider robust feasibility of uncertain problems expressed
in the form of a system of LMI constraints:
Find θ such that

F (j)(∆, θ) ¹ 0 ∀∆ ∈ D, j = 1, . . . , `,where

F (j)(∆, θ) = F
(j)
0 (∆) +

n∑

i=1

θiF
(j)
i (∆), (6)

and F
(j)
i (∆), i = 0, . . . , n, are symmetric m × m real

matrices which depend in a generic and possibly nonlinear
way on the uncertainty ∆ ∈ D. To rewrite this problem in
our scalar-function framework, we set

f(∆, θ) .= max
j

λmax(F (j)(∆, θ)). (7)

A subgradient of the function f(∆, θ) = λmax(F (∆, θ)) at
θ = θk is readily computable as

g∆(θk) =
[
ξmax

T F1(∆)ξmax · · · ξmax
T Fn(∆)ξmax

]T
,

where ξmax is an eigenvector associated with the largest
eigenvalue of F (∆, θk).

In order to handle uncertain LMIs within Ract, the
Yalmip toolbox is used and should be installed before-
hand. With this choice, there is no need to recast the orig-
inal LMI problem in the general form (6) and we can take
advantage of the ability of Yalmip to parse generic LMI
problems. Moreover, there is no need to perform manually
gradient calculations. The RA for probabilistic robust LMI
is implemented in the Ract command feaslmi which is
described in the next example.
Example 3. (Probabilistic robust LQR). Consider an ex-
ample of uncertain LQR (linear quadratic regulator) prob-
lem. For the linear state space system

ẋ(t) = A(∆)x(t) + Bu(t),
a linear quadratically stabilizing controller is given by
u(t) = −BT Q−1x(t), where Q is a solution of the Lya-
punov equation

A(∆)Q + QA(∆)T − 2BBT ≺ 0, Q = QT Â 0,∀∆ ∈ D.

In particular, we consider the following state space equa-
tion describing the longitudinal dynamics of an aircraft

ẋ(t) =




0 1 0 0
0 Lp Lβ 0.78

g/V 0 Yβ −1
Nβ̇ −0.042 2.601 + Nβ̇Yβ −0.29−Nβ̇


x(t)+

+




0 0
0 −3.91

0.035 0
−2.53 0.31


u(t),

where each of the parameters Lp = −2.93, Lβ = −4.75,
g/V = 0.086, Yβ = −0.11, Nβ̇ = 0.1, is perturbed by a
relative uncertainty of 15%.

The template feas air for stating this problem is very
similar to the template for an uncertain object described
in Example 1 (we notice that in this case the uncertain
object is indeed an LMI).

function Out = feas_air(Init, UncVar)

%% Section 1 - declaration of sdp variables

persistent Q;

%% End of Section 1

switch Init

case 'sdpvars'
Out = cell(0);

%% Section 2 - sdpvar definition

Q = sdpvar(4);

Out{1} = Q;

%% End of Section 2

case {1, 'init'}
UncVar = cell(0);

%% Section 3 - basic uncertainties definition

L_p_0 = -2.93; L_beta_0 = -4.75; g_over_V_0 = 0.086;

Y_beta_0 = -0.11; N_betadot_0 = 0.1;

UncVar{1} = ubase('L_p', 'real_scalar_uniform', ...

'nominal', L_p_0, 'range', 0.15*L_p_0);

UncVar{2} = ubase('L_beta', 'real_scalar_uniform', ...

'nominal', L_beta_0, 'range', 0.15*L_beta_0);

UncVar{3} = ubase('g_over_V', 'real_scalar_uniform', ...

'nominal', g_over_V_0, 'range', 0.15*g_over_V_0);

UncVar{4} = ubase('Y_beta', 'real_scalar_uniform', ...

'nominal', Y_beta_0, 'range', 0.15*Y_beta_0);

UncVar{5} = ubase('N_betadot', 'real_scalar_uniform', ...

'nominal', N_betadot_0, 'range', 0.15*N_betadot_0);

%% End of Section 3

Out = UncVar;

case {0, 'lmi'}
%% Section 4 - extract basic uncertainties samples

L_p = UncVar{1};

L_beta = UncVar{2};

g_over_V = UncVar{3};

Y_beta = UncVar{4};

N_betadot = UncVar{5};

%% End of Section 4

%% Section 5 - construct matrices

A =[...

0, 1, 0, 0;...

0, L_p, L_beta, 0.78;...

g_over_V, 0, Y_beta, -1; ...

N_betadot*g_over_V, -0.042,

2.601 + N_betadot*Y_beta, -0.29 - N_betadot];

B = [0, 0; ...

0, -3.91; ...

0.035, 0; ...

-2.53, 0.31];

%% End of Section 5

%% Section 6 - construct an LMI

F1 = set(Q > 0);

F2 = set(A*Q + Q*A.' - 2*B*B.' < 0);

Out = F1 + F2;

%% End of Section 6

end

The purpose of the different sections in the template are
similar to those of the user-function for defining uncertain
objects, with the additional declaration and definition of
the design variable Q. All design variables are defined
through the Yalmip special type sdpvar. In our specific
case, in Section 2 of the template function, a symmetric 4×
4 matrix is defined (see Lofberg (2004) for other options),
and in Section 6, a sample of the Lyapunov equation is
constructed using the standard Yalmip syntax.

This file is sufficient to describe the LQR problem. To
perform optimization, we need to set an initial candidate
solution Q0 and let Ract know which solution method

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

394

we choose: (’grad’, ’ell’, ’cutplane’ for stochastic gra-
dient, ellipsoid and cutting plane methods, respectively),
and (if necessary) set other RA parameters:

>> Q0 = {zeros(4,4)};
>> grad_opt.method = 'grad';
>> grad_opt.Nout = 1000;
>> grad_opt.pstar = 0.999;
>> grad_opt.r = 1e-3;
>> grad_opt.delta = 1e-2;

where pstar and delta are the desired probability levels,
Nout is the maximum number of iterations to claim infea-
sibility of a problem and r is the radius of a ball inscribed
in the feasibility set.

Then, a RA for feasibility design runs in a single line as

>> Q_grad = feaslmi(@feas_air, Q0, grad_opt);

4.2 RA for probabilistic optimal design

Second, we consider the problem of optimizing a linear
function of the design parameter subject to probabilistic
robust feasibility constraints.
Definition 4. (RA for optimal design).
Let p∗ ∈ (0, 1) be a probability level. Given an objective
vector c ∈ Rnθ , the RA should return a design parameter
θpo ∈ Θ that minimizes the objective cT θ, while satisfying
the constraint

Prob{∆ ∈ D : f(∆, θpo) < 0} ≥ p∗

with probability larger than 1 − δ. The design parameter
θpo should be constructed based on a finite number N of
random samples of ∆.

The scenario techniques (see Calafiore and Campi (2006)
for details) provide a simple and theoretically sound way
to design an algorithm that complies with Definition 4.
The idea is to gather a sufficient number of uncertainty
samples and optimize over these representatives.
Algorithm 2. (Scenario RA for optimal design).
Given p∗, δ ∈ (0, 1) and an objective vector c ∈ Rnθ ,
returns a design vector θpo such that the objective cT θ
is minimized while the constraint

Prob{∆ ∈ D : f(∆, θ) ≤ 0} ≥ p∗ (8)
is satisfied with probability at least 1− δ.

(1) Compute N as the smallest integer such that(
N

nθ

)
(p∗)N−nθ = δ;

(2) Draw N IID samples ∆(1), . . . , ∆(N);
(3) Solve the scenario problem

θpo = arg min
θ∈Θ

cT θ subject to

f(∆(i), θ) ≤ 0, i = 1, . . . , N. (9)

We notice that the scenario problem (9) is a standard
convex optimization problem with a finite number of
constraints and therefore it is efficiently solvable in many
specific cases of interest in control. This RA has been
implemented in Ract in the LMI setup. The Ract
command is scenlmi; its use is very similar to the one
of feaslmi, see Tremba et al. (2007) for further details
and examples.

5. CONCLUSION

A new Matlab toolbox for probabilistic robustness anal-
ysis and probabilistic control design is presented in this
paper. This toolbox provides convenient uncertain object
manipulation and implementation of randomized methods
using state-of-the-art theoretical and algorithmic results.
The two main features of the package are a functional
approach with m-file templates, and a definition of design
problems in generic LMI format using the widely used
Yalmip syntax. This first release of the toolbox provides
an easy-to-use interface to current randomized algorithms
for control and is intended to be used by researchers,
engineers and students interested in robust control, uncer-
tain systems and optimization. The package can be freely
downloaded from http://ract.sourceforge.net.

REFERENCES

G. Calafiore and M.C. Campi. The scenario approach to
robust control design. Trans. Aut. Contr., 51(5):742–
753, 2006.

G. Calafiore and F. Dabbene. Probabilistic and Random-
ized Methods for Design under Uncertainty. (Edited
book) Springer-Verlag, London, 2006.

G. Calafiore and B.T. Polyak. Stochastic algorithms for
exact and approximate feasibility of robust LMIs. Trans.
Aut. Contr., 46:1755–1759, 2001.

G. Calafiore, F. Dabbene, and R. Tempo. A survey of
randomized algorithms for control synthesis and perfor-
mance verification. J. Compl., 23(3):301–316, 2007.

G.C. Calafiore and F. Dabbene. Probabilistic methods in
control: A tutorial. In Proc. ACC, 2007a.

G.C. Calafiore and F. Dabbene. Probabilistic analytic
center cutting plane method for feasibility of uncertain
LMIs. Automatica, 43:2022–2033, 2007b.

H. Chernoff. A measure of asymptotic efficiency for tests of
a hypothesis based on the sum of observations. Annals
of Mathematical Statistics, 23:493–507, 1952.

S. Kanev, B. De Schutter, and M. Verhaegen. An ellipsoid
algorithm for probabilistic robust controller design. Sys.
Cont. Lett., 49:365–375, 2003.

J. Lofberg. YALMIP: A toolbox for modeling and opti-
mization in MATLAB. In Proc. CACSD, 2004.

Y. Oishi. Polynomial-time algorithms for probabilistic
solutions of parameter-dependent linear matrix inequal-
ities. Automatica, 43(3):538–545, 2007.

B.T. Polyak and R. Tempo. Probabilistic robust design
with linear quadratic regulators. Sys. Cont. Lett., 43:
343–353, 2001.

R. Tempo and H. Ishii. Monte Carlo and Las Vegas
randomized algorithms for systems and control: An
introduction. Eur. J. Contr., 13:189–203, 2007.

R. Tempo, E.-W. Bai, and F. Dabbene. Probabilistic
robustness analysis: Explicit bounds for the minimum
number of samples. Sys. Cont. Lett., 30:237–242, 1997.

R. Tempo, G. Calafiore, and F. Dabbene. Randomized
Algorithms for Analysis and Control of Uncertain Sys-
tems. Springer-Verlag, London, 2005.

A. Tremba, G. Calafiore, F. Dabbene, E. Gryazina, B.T.
Polyak, P. Shcherbakov, and R. Tempo. RACT – Ran-
domized Algorithms Control Toolbox – User’s Manual.
2007. URL http://ract.sourceforge.net.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

395

