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Abstract: In this work some multi-model and norm based approaches for Integrated Design of processes 
and constrained Model Predictive Control systems have been proposed. The Integrated Design procedure 
provides simultaneously the plant dimensions and working point together with the parameters of the 
control system by solving a multi-objective constrained non-linear optimization problem. Particularly, the 
cost functions include investment, operating costs, and dynamical indexes based on the weighted sum of 
the H∞ and l1 norms of different closed loop transfer functions matrices of the system, following a novel 
robust approach. The paper illustrates the application of the proposed methodology for the Integrated 
Design of the activated sludge process of a wastewater treatment plant (WWTP). 

 
 

1. INTRODUCTION 

Integrated Design (ID) methodology allows for the 
evaluation of the plant parameters and control system at the 
same time, making the designed system more controllable 
[5]. At design stage, controllability indicators are evaluated 
together with economic considerations, in order to give an 
optimum plant. Many works apply Integrated Design 
techniques, particularly to chemical process design. Other 
works also tackle process and control structure selection by 
solving a synthesis problem. A comprehensive review of 
advances in the area is given by [9].  
 
Some good examples of some closed loop ID methodologies 
applied to the activated sludge process and PI control are 
given in [2], where a set of Linear Matrix Inequality (LMI) 
constraints are considered in the problem in order to state 
stability conditions and some desired closed-loop behaviour. 
 
In more recent works, the same authors use Model Predictive 
Control (MPC) to improve the control performance within 
the Integrated Design framework [3]. The reasons were the 
existence of several successful applications in activated 
sludge control ([11], [12]) and the easiness of these 
techniques to deal with constraints and multivariable 
systems. In those papers, the Integrated Design problem is 
also stated mathematically as a constrained non-linear multi-
objective optimization problem. The solution of the ID 
problem is obtained using dynamic models and real data 
records of disturbances together with a set of predefined 
constraints to evaluate the plant dimensions, the optimal 
operation points and the control system parameters. During 
the ID procedure, some objectives to be minimised and some 

constraints, are expressed by means of dynamical indexes 
such as ISE (Integral Square Error), AE (turbines Aeration 
Energy), PE (Pumping Energy), etc.  This makes the ID 
procedure very slow since dynamical simulations must be 
carried out iteratively to be able to evaluate them.  
 
Taking into account previous considerations the objective of 
the present work has been to propose norm based ID schemes 
for activated sludge processes with predictive control 
systems in which no dynamical simulations are needed, 
taking as a starting point the single model approach presented 
in [4]. 
 
The main contributions of the paper are related to the cost 
functions and the constraints selected for ID procedure. 
Particularly, the new cost functions include investment, 
operating costs, and dynamical indexes based on the 
weighted sum of the H∞ and l1 norms of different closed loop 
transfer functions matrices of the system, following a novel 
multi-model and multi-objective approach. The constraints 
are selected to ensure that the process variables, some closed 
loop controllability measures and several closed loop 
performance criteria lay within specified bounds. 
Additionally, some robustness conditions are also included as 
constraints to guarantee that the resulting plant and control 
system designs are robust in the face of non linearities and 
disturbances acting on the process. 
 
 The proposed methodology for the integrated design is also 
subdivided in several steps: 
 
1) Input of initial plant and controller information. It 

includes wastewater and control system characterisation 
(plant and control type, process models, plant load, etc.) 
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2) Definition of design objectives and constraints 
(environmental, economic, operational, control, etc.) 

3) Multi-objective optimization procedure. 
4) Validation of results. 
 
The paper is organized as follows. First, the activated sludge 
process is presented and the way to implement an MPC for 
this process is explained. Secondly, a method for automatic 
tuning of the MPC is presented and applied to the process. 
Then, the Integrated Design procedure is stated and solved 
for the activated sludge process, showing some results to end 
up with conclusions. 

2. Description of the activated sludge process and model 
predictive controller 

2.1. Plant description 

The plant layout is represented in Figure 1, consisting of one 
aerobic tank and one secondary settler. The basis of the 
process lies in maintaining a microbial population (biomass) 
into the bioreactor that transforms the biodegradable 
pollution (substrate) when dissolved oxygen is supplied 
through aeration turbines. Water coming out of the reactor 
goes to the settler, where the activated sludge is separated 
from the clean water and recycled to the bioreactor to 
maintain there an adequate concentration of microorganisms. 
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Fig. 1: Plant and controller layout 

 
The set of equations for the nonlinear model (reactor and 
settler) are the following: 
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The whole set of variables is presented also in Figure 1. 
Generically, “x” is used for the biomass concentrations 
(mg/l), “s” for the organic substrate concentrations (mg/l), 
“c” for the oxygen concentrations (mg/l) and “q” for flow 
rates (m3/h). A detailed description of the mass balances and 
model parameters is given in [8]. 
 

2.2. Control problem 

The control of this process aims to keep the substrate at the 
output (s1) below a legal value despite the large variations of 
the flow rate and the substrate concentration of the incoming 
water (qi and si) (see Fig. 2). This set of disturbances has 
been determined by COST 624 program and its benchmark 
[1] Another control objective is to keep dissolved oxygen 
concentration (c1) around 2 mg/l, concentration that is 
necessary for the proper working of activated sludge process. 

 
 

Fig. 2: Substrate disturbances at the influent (si) 
 

The general structure of a multivariable controller applied to 
the activated sludge process can be seen also in Figure 1. 
Three manipulated variables are considered: recycling flow 
(qr1), purge flow (qp) and aeration factor (fk1); and also three 
outputs: biomass (x1), oxygen (c1) and substrate (s1) in the 
reactor. In our case, although the methodology is general, in 
order to simplify the problem only substrate control with the 
recycling flow as manipulated variable is considered. 

 

2.3. MPC applied to the process 

A standard linear multivariable MPC has been considered to 
apply the automatic tuning procedure and the Integrated 
Design methodology proposed in this paper. It calculates 
manipulated variables by solving an on-line constrained 
optimization problem [6]. 
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subject to constraints on predicted outputs, inputs, and 
changes in manipulated variables. k denotes the current 
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sampling point, ˆ( | )y k i k+  is the predicted output at time k+i, 
depending of measurements up to time k, ( | )r k i k+  is the 
reference trajectory, ûΔ  are the changes in the manipulated 
variables, Hp is the upper prediction horizon, Hw is the lower 
prediction horizon, Hc is the control horizon, Wu is a vector 
representing the weights of the change of manipulated 
variables and Wy is a vector representing the weights of the 
errors of set-points tracking. 
 
The MPC prediction model used in this paper is a linear 
discrete state space model of the plant obtained by linearizing 
the model equations (1).  
 (4) 
When the MPC controller is linear and unconstrained, it can 
be represented by the block diagram of figure 3, i.e. 
 

1 3( )u K r y K d= − +                (3)  
 
where Ki  are the transfer functions between the control signal 
and the different inputs (reference r, output y, disturbances d) 
which depend on the control system tuning parameters (Wu, 
Hp, Hc).  Consequently, the closed loop response can be 
obtained from 
 

1

1 1

1
1 1

GK
y r d

GK GK
= +

+ +
  where   ( )3 dd GK G d= +       (4) 
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Fig. 3: Equivalent closed loop system 

 
In order to define the automatic tuning problem, we define 
the sensitivity function S’ between  the load disturbances (d) 
and the outputs (y) and M’ the Control Sensitivity transfer 
function  defined between the load disturbances (d) and the 
control signals (u) when the reference is zero. Their 
calculation is straightforward applying block algebra to 
diagram of figure 3: 
 

3

1

( )( )
( ) 1

dK G Gy sS s
d s GK

+′ = =
+

   3 1

1

( )( )
( ) 1

dK K Gu sM s
d s GK

−′ = =
+

     (5) 

  
Note that u(k) and d(k) vectors are defined for our application 
in this way: 

1( ) ( )u k qr= ; ( ) ( , )i id k s q=  

3. Optimal automatic tuning of MPC 

3.1. Mixed sensitivity optimization problem 

The problem of finding an optimal MPC is stated as a mixed 
sensitivity optimization problem ([7]) that takes into account 
both disturbance rejection and control effort objectives, in the 
same tuning function. The problem definition is then 
 

( )
1 3,

min max
K K w

N N jw
∞

=  where p

esf

W S
N

W s M
′⎛ ⎞

= ⎜ ⎟′⋅⎝ ⎠
   (6) 

 
subject to the set of constraints explained below. K1 and K3 
are the MPC control compensators (see block diagram of 
Figure 3) which depend on the tuning parameter vector 
defined by ( ), ,p c uc H H W= . Wp and Wesf are suitable weights 

for optimization and w is the frequency. Note that control 
efforts rather than magnitudes of control are included in the 
objective function by considering the derivative of the 
transfer function M’. 

3.2. Performance constraints 

In order to ensure proper disturbance rejection  
 

1pW S
∞

′⋅ <                 (7) 

 
Wp is selected for the specification of load disturbances 
rejection, what means that its inverse must be smaller in 
magnitude than the inverse of disturbances spectrums. 

3.3. Limits on control and output variables 

The maximum value of the control (umax) and the output 
variable (ymax) for the worst case of disturbances can be 
constrained to be less than certain limits by means of its l1 
norm and the following conditions:  
 

max1
M u′ <   max1

S y′ <            (8) 

 
The l1-norm of a stable transfer function such as M’, for a 
SISO system, is defined as follows: 
 

1 ( )

( )
max

( )d t

u t
M

d t
∞

∞

′ =               (9) 

3.4. Multi-objective optimization approach 

The optimization problems for the automatic tuning within 
the Integrated Design framework can be defined as a 
multiobjective optimization problem by defining the 
following objectives: 
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1f N
∞

= ; 2 1
f M ′= ; 3 1

f S ′=          (10) 

 
with the respective goals  f1

*, f2
*, f3

*. In order to keep 
satisfying constraints (8) when the solutions do not get the 
objectives exactly, goals are chosen in the following way: 
 

*
2 maxf u< ; *

3 maxf y<        (11) 
 

3.5. Multiple models for robustness 

The statement of the problem presented can be modified to 
include not only the nominal model but also linearized 
models around a set of working points. For instance, to 
obtain robust performance in the face of non linearities, the 
constraint (7) can be rewritten to in the following way: 
 

1p iW S
∞

′⋅ <  i= 1,…, N          (12) 

 
where Si’ are the sensitivity functions obtained with those  
linearized models, being N the number of multiple models 
considered. 
 

3.6. Algorithm description and implementation 

The main problem when solving this optimization problem is 
that involves real and integer variables. In this work we 
propose a two iterative steps algorithm that combines a 
random search based on the Solis method [10] for tuning the 
horizons, and the goal attainment multiobjective optimization 
method for tuning weights Wu.  
 
The controller implementation is based on the MPC Toolbox 
of MATLAB ® and some modifications of Maciejowski [6]. 
The real part of the optimization problem is implemented 
also in MATLAB, specifically in the function fgoalattain.  
  

4. Integrated Design of Plant and MPC controller. 

The Integrated Design problem consists of determining 
simultaneously the plant and controller parameters and a 
steady state working point, while the investment and 
operating costs are minimized.  The algorithm for solving the 
nonlinear optimization problem generated tackles the 
problem in an iterative two step approach (see Fig. 4). The 
first step performs the controller tuning, and the second step 
the plant design with the previous controller obtained. The 
loop is finished when a convergence criteria over costs is 
reached.  
 
The objective functions selected for the plant design step are: 

1 1 1 2f w V w An n= ⋅ + ⋅ ; 2 1
f M ′= ; 1

3
1d

G
f

G
=     (13)

where V1n and An are the normalized values for the volume of 
the reactor and the cross-sectional area of the settler, and 
wi=1 (i = 1, 2). 
 
The purpose of objective f2 is to design plants in which 
control magnitudes be less than one fixed value for the worst 
linear case. As for objective f3, it is related to the input signal 
needed for perfect control when several disturbances are 
present. Some nonlinear process and controllability 
constraints are, for instance:  

 
• Residence time and mass load in the aeration tanks: 
 

1

12

2.5 8
V
q

≤ ≤  ; 1 1

1 1

0.001 0.1i i rq s q s
V x
+

≤ ≤                        (14)

 
• Limits in hydraulic capacity and in the relationship 

between the input, and recycled flow rates 
 

12 0.7q
A

≤ ; 20.05 0.9
i

q
q

≤ ≤                                            (15)

 
• Constraints on the non-linear differential equations of the 

plant model to obtain a solution close to a steady state  
 
• Constraints for robustness over a set of controllers and 

plants defined around the nominal ones.  
 

1p iW S
∞

′⋅ <  i= 1,…, N+M              (16) 

 
where Si’ are the sensitivity functions, being N the number of 
multiple models of the plant and M the number of multiple 
controllers. 

 

Plant dimensions 
steady state point 

Controller 
parameters 

MPC CONTROLLER 
TUNING 

PLANT DESIGN 

 

 
 

Fig. 4: Iterative loop for Integrated Design 
 

The solution of this optimization problem is also solved with 
the goal attainment method, and is also subject to lower and 
upper bounds for optimization variables 
x=(s1,x1,c1,xd,xb,xr,,fk1,qr1,qp,V1,A) . 
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5. Integrated Design results with multiple models 

In this point some results are shown when several linear 
models are considered in order to give some robustness to 
operational and plant variations. Weights Wp and Wesf are 
kept constant here. 
 
The multiple models have been obtained changing first the 
working point, because it is the normal operation of the plant, 
and assuring that the designed plant satisfies the imposed 
conditions in a region around the nominal point. This case of 
study of Integrated Design considering multiple models 
consists of including performance constraints for two new 
models obtained changing the nominal operation point for the 
plant influent (si±100 mg/l, qi±220 m3/h). The optimal plant 
and MPC obtained considering multiple models rejects 
disturbances better even for worst case point in the region 
(si+100 mg/l, qi+220 m3/h). 
 

TABLE I 
RESULTS FOR MULTIPLE MODELS CHANGING SI,QI 

 Single model Multiple models 
Operating point si+100, qi+220 si+100, qi+220 
Wu 0.0044 0.007 
Hp 8 7 
Hc 2 2 
V1 9476.0 6397.7 
A 2084.7 3981.2 
S1 45.32 69.64 
max(s1_linear-s1ref) 9.04 4.0485 

pW S
∞

′  37.91 0.71145 
Operating point si+50, qi+110 si+50, qi+110 
Max(qr1) 3500 929.64 
Max(s1-s1ref) 21.28 4.24 

 
 

Fig. 5: Linearized model closed loop substrate response for 
the design with multiple models (solid line) and single model 

(dashed dotted line). 
 

In order to show that, a comparison between multiple and 
single model designs simulating the worst case linearized 
model of the designed plants with the optimal controllers has 
been performed (see Table I and Fig. 5). The use of the linear 
model allows for better checking of designs robustness. In 
Fig. 6 a comparison of the sensitivity functions for both 
closed loop systems is shown, and it is clear that only the 
plant designed with multiple models satisfies the constraint 
imposed by Wp

-1. Finally, responses simulating directly the 
two optimal non linear plants and controllers around the 
point (si+50 mg/l, qi+110 m3/h) have been performed (see 
Fig. 7).   

 
Fig. 6: Sensitivity function for the design with multiple 

models (solid line, Sm) and single model (dash dotted line, 
Ss), together with weight Wp

-1 and the inverse spectrum of 
influent disturbances 

 
Fig. 7: Non linear plant closed loop substrate response for the 

design with multiple models (solid line) and single model 
(dashed dotted line). 

 
The second case of study consists of changing the plant 
dimensions around nominal values, in order to assure some 
flexibility to the designed plant in case of future redesigns or 
to give some error building margin. The optimal plant and 
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MPC obtained produce better disturbance rejection than 
those obtained considering only one model, for those plants 
modified in this way: V1±500 m3, A±250 m2. Numerical 
results are shown in Table II for the worst working point. 
 

TABLE II 
RESULTS FOR MULTIPLE MODELS CHANGING V1, A 

 Single model Multiple models 
Operating point V1-500, A-250 V1-500, A-250 
Wu 0.0044 0.0018 
Hp 8 10 
Hc 2 2 
V1 8976.0 4864 
A 1834.7 2443 
S1 45.32 64.38 
Max(s1_linear-s1ref) 7.0853 3.3016 

pW S
∞

′  1.1994 0.37855 
 
Finally, in the last case of study the multiple models have 
been obtained changing the plant dimensions (V1±500 m3, 
A±250 m2) and the controller weight (Wu±0.001), producing 
similar quality of results that the previous cases.  Hence, the 
controller obtained is robust to plant parameter variations, 
and the designed plants are robust to controller parameters 
changes, giving some error margin to further MPC retuning. 
Numerical results are shown in Table III for the worst case of 
the plant and the controller. 
 

TABLE III 
RESULTS FOR MULTIPLE MODELS CHANGING V1, A AND 

CONTROLLER PARAMETER WU 
 Single model Multiple models 

Operating point V1-500, A-250 
Wu+0.001 

V1-500, A-250 
Wu+0.001 

Wu 0.0054 0.0059 
Hp 8 10 
Hc 2 2 
V1  8976.0 7917.8 
A 1834.7 3456.5 
S1 45.32 45.41 
Max(qr1_linear) 2125.8 1187.6 
Max(s1_linear) 8.23 4.66 

pW S
∞

′  1.4089 0.79344 

6. Conclusions 

In this paper a multi-model Integrated Design procedure to 
obtain optimal plants and control systems for activated 
sludge processes with MPC has been proposed. The approach 
is based on the optimization of a set of cost functions 
including investment, operating costs, and dynamical indexes 
based on the weighted sum of the H∞ and l1 norms of 
different closed loop transfer functions matrices of the 
system, following a novel multi-objective methodology. 
Some robustness conditions are also included as constraints 
to guarantee that the resulting plant and control system 
designs are robust in the face of non linearities and 

disturbances acting on the process. A comparison with the 
single model methodology shows the effectiveness of the 
new approach. In fact, the optimal plant and MPC obtained 
produce better disturbance rejection than those obtained 
considering only one model, even if the working point 
changes. 
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