

Evaluating Aspect- and Object-Oriented Concepts to Model
Distributed Embedded Real-Time Systems Using RT-UML

Marco A. Wehrmeister1,4, Edison P. Freitas1,5, Dalimir Orfanus3,

Carlos E. Pereira2, Franz Rammig4

1 Instituto de Informática, 2 Dep. Engenharia Elétrica, Federal University of Rio Grande do Sul,
Porto Alegre, Brazil, e-mail: mawehrmeister@inf.ufrgs.br, cpereira@ece.ufrgs.br

3 International Graduate School, 4 Heinz Nixdorf Institute, University of Paderborn,
Paderborn, Germany, e-mail: {orfanus, franz}@upb.de

5 School of Information Science, Computer and Electrical Engineering, Halmstad University,
Halmstad, Sweden, e-mail: edison.pignaton@hh.se

Abstract: The growing design complexity of today’s embedded real-time systems requires new
techniques aiming the raising of the abstraction level since earlier stages of design in order to deal with
such complexity in a suitable way. This paper reports a case study, which provides an assessment of two
well-know high-level paradigms, namely Aspect- (AO) and Object-Oriented (OO) Paradigms. Concepts
of both paradigms were applied at modeling phase of a Distributed Embedded Real-Time System
(DERTS). The handling of DERTS’ functional and non-functional requirements (at modeling level) using
AO and OO concepts is discussed. Both paradigms are compared using of a set of software engineering
metrics, which were adapted to be applied at modeling level. The presented results show the suitability of
each paradigm for DERTS specification in terms of reusability quality of model elements.

1. INTRODUCTION

The number of functionalities, which have been incorporated
into modern embedded real-time systems, can require their
deployment over different processing units (which can also
be physically separated) in order to fulfill system/design
constraints, such as units processing capability, amount of
available memory or even components cost. Distributed
Embedded Real-Time Systems (DERTS) must perform time-
bounded activities, i.e. both processing and communication
must respect time constraints without violating other
system’s constraints and/or requirements. The non-functional
nature of some important requirements of DERTS can lead to
several problems, such as scattered and tangled handling. If
they are not properly treated, these problems increase the
overall complexity of design. In this case, reuse of previously
developed artifacts (e.g. SW and HW IP blocks) becomes
harder. Additionally, SW and HW components are usually
designed concurrently with distinct languages and concepts,
which increases design complexity too.

Several works propose the raising of abstraction level and
separation of concerns in order to manage the growing
complexity of DERTS design. Some of them propose the use
of high-level concepts from the Object-Oriented (OO)
paradigm, as those published in conferences such as IEE
ISORC and WORDS. However, the handling of Non-
Functional Requirements (NFR) using pure OO concepts is
not adequate because there are no convenient abstractions to
represent NFR handling. More precisely NFR treatment is
done intermixed with the treatment of functional
requirements (FR). That situation motivates some works,
such as subject-oriented programming (Ossler and Tarr 1999)

and aspect-oriented (AO) programming (Kiczales et al.
1997), which promote the separation of concerns at
implementation level.

Following the idea of raising the abstraction level, it can be
observed a trend for DERTS design: the so-called Model-
Driven Design (MDD) (Selic 2002) and/or Model-Driven
Engineering (MDE) (Schmidt 2006). It is important to
highlight that the use of models during design is not a
completely new idea, for example engineering have been
using models since several years. MDD/MDE claims that
models are the main artifacts of design, which should be used
to generate (automatically) the system implementation
through model transformations. However, at modeling level
the mentioned problems of intermixing the handling of
requirements from different natures still exist. Thus the
separation of concerns with the treatment of FR and NFR
should also occur at earlier design stages (e.g. modeling
phase). This paper presents a case study focusing on the
assessment of the suitability of AO and OO concepts for
DERTS modeling, aiming at the treatment of FR and NFR.
UML (OMG, 2007) was used to specify two models: one
using pure OO concepts, and another one using concepts of
AO. Thus, the goals of this paper are: (i) apply AO concepts
together with UML at modeling level; (ii) demonstrate the
use of UML to model a real DERTS, namely the control
system of a products assembler system; (iii) assess both UML
models (OO and AO) through software engineering metrics,
comparing their strengths and weaknesses; (iv) promote the
discussion on the use of AO within design of DERTS.

The paper is organized as follows: section 2 gives an
overview of AO basic concepts; section 3 describes the case
study (products assembler system) and depicts some

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 6885 10.3182/20080706-5-KR-1001.2337

diagrams of OO and AO UML models; the assessment of
both models is presented in section 4, where the used metrics
are explained and the obtained results presented; finally,
section 5 presents some conclusions and future work.

2. ASPECT vs. OBJECT-ORIENTATION

OO and AO modeling are based on the separation of
concerns technique. The idea behind separation of concerns is
to break down the system into small blocks, which are called
concerns. A concern is a focus or interest in a system. In the
case of OO, concerns are separated into structure (e.g. classes
and attributes) and behavior (e.g. methods).

In opposite to OO, the AO paradigm distinguishes between
aspect and base concerns. Base concerns are units of
modularization formalizing non-crosscutting concerns, i.e.
concerns which do not affect others but can be affected by
several aspects. They represent functional requirements. On
the other hand, aspects represent crosscutting concerns, i.e.
concerns spread over other concerns, which cannot be easily
decomposed into separated units. The places where aspects
affect base concerns are called join points. During the
specification of base concerns, the join points should also be
indicated. (Van den Berg et al. 2005)

Pointcut (designator), which is part of aspect specification,
describes the set of join points (possibly from more than one
base concern) into which the aspect will perform adaptations.
The process of composition of aspects with base concerns is
called weaving. Weaving of aspect can be either static (at
design time) or dynamic (at runtime). More exhaustive
definitions and common reference model for aspect-oriented
modeling can be found in (Schauerhuber et al. 2006) and
(Van den Berg et al. 2005).

3. MODELING A PRODUCTS ASSEMBLER SYSTEM

In order to evaluate the benefits and drawbacks from AO and
OO paradigms to specify the model of DERTS, the design of
a products assembler system was used as case study. The
presented case study was inspired on the packing system
presented in (Hodges et al. 2006) and (Brusey et al. 2006).
The system is composed of a robotic arm with a gripper, two
conveyors, a storage unit and several sensors. The input
conveyor brings individual parts, which are combined to form
products. When the sensor detects the presence of a part, the
conveyor stops. Then the robotic arm will either put it
in the storage unit or use it to assemble a product. On
the other side, the second conveyor brings empty boxes
into which the parts are assembled. This conveyor
remains moving until its sensor detects an empty box.
When the product is completely assembled, the
controller sends a command to the conveyor and it
starts to move forward again. The controller is a
periodic active object that verifies if there are products
to assemble and/or parts to put into the storage unit.
Whether the new product requires a part, which is
physically located at the parts conveyor, this part is
taken from there and used to mount the product.
Otherwise the part is taken from the storage unit. The
system was intended to be distributed, i.e. there are

four different processing nodes: one responsible to control
the products assembly process and the robotic arm; two nodes
to control, respectively, the input parts conveyor and the
assembled products output conveyor; and one to control the
parts storage unit.

In order to use a widely accepted and standardized modeling
language, UML was chosen to describe both AO and OO
models. For the same reason, the UML profile for
Schedulability, Performance and Time (OMG 2003) (also
know as real-time profile) was used to represent real-time
features of movement control subsystem. Figure 1 shows the
functionalities present in the target subsystem. Some of them
have NFR (e.g. Assembly cell control), which are depicted as
stereotype annotating use cases (e.g. <<NFR_Timing>>). A
detailed discussion on requirements of DERTS can be found
in (Freitas et al. 2007). The following subsections give more
details on the modeled subsystem using AO and OO
concepts. It is important to highlight that theses models are
related to the design phase, i.e. they have more design-related
elements than an analysis model, which represents only the
concepts of the assembler control system.

3.1 UML Model using OO concepts

The static structure of products assembler control system is
depicted in a class diagram. This diagram shows classes, their
attributes and methods, and the relationships among classes.
Figure 2 presents the class diagram created for the OO
version of the UML model of the products assembler control.
Classes representing active objects (i.e. those which execute
their behavior concurrently with other active objects) are
annotated with the <<SAschedRes>> stereotype from the
real-time profile. The <<SAresource>> stereotype represents
classes of passive objects, which are accessed concurrently
by active classes. Frequently, these objects need to have some
concurrency control mechanism to assure the validity and
integrity of their data. FR and NFR handling classes are
shown in the same class diagram. NFR classes are annotated
with “NFR_” stereotype, representing the handling of time,
distribution and embedded requirements.

The behavior of the control system was specified using
sequence diagrams, which show the interaction among
objects. Nine different sequence diagrams were created: (i)
Products assembler control; (ii) Conveyor control; (iii) Item

Figure 1. Use case diagram of products assembly cell

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6886

detection; (iv) Robotic arm joints control; (v) Gripper
control; (vi) Robotic arm movements behavior; (vii) Storage
unit control; (viii) Memory control and tasks migration; and
(ix) Alarm handling.

Figure 3 shows two fragments of the sequence diagram of
products assembler control: (a) the start of active object
method responsible to control the products assembly, and (b)
the end of active object method execution. The scheduler
object periodically (each 5 seconds) sends an activation
message to AssemblyCellController object. This message is
annotated with the <<SAtrigger>> stereotype of real-time
profile. A loop operator, indicating the looping nature of the
control task, encloses the performed actions. The handling of
timing and distribution NFR through respectively Timer and
CommunicationInterface classes is shown in figure 3a.
Timer’s timeout value is set to the period value assigned to
AssemblyCellController object. At the end of the controller
method (figure 3b) the execution is held until the timeout
occurrence (message 53) in order to control the execution
frequency. Figure 3a also depicts the sending of messages to

other nodes. As stated before, the
product assembler control was spread
into four nodes. The control task runs in
the main node that must access
information from the conveyors and
storage nodes that are located in other
node. Thus the products assembler
control task must send messages to
them in order to proceed with the
products assembly and parts storage.
Figure 3b shows the sending of message
that requests the position in the storage
unit, into which a part should be placed
(messages 45-50). Additionally, a
method regarding the memory control
(message 52 and 54) is also shown.

3.2 UML Model using AO concepts

The AO version of the presented case
study uses AO concepts to specify the
handling of NFR, i.e. NFR are treated
within the scope of a single element

instead of been spread over several elements. Figure 4 depicts
the class diagram of AO version of products assembler
control system. As can be observed, this diagram is simpler
than the diagram presented in figure 2 due to the elimination
of classes that are not related with the application itself. In
order to specify the treatment of NFR, aspects of the
Distributed Embedded Real-time Aspects Framework
(DERAF) (Freitas et al. 2007) were used, and modeled using
the Aspect Crosscutting Overview Diagram (ACOD) (a
special type of class diagram). One may argue that the same
simplification is achieved separating FR from NFR handling
classes into two different class diagrams. However, the use of
aspects brings other advantages, such as the decrease of
number of attributes related to association between FR and
NFR classes (see section 4). More details on ACOD
modeling will be given in the following paragraphs.

Considering the behavior specification, the number of
required sequence diagrams was reduced in one diagram. In
the AO version the sequence diagram “Memory control and
tasks migration” was removed because the treatment of

Figure 2. Class diagram of OO version of movement control

Figure 3. Fragments of OO version’s assembly cell control sequence diagram

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6887

Figure 4. Class diagram of AO version of movement control

memory control and task migration NFR were delegated to,
respectively, MemoryUsageControl and TaskMigration
aspects of DERAF. DERAF provides a set of aspects with a
pre-defined semantic to handle DERTS NFR, i.e. aspects
provide structural and behavioral adaptations which should
be used as black boxes at modeling level. A detailed
description of DERAF is given in (Freitas et al. 2007). Figure
5 shows two fragments of the products assembler control
diagram (which are equivalent to those presented in figure 3).
As can be observed, all NFR handling were removed,
reducing considerably the size of diagrams in terms of
number of messages and lifelines (compared with its
equivalent in OO version). The amount of messages within
the diagram of Figure 5 is 36% smaller than in figure 3. The
reduction of complexity in the description of the same feature
of the system can be clearly perceived.

DERAF aspects and join points (see section 2) are specified
using a combination of ACOD and Join Point Designation
Diagrams (JPDD) (Stein et al. 2006), as depicted in figure 6.
ACOD (figure 6a) is a kind of a class diagram that shows
aspects (classes annotated with <<Aspect>> stereotype)

affecting FR handling classes. Associations among aspects
and classes, those stereotyped with <<Crosscut>>, represent
crosscutting concerns, which are handled through aspects
adaptations. When some aspect affects the class’ structure by
adding a new attribute, the crosscut relation can be used to
specify the value for the newly inserted attribute, as can be
seen in figure 6a. It is important to highlight that crosscutting
associations do not insert by themselves new attributes into
participating elements (class or aspect) as normal associations
do. Pointcuts, which links join points with adaptations, are
specified with <<Pointcut>> stereotype (see aspects’
highlighted elements in Figure 6a). Figures 6b and 6c show
two JPDD representing, respectively, active class and
periodic activation join points. Active class joint point
represents the selection of all active object classes (i.e. those
annotated with <<SAschedRes>> stereotype). Periodic
activation represents the selection of all messages, which are
annotated with <<SAtrigger>> stereotype, sent by the
scheduler to some active object.

At the first impression, the specification of ACOD and JPDD
seems to require more effort but it is not true. The generic
nature of JPDDs allows their re-use from previous modeled
projects, such as happened with this case study. Several
JPDDs was simply re-used without modification from the
model of a previous designed case study (see (Freitas et al.
2007)).

4. MODELS QUALITY ASSESSMENT

The assessment of AO and OO models of products assembler
control system was performed using a set of metrics for AO
(Sant’anna et al. 2003) and OO (Chidamber, Kemerer, 1994)
development. A set of metrics is not enough to determine the
quality of a system. It is also required to know how those
metrics are related to each other, to provide meaningful
information about the quality of design. This work uses the
assessment framework presented in (Sant’anna et al. 2003) to
infer the quality of the presented models by measuring its
reusability. To provide a qualitative assessment of both
models, a subset of metrics was chosen based on their

suitability for modeling
instead of coding phase.
Implementation related
metrics were not used due
to the focus of this paper,
which does not cover the
implementation phase.
Additionally, it is
important to highlight
that this paper
concentrates only on
“reusability” instead of
“reusability and
maintainability” as
proposed in the
assessment framework.

4.1 Overview of Metrics

Figure 5. Fragments of AO version’s movement control sequence diagram

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6888

The metrics suite captures information about the design in
terms of fundamental attributes such as separation of
concerns, coupling, cohesion, and size. For each attribute
there is a set of specific metrics, as follows (for details please
see (Sant’anna et al. 2003)):

1) Separation of Concerns Metrics: they measure the
ability to encapsulate the treatment of a concern (see section
2). Two metrics compose this attribute:

i) Concern Diffusion over Components (CDC): it counts
the number of components (i.e. aspects or classes)
engaged in the handling of a certain concern;
ii) Concern Diffusion over Operations (CDO): it counts
the number of operations (i.e. methods or aspect
adaptations) related with the handling of a concern.

2) Coupling Metrics: they measure how dependent is an
element regarding other system's elements. Two metrics
compose this attribute:

i) Coupling Between Components (CBC): it counts the
amount of components, which are coupled to a
component;
ii) Depth of Inheritance Tree (DIT): it measures the
maximum length from a node to the root of inheritance
tree.

3) Cohesion Metrics: cohesion is the closeness measure for
the relationship of a component with its internal elements. It
is translated by the following metric:

i) Lack of cohesion in Operations (LCOO): measures the
amount of methods and aspect adaptations, which do not
access the same instance attribute set.

4) Size Metrics: measure the size of the model:
i) Vocabulary Size (VS): it counts the number of system
components, i.e. the amount of classes and aspects.
ii) Number Of Attributes (NOA): it counts the internal
vocabulary of each component, i.e. the number of
attributes of each class, and pointcuts of each aspect.

Reusability quality of a model can be seen through two
factors: understandability and flexibility. The

understandability factor is obtained through
separation of concerns, coupling, cohesion and
size attributes. Separation of concerns directly
affects the understandability of a system, because
the more localized the concerns are, the easier is
finding and understanding them. The cohesion and
coupling indicate the level of independency of one
element regarding others. The more independent
an element is the easier is to understand it. Model
size impacts on understandability due to the
amount of elements that should be understood. For
the flexibility factor, the key attributes are
coupling, cohesion, and separation of concerns. A
component is flexible if it is independent or almost
independent of the rest of the system, meaning that
it represents a specialized part of the system with a
specific and well-defined mission. These
characteristics are translated into low coupling and
high cohesion (i.e. it has a low dependence on
other parts of the system) and a good separation of

concerns (i.e. the component is responsible for a well defined
mission).

4.2 Applying the Metrics Set to Models

As stated above, the application of the described metrics to a
system model can provide useful information about system
quality related to the reusability. In order to verify the
improvement of this system quality, a comparison between
the presented models of the control system of the products
assembler system is presented. To extract the metrics from
the model, a plug-in to Magic Draw UML tool (Magic Draw
2008) was implemented, which can calculate automatically
all metrics described in section 4.1.

Considering the separation of concerns metrics, Table 1
shows how effective was the application of aspects from
DERAF to handle time, distribution and embedded concerns.
All NFR have better separation of treatment in the AO model
compared to the OO model, i.e. the smaller number of
elements (classes and/or aspects) handling a concern, the
better separation of concerns a system has. Therefore,
separated concern handling leads to a decrease in the
scattering problem. The numbers presented only confirm the
simplification observed in the diagrams presented in section
3. The reduction ranges from 66% to 81% for the CDC and
from 16% to 75% for the CDO metric. The reason of this
decrease is due to CDC/CDO taking into account all
elements/methods created specifically to handle a concern,
plus all elements referring to them, such as attributes, method
calls, method parameters, etc. Thus, the intermixing of FR
and NFR treatment, in OO model, causes the inclusion of
some FR elements/methods as NFR elements/methods.

 Time Distribution Embedded
 CDC CDO CDC CDO CDC CDO

OO 9 12 13 19 11 12
AO 3 10 4 10 2 3

Table 1. Results for Separation of Concerns Metrics

Considering the other metrics, Table 2 depicts the results
obtained. Analyzing coupling metrics, DIT results show that
the use of aspects did not modified the inheritance tree. The

Figure 6. ACOD and JPDD to handle timing NFR

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6889

results of CBC show a decrease of almost than 47% in the
AO model. CBC takes into account each reference (e.g.
attribute, method call, parameter) to another class/aspect.
Thus classes/aspects in AO version are more modular than in
OO version mainly due to the intermixed treatment of FR and
NFR. Observing the size metric, VS did not change, while
NOA has also a decrease of 46%. This happened because
several NFR-related attributes were moved to aspects, which
are later woven into all affected classes.

Regarding cohesion, the difference of LCOO between AO
and OO models is more than 58%. This decrease is primarily
caused by elimination of get/set methods for NFR attributes
in AO model. LCOO metric does not distinguish two kinds of
get/set methods: (i) “raw” which have minimum impact on
real cohesion; (ii) with computations which have significant
impact on real cohesion. Thus, to provide a fair assessment,
we recomputed LCOO for OO with excluded first kind of
set/get methods. Even with this exclusion, the decrease of
LCOO is still almost 17% in AO model. This shows that even
if the OO version is sufficiently cohesive, cohesion of the
model can be improved through the use of points.

Internal
Attributes Coupling Cohesion Size

Metric CBC DIT LCOO LCOO* VS NOA
OO 203 1 193 96 27 89
AO 108 1 80 80 27 48

 Table 2. Results for Coupling, Cohesion, and Size Metrics

Taking into account the results obtained, it can be stated that
AO model improve the reusability quality. Almost all metrics
have better values for AO model comparing to OO model.
Considering the understandability factor, key issues such as
separation of concerns, cohesion and coupling had an
improvement of more than 55% in average. In spite of the
number of components did not change, the number of
attributes decreased ca. 45%. For flexibility factor, AO model
elements are more cohesive and decoupled compared to OO
model. Results regarding separation of concerns show that
elements in AO model have more specific and well-defined
roles than in OO model.

5. CONCLUSION

This paper presented a case study, which evaluates the use of
high-level concepts from AO and OO paradigms, in order to
specify DERTS using wide accepted and standardized
modeling language such as UML and the real-time profile.
DERTS have specific NFR that must be properly handled to
manage the increasing of design complexity. It could be seen
that AO can help in such quest. In the AO model, through the
use of DERAF aspects, the specification simplification of
some important diagrams can be an indication for this claim.
Moreover, the encapsulation of NFR handling into single
units avoids the spread treatment of these requirements.

Regarding the calculated metrics, it could be observed that
aspects can impact positively in DERTS design. Several
metrics have a substantial decrease in AO model of the case
study, ranging from 17% up to 81%. A design is better
understood if it has its FR and NFR concerns well separated.
This can be seen in sequence diagrams presented in section 3.
Here too, the AO version is much easier to understand than

OO version. The elements of a design can be reused in other
designs with less effort if they are cohesive and decoupled. It
is expected that a previously developed component can easily
be reused in order to decrease the effort and shorten the time
required to design a DERTS. The results show that aspects
can help in such quest, decreasing the coupling and
increasing cohesion.

Following a MDD approach, the intended future work is to
implement a tool that can generate source code for HW and
SW components of DERTS. The code should be as complete
as possible, i.e. not just code for class skeletons. To support
this idea it is necessary to have a tool capable of extracting
unambiguous information (FR and NFR handling elements)
from UML model. Taking this information as input the code
generation tool will apply a set of mapping rules (describing
pre-developed APIs e HW IP blocks) to generate the
complete DERTS source code.

6. REFERENCES
Brusey, J. et al. (2006). Auto-ID Based Control Demonstration.

Phase 2: Pick and Place Packing with Holonic Control. In:
http://www.autoidlabs.org/uploads/media/CAM-AUTOID-
WH011.pdf

Chidamber, S.R., Kemerer, C.F. (1994). A Metrics Suite for Object-
Oriented Design. In: IEEE Transactions on Software
Engineering, v.20, n.6, 476-493.

Freitas, E.P. et al. (2007). DERAF: A High-Level Aspects
Framework for Distributed Embedded Real-Time Systems
Design. In: Proc. of 10th International Workshop on Early
Aspects, 55-74. Springer.

Hodges, S. et al. (2006). Auto-ID Based Control Demonstration.
Phase 1: Pick and Place Packing with Conventional Control.
In: http://www.autoidlabs.org/uploads/media/CAM-AUTOID-
WH-006.pdf

Kiczales, G. et al. (1997). Aspect-Oriented Programming. In: Proc.
of European Conference for Object-Oriented Programming,
220-240. Springer-Verlag.

MagicDraw Modeling Tool (2008), http://www.magicdraw.com/
OMG (2003). UML profile for Schedulability, Performance and

Time Specification. http://www.omg.org/cgi-bin/doc?ptc/02-
03-03

OMG (2007). The Unified Modeling Language. In:
http://www.omg.org/technology/documents/formal/uml.htm

Ossler, H., Tarr, P. (1999). Using subject-oriented programming to
overcome common problems in object-oriented software
development/evolution. In: Proc. of 21st Int. Conf. on Software
Engineering, 687-688. IEEE Computer Society Press.

Sant’anna, C.N. et al.(2003). On the Reuse and Maintenance of
Aspect-Oriented Software: An Assessment Framework. In:
Proc of Brazilian Symposium on Software Engineering, 19-34.

Schauerhuber, A. et al. (2006). Towards a common reference
Architecture for Aspect-Oriented Modeling. In: Proc. of 8th
Intl. Workshop on Aspect-Oriented Modeling, AOSD’06

Schmidt, D.C.(2006). Gest Editor’s Introduction: Model-Driven
Engineering. In: IEEE Computer,v.39,n.2, 25-31.

Selic, B. (2003). The Pragmatics of Model-Driven Development. In:
IEEE Software, v. 20, n. 5, 19-25.

Stein, D. et al. (2006). Expressing Different Conceptual Models of
Join Point Selections in Aspect-Oriented Design. In: Proc. of
5th International Conference Aspect-Oriented Software
Development, 15-26. ACM Press.

Van den Berg, K. et al. (2005). AOSD Ontology 1.0 – Public
Ontology of Aspect-Orientation. Technical Report AOSD-
Europe-UT-01, AOSD Europe.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6890

