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Abstract: Our objective in this paper is to examine the problem formulation of one particular
published result, make logical extensions, and consider the question of whether we should obtain
solutions under such a formulation, or pursue alternative formulations. The problem considered
in “A Kalman Filter-Based Control Strategy for Dynamic Coverage Control” by I. I. Hussein is
for a network of mobile sensors with limited range to traverse and estimate a spatially-decoupled
scalar field. In that paper the optimal trajectories are generated by an online procedure that
minimizes the trace of the instantaneous covariance of the estimation error obtained from
Kalman Filtering, using a finite set of admissible control inputs. We extend the formulation
by observing that the procedure can be performed offline, that the cost function can be defined
over a finite horizon, and that the set of control inputs can be a continuum. We illustrate, with
simple examples, the kind of solutions that can be obtained using dynamic programming, and
ask the question “Is this the type of trajectories that we want?” Alternative formulations are
suggested and are left for future work.

1. INTRODUCTION

Networks of mobile agents equipped with limited-range
sensors have been used to perform various tasks, and
they present interesting cooperative control problems;
see Hussein [2007], Cortes et al. [2004], Cassandras and
Li [2005], Chung et al. [2004], A.Tiwari et al. [2005]
and the references therein for reviews and real world
applications. One such task is the dynamic coverage of
a spatially-decoupled scalar field, and the objective is to
design trajectories of the agents so as to maximize the
quality of the field estimate. In Hussein [2007] the optimal
trajectories are generated by an online procedure that
minimizes the trace of the instantaneous covariance of the
estimation error obtained from Kalman Filtering, using a
finite set of admissible control inputs.

Our interest in this paper is to examine the above formula-
tion, make logical extensions, and investigate the nature of
the solutions obtained. More specifically, We first observe
that the procedure can be performed offline, that the cost
function can be defined over a finite horizon, and that the
set of control inputs can be a continuum. We then use
some simple examples to illustrate the kind of solutions
that can be obtained. These solutions have the appearance
of “getting stuck in local minima,” while in fact they are
globally optimal solutions under the “minimum trace” cri-
terion. Hence, if such trajectories are not desirable, it is an
indication that perhaps alternative problem formulations
should be further investigated. In a way, this paper raises
more questions than it answers, and should be understood
as exploratory rather than prescribing a practical solution.

To begin, we first describe the problem set up as in Hussein
[2007]. The field to be measured is represented by a set of
scalar values rk at a set of pre-determined locations (which

we will call “targets”) pk on a plane, k = 1, 2, . . . , N . The
field is assumed to be static but corrupted by noise, so we
have

rk(t + 1) = rk(t) + dk(t),
where dk(t) is a zero mean Gaussian noise with variance
σ2

k.

There are M sensors moving on the plane according to

xj(t + 1) = xj(t) + uj(t), j = 1, 2, . . . , M,

where xj(t) is the location of the j-th sensor, and the
control input uj(t) is constrained by, without loss of
generality,

||uj(t)|| ≤ 1, ∀t ≤ 0. (1)

Each sensor has a finite range bj , and thus its measurement
of the k-th target takes the form

z
j
k(t) = I{xℓ:||xℓ−pk||<bj}(xj)rk(t) + w

j
k(t),

where IS(s) is the indicator function of the set S, i.e.,
IS(s) equals 1 if s ∈ S and 0 otherwise. The variance of

w
j
k is denoted by W

j
k and modeled by

W
j
k =







α||xj − pk||
2

b2
j

+ η2 if ||xj − pk|| < bj

α + η2 otherwise,

(2)

where α and η are parameters.

If we define

r(t) = [r1(t), r2(t), . . . , rN (t)]T ,

d(t) = [d1(t), d2(t), . . . , dN (t)]T ,

x(t) = [xT
1 (t), xT

2 (t), . . . , xT
M (t)]T ,

u(t) = [uT
1 (t), uT

2 (t), . . . , uT
M (t)]T ,

z(t) = [z1
1(t), . . . , z1

N(t), z2
1(t), . . . ,

z2
N (t), . . . , zM

1 (t), . . . , zM
N (t)]T ,
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and

w(t) = [w1
1(t), . . . , w

1
N (t), w2

1(t), . . . ,

w2
N (t), . . . , wM

1 (t), . . . , wM
N (t)]T ,

then we can write the equations in matrix form:

r(t + 1) = r(t) + d(t), (3)

x(t + 1) = x(t) + u(t), (4)

z(t) = H(t)r(t) + w(t), (5)

where H(t) can be defined in a straightforward way. Let
the covariances of d(t) and w(t) be D(t) and W (t) respec-
tively. We also assume that noises in different processes or
at different time instants are independent.

Given positions of the sensors at time t, the matrix H(t)
is determined, whose entries are zeros and ones depending
on whether the targets are in the range or out of range of
the sensors. Kalman Filtering can then be performed to
estimate the signal r(t) with an error covariance P (t).

The coverage control problem is to define the trajectories
of the sensors optimally in some sense. The basic algorithm
proposed in Hussein [2007] can be qualitatively summa-
rized as follows:

• At each instant, choose for each sensor a candidate
control input from a finite set.

• For every candidate move u(t) for the entire sensor
suite, calculate the resulting candidate position x(t+
1) and subsequently the candidate error covariance
P (t + 1).

• Pick the u(t) that minimizes the trace of P (t + 1).

There are modifications to the basic algorithm in Hussein
[2007] to deal with the problem of local minima; this will
be commented upon later.

In the next section we will examine this problem for-
mulation and make logical extension of it. Then we will
describe how to solve the newly posed problem using
dynamic programming. In Section 4 we will illustrate the
kind of “optimal” trajectories that will be obtained under
the defined optimality criterion, and ask the question of
whether this is the kind of trajectories that we want for
the coverage control problem. Discussion will be given in
Section 5 and conclusions drawn in Section 6.

2. EXTENDED PROBLEM FORMULATION

We make the following observations regarding the problem
formulation and the basic algorithm described in the
previous section.

Optimization can be performed offline: The estimate
r̂(t) of the field has to be obtained online while the sensors
are traversing it, since r̂(t) depends on the measurement
signal z(t) which in turn depends on the realization of the
noise signal d(t). However, the nature of Kalman Filtering
is such that, given a trajectory x(t) of the sensor suite,
the evolution of the error covariance matrix P (t) can be
determined offline, independent of the measurement signal
z(t) received online. Since performance index is defined
in terms of the trace of P (t), essentially the optimization
procedure can be performed offline.

The implication of this observation is threefold.

First, we can compute the solution offline using as much
computational power as needed, and store the solution for
online use.

Second, if the environment is time-varying and requires
online re-computation, then we can think about ways to
devise approximate solutions that can be computed fast,
and ways to use the offline solutions as good initialization
values for online procedures.

Third, and most pertinent to the objective of this pa-
per, we can investigate suitability of various performance
indices based on the error covariances, separately from
the constraints of online computation. Simply speaking,
a performance index is a tool that helps us to arrive at a
solution for a practical problem; it can and should be sub-
ject to modification in design iterations. A fighter-aircraft
feedback control law that is optimal under a particular
Linear Quadratic Gaussian criterion may not be optimal
after all if the pilot says “this does not feel right,” and the
designer may want to change for example the weighting
matrices and have the corresponding solutions verified
again.

Thus, if some performance index is more computationally
intensive, but leads to a “better” result, then at the very
least we know that we can obtain the offline solution and
make use of it in some fashion online. Conversely, if the
full-blown offline solution under some performance index
is not satisfactory, then at least we know that it is not
the online approximating scheme (subject to the limited
computational time and resources) that is to blame.

Looking ahead multiple steps should be better
than one step: To convey the idea, imagine that there
is only one sensor and one target. The sensor has a limited
range and can move some maximum distance in one time
step. Assume that in one step the target will still be out
of the range of the sensor, but in two steps it will be in
the range. If the performance index is the trace of the
error covariance matrix at only the next time step, then
the sensor would not have any preference of the direction
it chooses to go next, since in one step it cannot see the
target and thus the error covariance would be the same in
all directions. But if we define the performance index such
that we look ahead two or more steps, then the optimal
solution would apparently be for the sensor to go towards
the target.

The set of allowable control inputs do not have
to contain only extreme values: More often than
not we would have to discretize a continuous variable to
perform certain computations. Nevertheless, the choice for
the control input to the sensor does not have to be limited
to only extreme values such as “no movement” or “one
maximum step east.”

Imagine again the example of one target and one sensor,
and the target is only half a maximum step away from the
sensor. When we formulate the problem, we should allow
the sensor to get to the target by going forward only half
a maximum step, otherwise it would always overshoot and
oscillate around the target.
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Based upon these observations, we “naturally” extend the
problem formulation as follows: Given the field and sensor
equations (3), (4), (5), the constraint (1), and standard
Kalman filtering procedure that yields an error covariance
matrix P (t), find optimal trajectories of the sensors such
that the following performance index is minimized:

J(x0, P0) =

T
∑

i=0

trace(P (i)). (6)

where the number of steps T is a parameter chosen a priori,
x0 is the initial position of the sensors, and P0 is the prior
covariance matrix of the targets.

3. SOLUTION BY DYNAMIC PROGRAMMING

In this section we describe how to solved the newly posed
optimization problem, using dynamic programming.

We start by giving the evolution of the error covariance
in Kalman Filtering. By an abuse of notation we will put
the time dependence in the subscript (which consequently
no longer denotes individual sensors or targets), and put
other dependence in the pair of parentheses following a
variable.

P−
t+1 = Pt + Dt,

Kt+1 = P−
t+1H

T
t+1(xt+1)

(Ht+1(xt+1)P
−
t+1H

T
t+1(xt+1) + Wt+1(xt+1))

−1,

Pt+1 = (I − Kt+1Ht+1(xt+1))P
−
t+1.

Recall that the sensor movement equation is

xt+1 = xt + ut, (7)

thus we define a function f(·) suitably so that we can write
in a compact form

Pt+1 = f(xt, Pt, ut). (8)

Now if we rewrite J as

J(x0, P0) = trace(PT ) +
T−1
∑

i=0

trace(Pi), (9)

then system equations (7) and (8), cost function (9),
together with constraints (1), constitute the optimization
problem that can be solved using dynamic programming.
Our objective is to obtain an optimal feedback law

u∗
t = µ∗

t (xt, Pt)

such that [u∗
0, u

∗
1, . . . , u

∗
T−1

] minimizes J(x0, P0).

To proceed, we first discretize both x and P to obtain a
finite “state space,” and discretize u to obtain a finite set
of control inputs. More specifically, we put a bounded grid
on (x, P ), and consider only input values that can move
the sensor from one grid point to another.

Now we solve the dynamic programming problem recur-
sively as follows (Bertsekas [2005]):

• Start with

JT (xT , PT ) = trace(PT ).

• For i = T − 1, T − 2, . . . , 0, solve

Ji(xi, Pi) = trace(Pi)+min
ui

Ji+1(xi+ui, f(xi, Pi, ui)).

• Then J0(x0, P0) is the optimal cost, and the mini-
mizing ui in the recursion above form the optimal
sequence.

To understand the form of the solution, suppose there is
one sensor and two targets, and we look ahead 5 steps
(T = 5). Then the optimal solution is stored as a collection
of 5 atlases, with each atlas containing maps indexed by
two values corresponding to the two error variances of the
targets. Each map specifies that at a given location of the
field, where the sensor should move to at the next step.
Examples of such maps will be given in the next section.

It is well known that dynamic programming suffers from
the curse of dimensionality, and we can see from the
above example that even with one sensor and two targets,
the storage space needed for the solution is quite large.
There are ways to alleviate this problem, for example,
the solution can be (approximately) represented by an
interpolating function instead of a table (Bertsekas and
Tsitsiklis [1996]).

However, as stated earlier, the main objective of this
paper is to examine different problem formulations, rather
than proposing one particular formulation and solution.
As such, we would not focus on how to solve the above
optimization problem more efficiently. Instead, we will look
at what type of optimizing trajectories we can get out of
the problem formulation, which is illustrated in the next
section.

4. “OPTIMAL” TRAJECTORIES ILLUSTRATED

Let us now consider two simple examples.

Example 1: There is one sensor and one target. The
target is located at the origin, and the parameters for the
sensor, used in (2), are

b = 1.5, α = 1, η = 1.

T is chosen to be 3.

Intuitively, the sensor should go towards the target as
quickly as possible, so the optimal feedback law should
be

u∗
t (xt, Pt) =

{

−
xt

||xt||
if ||xt|| > 1,

−x otherwise.
(10)

The optimizing feedback law takes the form of 3 atlases
each indexed by the error variance P . We show the 3 maps
corresponding to P = 1 in Figure 1, as velocity plots. – In
a velocity plot, the vectors are scaled for better display, so
we can tell the relative but not absolute amplitudes of the
optimizing u(t). Thus These maps show the best direction
to go at any point in the field (when the error variance is 1)
for 1-step-to-go, 2-step-to-go and 3-step-to-go respectively.

We can observe the following from Figure 1:

• When there is only one step to go (top map), the
optimal direction depends on how far away the sensor
is to the target. If the sensor is within a circle of radius
2 centered at the origin (where the target is), then
it knows that in one step the target will be within
its range and that it can reduce the variance of the
estimation error. Therefore it decides to go towards
the target. If the sensor is outside that circle, then
it cannot reduce the estimation error in one step by
going in any direction. The direction shown in the
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Fig. 1. Optimal feedback law shown as velocity plots for
1-step-to-go, 2-step-to-go and 3-step-to-go. There is
one sensor and the target is at the origin.

map merely reflects the preference in tie breaking
(lower index of an array, where values are negative).

• Where there are two steps to go (middle map), the
radius of the circle becomes 3.

• When there are 3 steps to go (bottom map), the
optimal feedback law resembles that specified by (10).
The mismatch is mostly likely due to the discretiza-
tion of the state space and control input.

• An optimal trajectory starting from (x0, P0) is read
from the atlases as follows: First consult the 3-step-to-
go atlas. Find the map that matches the discretized
value of P0, and look at the position on that map
that matches the discretized value of x0. Apply the
specified optimal control input u0, which brings the
sensor and estimate to (x1, P1). Then consult the 2-
step-to-go atlas, and repeat the process.

• We can thus see that the 3-step-to-go map subsumes
the 2-step-to-go and 1-step-to-go maps, i.e., after we
have consulted with the 3-step-to-go map and when
we need to consult the 2-step-to-go map, we can read
out the same information still from the 3-step-to-
go map, and similarly for the 1-step-to-go map. It
seems most likely that this can be generalized to an
arbitrary number of sensors and targets, as long as
the number of steps T is large enough to cover the
entire field, but a rigorous proof is beyond the scope
of this paper.

Example 2: Let us now consider another example where
there are two targets and one sensor. The targets are
located at (−1, 0) and (1, 0) respectively.

First we let the range of the sensor be chosen as b = 1.5,
and other parameters the same as in Example 1. Now
the atlas is indexed by two values from the diagonal of
the covariance matrix P (i.e., the error variances of the
two target estimates). Two 5-step-to-go maps are shown
in Figure 2, for the case of P0 = diag(1, 1) and P0 =
diag(1, 0.1) respectively.

In the top map, initial estimates of the two targets have the
same accuracy and hence the configuration is symmetric.
Since b = 1.5, at the origin the sensor can see both targets
one unit distance away, and therefore it “settles down”
at the origin, in the sense that if it moves away from
the origin towards one target, then the accuracy of the
estimate for that target improves while the accuracy for
the other target deteriorates, and the net effect is a loss in
the sum of variances.

In the bottom map, the initial estimate for the left target
is coarser than that of the right target, and therefore the
“settling down” point is closer to the left target, at the
border where it can still see the right target.

Now we change the range of the sensor to b = 0.5, and the
two maps are shown in Figure 3.

This time the sensor cannot see both targets simultane-
ously at any location, so it “settles down” to one of them.

Note that we are only showing two maps from the atlas,
and therefore the details of any optimal trajectory is not
evident by inspection of these two maps. One particular
trajectory is shown in Figure 4.
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Fig. 2. The 5-step-to-go map for P0 = diag(1, 1) and
P0 = diag(1, 0.1) respectively. Sensor range is b = 1.5
and the two targets are marked by (red) crosses.

5. DISCUSSIONS AND ALTERNATIVE PROBLEM
FORMULATIONS

Looking at the maps shown in Figure 2 and Figure 3,
and the “optimal” trajectory shown in Figure 4, we may
wonder whether we have gotten stuck in some “local
minima.”

But keep in mind that the dynamic programming proce-
dure gives us globally optimal solutions.

If (6) is what we want to minimize, then the trajectory in
Figure 4 is globally optimal.

We may have in mind a trajectory that simply visits the
two targets sequentially, as shown in Figure 5.

This may be a better thing to do for a particular coverage
problem, e.g., when we do not care about a target any
more after enough accuracy has been achieved some time
in the past, so that we can move away from it and get
closer to some other target.
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Fig. 3. The 5-step-to-go map for P0 = diag(1, 1) and
P0 = diag(1, 0.1) respectively. Sensor range is b = 0.5
and the two targets are marked by (red) crosses.
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Fig. 4. One optimal trajectory that corresponds to the
control law shown in Figure 2.
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Fig. 5. A simple trajectory that visits the targets sequen-
tially.

In Hussein [2007] modification to the basic algorithm is
made such that, if a target has not been visited by a sensor
as a result of the optimizing procedure, then additional
control logic is activated to command the closest sensor to
go and visit this target.

One way to produce such effects, while still using (6) as
the performance index, is as follows. We start with N
targets, and we follow the optimal trajectory from the N -
target-atlas. When the variance of one target drops below
a threshold, we remove it from the target list and follow
the corresponding N − 1-target-atlas.

Thus we would have to solve many optimization problems
and keep lots of atlases. The optimal trajectories are still
produced offline, and we can think of ways to represent
them in a more succinct manner.

We may also want to think about directly defining different
performance indices. To avoid the burden of notations,
we will describe in words possible candidates. Suppose
we define that, when the accuracy of the estimate of a
target exceeds certain threshold, this target becomes a
“treasure” that has just been collected (and thus cannot
be re-collected in the future). Then we can try to maximize

J , total treasures collected in a given time,

or maximize

J , average treasures collected per time step,

or minimize

J , time elapsed to collect all treasures,

or minimize

J , distance traveled to collect all treasures,

or possibly some other performance indices.

So far we have represented the field to be surveyed by a
finite set of “targets.” This is of course only a discretization
strategy. The ultimate objective is the estimation of the
field itself. Thus, when we formulate an optimal control
problem under a performance index, we may also want to
take into account how well the formulation can be adapted
to the situation with a finer or coarser discretization, or
with a “weighting” by a probability distribution (to denote
non-uniform interest in knowing the field).

6. CONCLUSIONS

Our objective in this paper is to examine the problem
formulation in Hussein [2007], which deals with the prob-
lem of how a network of mobile sensors with limited
range should optimally traverse and estimate a spatially-
decoupled scalar field. The published result proposed that
the optimal trajectories be generated by an online pro-
cedure that minimizes the trace of the instantaneous co-
variance of the estimation error obtained from Kalman
Filtering, using a finite set of admissible control inputs.
We extend the formulation by observing that the pro-
cedure can be performed offline, that the cost function
can be defined over a finite horizon, and that the set
of control inputs can be a continuum. Solution to the
extended problem are obtained by dynamic programming,
and we use two simple examples to illustrate the nature of
the optimal trajectories thus obtained. We point out that
these globally optimal trajectories may seem to be stuck
in “local minima,” which points to the need of questioning
the suitability of the performance index used. If a practical
coverage control problem dictates that the accuracy of
the estimation of a target need not be maintained all the
time once it has reached certain level, then alternative
performance indices can be devised, and further studies
based upon them should be conducted.
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