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Abstract: The growing design complexity of today’s embedded real-time systems requires new 
techniques aiming the raising of the abstraction level since earlier stages of design in order to deal with 
such complexity in a suitable way. This paper reports a case study, which provides an assessment of two 
well-know high-level paradigms, namely Aspect- (AO) and Object-Oriented (OO) Paradigms. Concepts 
of both paradigms were applied at modeling phase of a Distributed Embedded Real-Time System 
(DERTS). The handling of DERTS’ functional and non-functional requirements (at modeling level) using 
AO and OO concepts is discussed. Both paradigms are compared using of a set of software engineering 
metrics, which were adapted to be applied at modeling level. The presented results show the suitability of 
each paradigm for DERTS specification in terms of reusability quality of model elements. 

 

1. INTRODUCTION 

The number of functionalities, which have been incorporated 
into modern embedded real-time systems, can require their 
deployment over different processing units (which can also 
be physically separated) in order to fulfill system/design 
constraints, such as units processing capability, amount of 
available memory or even components cost. Distributed 
Embedded Real-Time Systems (DERTS) must perform time-
bounded activities, i.e. both processing and communication 
must respect time constraints without violating other 
system’s constraints and/or requirements. The non-functional 
nature of some important requirements of DERTS can lead to 
several problems, such as scattered and tangled handling. If 
they are not properly treated, these problems increase the 
overall complexity of design. In this case, reuse of previously 
developed artifacts (e.g. SW and HW IP blocks) becomes 
harder. Additionally, SW and HW components are usually 
designed concurrently with distinct languages and concepts, 
which increases design complexity too.  

Several works propose the raising of abstraction level and 
separation of concerns in order to manage the growing 
complexity of DERTS design. Some of them propose the use 
of high-level concepts from the Object-Oriented (OO) 
paradigm, as those published in conferences such as IEE 
ISORC and WORDS. However, the handling of Non-
Functional Requirements (NFR) using pure OO concepts is 
not adequate because there are no convenient abstractions to 
represent NFR handling. More precisely NFR treatment is 
done intermixed with the treatment of functional 
requirements (FR). That situation motivates some works, 
such as subject-oriented programming (Ossler and Tarr 1999) 

and aspect-oriented (AO) programming (Kiczales et al. 
1997), which promote the separation of concerns at 
implementation level.  

Following the idea of raising the abstraction level, it can be 
observed a trend for DERTS design: the so-called Model-
Driven Design (MDD) (Selic 2002) and/or Model-Driven 
Engineering (MDE) (Schmidt 2006). It is important to 
highlight that the use of models during design is not a 
completely new idea, for example engineering have been 
using models since several years. MDD/MDE claims that 
models are the main artifacts of design, which should be used 
to generate (automatically) the system implementation 
through model transformations. However, at modeling level 
the mentioned problems of intermixing the handling of 
requirements from different natures still exist. Thus the 
separation of concerns with the treatment of FR and NFR 
should also occur at earlier design stages (e.g. modeling 
phase). This paper presents a case study focusing on the 
assessment of the suitability of AO and OO concepts for 
DERTS modeling, aiming at the treatment of FR and NFR. 
UML (OMG, 2007) was used to specify two models: one 
using pure OO concepts, and another one using concepts of 
AO. Thus, the goals of this paper are: (i) apply AO concepts 
together with UML at modeling level; (ii) demonstrate the 
use of UML to model a real DERTS, namely the control 
system of a products assembler system; (iii) assess both UML 
models (OO and AO) through software engineering metrics, 
comparing their strengths and weaknesses; (iv) promote the 
discussion on the use of AO within design of DERTS. 

The paper is organized as follows: section 2 gives an 
overview of AO basic concepts; section 3 describes the case 
study (products assembler system) and depicts some 
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diagrams of OO and AO UML models; the assessment of 
both models is presented in section 4, where the used metrics 
are explained and the obtained results presented; finally, 
section 5 presents some conclusions and future work. 

2. ASPECT vs. OBJECT-ORIENTATION 

OO and AO modeling are based on the separation of 
concerns technique. The idea behind separation of concerns is 
to break down the system into small blocks, which are called 
concerns. A concern is a focus or interest in a system. In the 
case of OO, concerns are separated into structure (e.g. classes 
and attributes) and behavior (e.g. methods). 

In opposite to OO, the AO paradigm distinguishes between 
aspect and base concerns. Base concerns are units of 
modularization formalizing non-crosscutting concerns, i.e. 
concerns which do not affect others but can be affected by 
several aspects. They represent functional requirements. On 
the other hand, aspects represent crosscutting concerns, i.e. 
concerns spread over other concerns, which cannot be easily 
decomposed into separated units. The places where aspects 
affect base concerns are called join points. During the 
specification of base concerns, the join points should also be 
indicated. (Van den Berg et al. 2005) 

Pointcut (designator), which is part of aspect specification, 
describes the set of join points (possibly from more than one 
base concern) into which the aspect will perform adaptations. 
The process of composition of aspects with base concerns is 
called weaving.  Weaving of aspect can be either static (at 
design time) or dynamic (at runtime). More exhaustive 
definitions and common reference model for aspect-oriented 
modeling can be found in (Schauerhuber et al. 2006) and 
(Van den Berg et al. 2005). 

3. MODELING A PRODUCTS ASSEMBLER SYSTEM 

In order to evaluate the benefits and drawbacks from AO and 
OO paradigms to specify the model of DERTS, the design of 
a products assembler system was used as case study. The 
presented case study was inspired on the packing system 
presented in (Hodges et al. 2006) and (Brusey et al. 2006). 
The system is composed of a robotic arm with a gripper, two 
conveyors, a storage unit and several sensors. The input 
conveyor brings individual parts, which are combined to form 
products. When the sensor detects the presence of a part, the 
conveyor stops. Then the robotic arm will either put it 
in the storage unit or use it to assemble a product. On 
the other side, the second conveyor brings empty boxes 
into which the parts are assembled. This conveyor 
remains moving until its sensor detects an empty box. 
When the product is completely assembled, the 
controller sends a command to the conveyor and it 
starts to move forward again. The controller is a 
periodic active object that verifies if there are products 
to assemble and/or parts to put into the storage unit. 
Whether the new product requires a part, which is 
physically located at the parts conveyor, this part is 
taken from there and used to mount the product. 
Otherwise the part is taken from the storage unit. The 
system was intended to be distributed, i.e. there are 

four different processing nodes: one responsible to control 
the products assembly process and the robotic arm; two nodes 
to control, respectively, the input parts conveyor and the 
assembled products output conveyor; and one to control the 
parts storage unit. 

In order to use a widely accepted and standardized modeling 
language, UML was chosen to describe both AO and OO 
models. For the same reason, the UML profile for 
Schedulability, Performance and Time (OMG 2003) (also 
know as real-time profile) was used to represent real-time 
features of movement control subsystem. Figure 1 shows the 
functionalities present in the target subsystem. Some of them 
have NFR (e.g. Assembly cell control), which are depicted as 
stereotype annotating use cases (e.g. <<NFR_Timing>>). A 
detailed discussion on requirements of DERTS can be found 
in (Freitas et al. 2007). The following subsections give more 
details on the modeled subsystem using AO and OO 
concepts. It is important to highlight that theses models are 
related to the design phase, i.e. they have more design-related 
elements than an analysis model, which represents only the 
concepts of the assembler control system. 

3.1 UML Model using OO concepts 

The static structure of products assembler control system is 
depicted in a class diagram. This diagram shows classes, their 
attributes and methods, and the relationships among classes. 
Figure 2 presents the class diagram created for the OO 
version of the UML model of the products assembler control. 
Classes representing active objects (i.e. those which execute 
their behavior concurrently with other active objects) are 
annotated with the <<SAschedRes>> stereotype from the 
real-time profile. The <<SAresource>> stereotype represents 
classes of passive objects, which are accessed concurrently 
by active classes. Frequently, these objects need to have some 
concurrency control mechanism to assure the validity and 
integrity of their data. FR and NFR handling classes are 
shown in the same class diagram. NFR classes are annotated 
with “NFR_” stereotype, representing the handling of time, 
distribution and embedded requirements. 

The behavior of the control system was specified using 
sequence diagrams, which show the interaction among 
objects. Nine different sequence diagrams were created: (i) 
Products assembler control; (ii) Conveyor control; (iii) Item 

 
Figure 1. Use case diagram of products assembly cell 
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detection; (iv) Robotic arm joints control; (v) Gripper 
control; (vi) Robotic arm movements behavior; (vii) Storage 
unit control; (viii) Memory control and tasks migration; and 
(ix) Alarm handling.  

Figure 3 shows two fragments of the sequence diagram of 
products assembler control: (a) the start of active object 
method responsible to control the products assembly, and (b) 
the end of active object method execution. The scheduler 
object periodically (each 5 seconds) sends an activation 
message to AssemblyCellController object. This message is 
annotated with the <<SAtrigger>> stereotype of real-time 
profile. A loop operator, indicating the looping nature of the 
control task, encloses the performed actions. The handling of 
timing and distribution NFR through respectively Timer and 
CommunicationInterface classes is shown in figure 3a. 
Timer’s timeout value is set to the period value assigned to 
AssemblyCellController object. At the end of the controller 
method (figure 3b) the execution is held until the timeout 
occurrence (message 53) in order to control the execution 
frequency. Figure 3a also depicts the sending of messages to 

other nodes. As stated before, the 
product assembler control was spread 
into four nodes. The control task runs in 
the main node that must access 
information from the conveyors and 
storage nodes that are located in other 
node. Thus the products assembler 
control task must send messages to 
them in order to proceed with the 
products assembly and parts storage. 
Figure 3b shows the sending of message 
that requests the position in the storage 
unit, into which a part should be placed 
(messages 45-50). Additionally, a 
method regarding the memory control 
(message 52 and 54) is also shown. 

3.2 UML Model using AO concepts 

The AO version of the presented case 
study uses AO concepts to specify the 
handling of NFR, i.e. NFR are treated 
within the scope of a single element 

instead of been spread over several elements. Figure 4 depicts 
the class diagram of AO version of products assembler 
control system. As can be observed, this diagram is simpler 
than the diagram presented in figure 2 due to the elimination 
of classes that are not related with the application itself. In 
order to specify the treatment of NFR, aspects of the 
Distributed Embedded Real-time Aspects Framework 
(DERAF) (Freitas et al. 2007) were used, and modeled using 
the Aspect Crosscutting Overview Diagram (ACOD) (a 
special type of class diagram). One may argue that the same 
simplification is achieved separating FR from NFR handling 
classes into two different class diagrams. However, the use of 
aspects brings other advantages, such as the decrease of 
number of attributes related to association between FR and 
NFR classes (see section 4). More details on ACOD 
modeling will be given in the following paragraphs. 

Considering the behavior specification, the number of 
required sequence diagrams was reduced in one diagram. In 
the AO version the sequence diagram “Memory control and 
tasks migration” was removed because the treatment of 

 
Figure 2. Class diagram of OO version of movement control 

 

Figure 3. Fragments of OO version’s assembly cell control sequence diagram 

 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6887



 
 

     

 

 
Figure 4. Class diagram of AO version of movement control 

memory control and task migration NFR were delegated to, 
respectively, MemoryUsageControl and TaskMigration 
aspects of DERAF. DERAF provides a set of aspects with a 
pre-defined semantic to handle DERTS NFR, i.e. aspects 
provide structural and behavioral adaptations which should 
be used as black boxes at modeling level. A detailed 
description of DERAF is given in (Freitas et al. 2007). Figure 
5 shows two fragments of the products assembler control 
diagram (which are equivalent to those presented in figure 3). 
As can be observed, all NFR handling were removed, 
reducing considerably the size of diagrams in terms of 
number of messages and lifelines (compared with its 
equivalent in OO version). The amount of messages within 
the diagram of Figure 5 is 36% smaller than in figure 3. The 
reduction of complexity in the description of the same feature 
of the system can be clearly perceived. 

DERAF aspects and join points (see section 2) are specified 
using a combination of ACOD and Join Point Designation 
Diagrams (JPDD) (Stein et al. 2006), as depicted in figure 6. 
ACOD (figure 6a) is a kind of a class diagram that shows 
aspects (classes annotated with <<Aspect>> stereotype) 

affecting FR handling classes. Associations among aspects 
and classes, those stereotyped with <<Crosscut>>, represent 
crosscutting concerns, which are handled through aspects 
adaptations. When some aspect affects the class’ structure by 
adding a new attribute, the crosscut relation can be used to 
specify the value for the newly inserted attribute, as can be 
seen in figure 6a. It is important to highlight that crosscutting 
associations do not insert by themselves new attributes into 
participating elements (class or aspect) as normal associations 
do. Pointcuts, which links join points with adaptations, are 
specified with <<Pointcut>> stereotype (see aspects’ 
highlighted elements in Figure 6a). Figures 6b and 6c show 
two JPDD representing, respectively, active class and 
periodic activation join points. Active class joint point 
represents the selection of all active object classes (i.e. those 
annotated with <<SAschedRes>> stereotype). Periodic 
activation represents the selection of all messages, which are 
annotated with <<SAtrigger>> stereotype, sent by the 
scheduler to some active object. 

At the first impression, the specification of ACOD and JPDD 
seems to require more effort but it is not true. The generic 
nature of JPDDs allows their re-use from previous modeled 
projects, such as happened with this case study. Several 
JPDDs was simply re-used without modification from the 
model of a previous designed case study (see (Freitas et al. 
2007)). 

4. MODELS QUALITY ASSESSMENT 

The assessment of AO and OO models of products assembler 
control system was performed using a set of metrics for AO 
(Sant’anna et al. 2003) and OO (Chidamber, Kemerer, 1994) 
development. A set of metrics is not enough to determine the 
quality of a system. It is also required to know how those 
metrics are related to each other, to provide meaningful 
information about the quality of design. This work uses the 
assessment framework presented in (Sant’anna et al. 2003) to 
infer the quality of the presented models by measuring its 
reusability. To provide a qualitative assessment of both 
models, a subset of metrics was chosen based on their 

suitability for modeling 
instead of coding phase. 
Implementation related 
metrics were not used due 
to the focus of this paper, 
which does not cover the 
implementation phase. 
Additionally, it is 
important to highlight 
that this paper 
concentrates only on 
“reusability” instead of 
“reusability and 
maintainability” as 
proposed in the 
assessment framework. 

4.1 Overview of Metrics 
 

Figure 5. Fragments of AO version’s movement control sequence diagram 
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The metrics suite captures information about the design in 
terms of fundamental attributes such as separation of 
concerns, coupling, cohesion, and size. For each attribute 
there is a set of specific metrics, as follows (for details please 
see (Sant’anna et al. 2003)): 

1) Separation of Concerns Metrics: they measure the 
ability to encapsulate the treatment of a concern (see section 
2). Two metrics compose this attribute: 

i) Concern Diffusion over Components (CDC): it counts 
the number of components (i.e. aspects or classes) 
engaged in the handling of a certain concern; 
ii) Concern Diffusion over Operations (CDO): it counts 
the number of operations (i.e. methods or aspect 
adaptations) related with the handling of a concern. 

2) Coupling Metrics: they measure how dependent is an 
element regarding other system's elements. Two metrics 
compose this attribute: 

i) Coupling Between Components (CBC): it counts the 
amount of components, which are coupled to a 
component; 
ii) Depth of Inheritance Tree (DIT): it measures the 
maximum length from a node to the root of inheritance 
tree. 

3) Cohesion Metrics: cohesion is the closeness measure for 
the relationship of a component with its internal elements. It 
is translated by the following metric: 

i) Lack of cohesion in Operations (LCOO): measures the 
amount of methods and aspect adaptations, which do not 
access the same instance attribute set. 

4) Size Metrics: measure the size of the model: 
i) Vocabulary Size (VS): it counts the number of system 
components, i.e. the amount of classes and aspects. 
ii) Number Of Attributes (NOA): it counts the internal 
vocabulary of each component, i.e. the number of 
attributes of each class, and pointcuts of each aspect. 

Reusability quality of a model can be seen through two 
factors: understandability and flexibility. The 

understandability factor is obtained through 
separation of concerns, coupling, cohesion and 
size attributes. Separation of concerns directly 
affects the understandability of a system, because 
the more localized the concerns are, the easier is 
finding and understanding them. The cohesion and 
coupling indicate the level of independency of one 
element regarding others. The more independent 
an element is the easier is to understand it. Model 
size impacts on understandability due to the 
amount of elements that should be understood. For 
the flexibility factor, the key attributes are 
coupling, cohesion, and separation of concerns. A 
component is flexible if it is independent or almost 
independent of the rest of the system, meaning that 
it represents a specialized part of the system with a 
specific and well-defined mission. These 
characteristics are translated into low coupling and 
high cohesion (i.e. it has a low dependence on 
other parts of the system) and a good separation of 

concerns (i.e. the component is responsible for a well defined 
mission). 

4.2 Applying the Metrics Set to Models 

As stated above, the application of the described metrics to a 
system model can provide useful information about system 
quality related to the reusability. In order to verify the 
improvement of this system quality, a comparison between 
the presented models of the control system of the products 
assembler system is presented. To extract the metrics from 
the model, a plug-in to Magic Draw UML tool (Magic Draw 
2008) was implemented, which can calculate automatically 
all metrics described in section 4.1. 

Considering the separation of concerns metrics, Table 1 
shows how effective was the application of aspects from 
DERAF to handle time, distribution and embedded concerns. 
All NFR have better separation of treatment in the AO model 
compared to the OO model, i.e. the smaller number of 
elements (classes and/or aspects) handling a concern, the 
better separation of concerns a system has. Therefore, 
separated concern handling leads to a decrease in the 
scattering problem. The numbers presented only confirm the 
simplification observed in the diagrams presented in section 
3. The reduction ranges from 66% to 81% for the CDC and 
from 16% to 75% for the CDO metric. The reason of this 
decrease is due to CDC/CDO taking into account all 
elements/methods created specifically to handle a concern, 
plus all elements referring to them, such as attributes, method 
calls, method parameters, etc. Thus, the intermixing of FR 
and NFR treatment, in OO model, causes the inclusion of 
some FR elements/methods as NFR elements/methods. 

 Time Distribution Embedded 
 CDC CDO CDC CDO CDC CDO 

OO 9 12 13 19 11 12 
AO 3 10 4 10 2 3 

Table 1.  Results for Separation of Concerns Metrics 

Considering the other metrics, Table 2 depicts the results 
obtained. Analyzing coupling metrics, DIT results show that 
the use of aspects did not modified the inheritance tree. The 

 
Figure 6. ACOD and JPDD to handle timing NFR 
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results of CBC show a decrease of almost than 47% in the 
AO model. CBC takes into account each reference (e.g. 
attribute, method call, parameter) to another class/aspect. 
Thus classes/aspects in AO version are more modular than in 
OO version mainly due to the intermixed treatment of FR and 
NFR. Observing the size metric, VS did not change, while 
NOA has also a decrease of 46%. This happened because 
several NFR-related attributes were moved to aspects, which 
are later woven into all affected classes. 

Regarding cohesion, the difference of LCOO between AO 
and OO models is more than 58%. This decrease is primarily 
caused by elimination of get/set methods for NFR attributes 
in AO model. LCOO metric does not distinguish two kinds of 
get/set methods: (i) “raw” which have minimum impact on 
real cohesion; (ii) with computations which have significant 
impact on real cohesion. Thus, to provide a fair assessment, 
we recomputed LCOO for OO with excluded first kind of 
set/get methods. Even with this exclusion, the decrease of 
LCOO is still almost 17% in AO model. This shows that even 
if the OO version is sufficiently cohesive, cohesion of the 
model can be improved through the use of points. 

Internal 
Attributes Coupling Cohesion Size 

Metric CBC DIT LCOO LCOO* VS NOA 
OO 203 1 193 96 27 89 
AO 108 1 80 80 27 48 

 Table 2.  Results for Coupling, Cohesion, and Size Metrics 

Taking into account the results obtained, it can be stated that 
AO model improve the reusability quality. Almost all metrics 
have better values for AO model comparing to OO model. 
Considering the understandability factor, key issues such as 
separation of concerns, cohesion and coupling had an 
improvement of more than 55% in average. In spite of the 
number of components did not change, the number of 
attributes decreased ca. 45%. For flexibility factor, AO model 
elements are more cohesive and decoupled compared to OO 
model. Results regarding separation of concerns show that 
elements in AO model have more specific and well-defined 
roles than in OO model. 

5. CONCLUSION 

This paper presented a case study, which evaluates the use of 
high-level concepts from AO and OO paradigms, in order to 
specify DERTS using wide accepted and standardized 
modeling language such as UML and the real-time profile. 
DERTS have specific NFR that must be properly handled to 
manage the increasing of design complexity. It could be seen 
that AO can help in such quest. In the AO model, through the 
use of DERAF aspects, the specification simplification of 
some important diagrams can be an indication for this claim. 
Moreover, the encapsulation of NFR handling into single 
units avoids the spread treatment of these requirements. 

Regarding the calculated metrics, it could be observed that 
aspects can impact positively in DERTS design. Several 
metrics have a substantial decrease in AO model of the case 
study, ranging from 17% up to 81%. A design is better 
understood if it has its FR and NFR concerns well separated. 
This can be seen in sequence diagrams presented in section 3. 
Here too, the AO version is much easier to understand than 

OO version. The elements of a design can be reused in other 
designs with less effort if they are cohesive and decoupled. It 
is expected that a previously developed component can easily 
be reused in order to decrease the effort and shorten the time 
required to design a DERTS. The results show that aspects 
can help in such quest, decreasing the coupling and 
increasing cohesion. 

Following a MDD approach, the intended future work is to 
implement a tool that can generate source code for HW and 
SW components of DERTS. The code should be as complete 
as possible, i.e. not just code for class skeletons. To support 
this idea it is necessary to have a tool capable of extracting 
unambiguous information (FR and NFR handling elements) 
from UML model. Taking this information as input the code 
generation tool will apply a set of mapping rules (describing 
pre-developed APIs e HW IP blocks) to generate the 
complete DERTS source code. 
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