
A Closed-loop Exponential Feeding Law for

Multi-substrate Fermentation Processes

E. Pico-Marco ∗ J.L. Navarro ∗

∗ Dept. of Systems Eng. and Control, Technical Univ. of Valencia,
Spain.(e-mail:enpimar,joseluis@isa.upv.es).

Abstract: This article addresses the computation of invariant and stabilizing control laws
for dual-substrate fed-batch fermentors. The design is based on two commonly used model
structures. It will be shown how to derive partial state feedbacks, using only biomass and
volume as measures, that keep the substrates at a desired concentration provided the model is
good enough and does not change with time. In the paper an analysis of invariance and a study
of global stability within the framework of partial stability is provided.
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1. INTRODUCTION

A bio-reactor is a tank in which several microbial growth
and enzyme-catalyzed reactions occur simultaneously in a
liquid medium. In fed-batch bio-reactors there is one or
more feeding flows Fi entering the tank and supplying it
with nutrients until its limit capacity is reached.

The models commonly used for control purposes are non-
structured, i.e. the cell is regarded as a black box
without delving into the intracellular mechanisms, and
non-segregated, i.e. assuming an average cell. Also, the
conditions and concentrations in the tank are supposed
to be homogeneous. Finally, in a dual-substrate fed-batch
two nutrients or substrates are separately supplied in a
short or limiting concentration along with many other
components composing the medium. These substrates may
play different roles or functions, e.g. one being a carbon
source and the other a nitrogen source.

As stated in the abstract, the control design is based on
two commonly used models for multi-substrate systems. It
is also assumed, in this first approach, there is no prod-
uct inhibiting or somehow significantly affecting growth
and/or substrate consumption. Hence, it is not necessary
to include it in the model. This is described in section
2, in which a set of typical control specifications is also
described.

In section 3 a presentation is given of a closed-loop
control law using only on-line measurements of biomass
and volume. It is analyzed both from an intuitive point
of view and analytically, proving that it constitutes an
invariant control law. That is, it keeps the system within
a given subset of the state space provided the initial
conditions are adequate.

In section 4 the concept of partial stability is introduced
and then applied for proving that the control law is
also stabilizing. This is always true for systems with
monotonously increasing or Monod-like kinetic functions

and under some additional conditions for systems with
non-monotonous or Haldane-like kinetic functions.

In section 5 some simulations are provided illustrating the
controller performance. Finally, in section 6 conclusions
and future lines are given.

2. CONTROL PROBLEM

Two model structures are commonly used to describe
dual-substrate fed-batch fermentors. The main differences
lying with the specific kinetic functions to be used. See
Anjou [2001], Chanprateep [2002], Chan [2003], Bielefeldt
[2005], Bailey [1986], Bae [1996], Sonmezisik [1998] and
Beyenal [2003]. Both can be summarized in the following
expressions:

ẋ = f(µ1, µ2)x − (D1 + D2)x
ṡ1 = −y1µ1(s1)x + D1s1in − (D1 + D2)s1

ṡ2 = −y2µ2(s2)x + D2s2in − (D1 + D2)s2

v̇ = (D1 + D2)v = F1 + F2

(1)

where f , the specific growth rate, is usually a sum or
product of its arguments. Additionally, the state variables
are x biomass concentration, si concentrations of limit-
ing substrates in the tank, v volume. Functions µi are
specific consumption rates. The parameters yi are yield
coefficients. The other two parameters siin are the limiting
substrate concentrations in the corresponding feeding flow.
Finally, the Di are equal to the ratios Fi/v.

The substrates may play different roles (see Zinn [2004]).
For example in two common cases:

(1) Both substrates are carbon sources and contribute
both to growth and production.

(2) One substrate is a carbon source mainly affecting
growth and the other one a nitrogen source affecting
production and product characteristics 1 .

1 Some authors defend in this case the yield coefficients depend on
the s1/s2 ratio. See Zinn [2004] again
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In either case there are mainly two goals from the biologists
point of view:

(1) It is desirable to keep a given specific growth rate f =
µref corresponding to a desired physiological state
at which the microorganism behaves optimally with
respect to production, does not produce inhibiting
products, etc. This translates into the tracking of a
given trajectory for total biomass. In particular

x(t)v(t) = x0v0e
µref t (2)

which is (theoretically) unbounded. Volume goes to
infinity, biomass follows a bounded trajectory adjust-
ing to a logistic function and only the substrates may
stabilize around a point. Hence, the convenience of
partial stability concepts.

(2) It has been reported in for example Kellerhals [1999]
and Xu [2005] that in many instances the ratio
s1/s2 affects the product characteristics, e.g. in PHB
production the bioplastic physical properties.

Both goals could be achieved fixing the si concentrations
in the broth. Although, due to modelling errors and model
changes with time, the “right” to keep µref may deviate
significantly from the precalculated ones. Thus, for better
performance and security an adaptation of the reference
concentrations sir may be necessary. This will be one of
the future lines and for the time being ideal conditions will
be assumed.

3. CONTROL LAW

The control law to be suggested is an extension of the
closed-loop exponential feeding law for one-limiting sub-
strate systems published in Pico-Marco [2006], Pico-Marco
[2005] and H. De Battista [2006]. It has the form:

F1 = λ1xv
F2 = λ2xv

(3)

Provided the equations

µ1(s1) = µ1r

µ2(s2) = µ2r
(4)

have a satisfactory solution s1r, s2r the equations for the
substrates in (1) become

ṡ1 = (−y1µ1 + λ1s1in − (λ1 + λ2)s1)x
ṡ2 = (−y2µ2 + λ2s2in − (λ1 + λ2)s2)x

(5)

and it is possible to find values λ1, λ2 for the given partial
equilibrium solving

0 = −y1µ1r + λ1s1in − (λ1 + λ2)s1r

0 = −y2µ2r + λ2s2in − (λ1 + λ2)s2r
(6)

where λ1, λ2 are positive numbers for s1in, s2in big
enough 2 . It is clear from the deduction that for any initial
conditions such that s10 = s1r, s20 = s2r, this control
law will keep the system in a submanifold Z∗ such that
f = µref since ṡ1 = ṡ2 = 0. Hence, it is an invariant
control. A more formal test can be produced along the lines
in Pico-Marco [2006] checking the solution of the equation

∂ϕ

∂X
f(X) +

∂ϕ

∂X
g(X)u(X) = 0 X ∈ Z∗ (7)

2 In practice this requirement does not pose any problem

where X represents the whole state, f, g the function
vectors appearing when (1) is written in affine form, and
Z∗ is the goal manifold given by

ϕ :=











x −
µref

λ1 + λ2

− (x0v0 −
µref

λ1 + λ2

v0)
1

v
= 0

s1 − s1r = 0
s2 − s2r = 0











(8)

Using, for example MapleTM, it turns out the above
suggested control is the solution for adequate λi values.

4. PARTIAL STABILITY

Partial stability is defined as the stability of dynamic
systems with respect not to all but just to a given part
of the state variables (see Vorotnikov [2002]). Fed-batch
bioreactors correspond to the case of stability of partial
equilibrium positions which is defined as follows:

“Let there be given a nonlinear system of ordinary differ-
ential equations

ẏ = Y (t , y, z) ż = Z(t, y, z)
Y (t, 0, z) ≡ 0

(9)

The set y = 0 of system (9) is said to be stable, if for
any numbers ǫ > 0, t0 ≥ 0, there is a number δ(ǫ, t0) > 0
such that from ‖ y0 ‖< δ, ‖ z0 ‖< ∞ it follows that
‖ y(t; t0, x0) ‖< ǫ for all t > t0.”

This is the PSt-problem w.r.t. that part of the variables
of the original system (or the corresponding perturbed
motion system) for which this system has an equilibrium
position. Partial equilibrium positions of this kind (also
termed a balanced motion) are invariant sets of the
system. Hence, it is actually the problem of stability of
sets that is analyzed in this case.

In the following, a global analysis is carried out following
Chellaboina [2002] due to its simplicity, although it could
have been set up in the more general framework of Sun
[2002] for y-stability under arbitrary z-perturbations. Both
Monod and Haldane-like kinetic functions are considered.

Now, in order to introduce the theorem to be used in
the stability proof, consider the nonlinear autonomous
dynamical system (see Chellaboina [2002])

ẋ1 = f1(x1, x2), x1(0) = x10

ẋ2 = f2(x1, x2), x2(0) = x20

(10)

where t ∈ Ix0
, x1 ∈ D ⊆ Rn1 , D is an open set with 0 ∈ D,

x2 ∈ Rn2 and

f1 : D × Rn2 −→ Rn1 (11)

is such that ∀x2 ∈ Rn2

f1(0, x2) = 0. (12)

and f1(., x2) is locally Lipschitz in x1. Also

f2 : D × Rn2 −→ Rn2 (13)

is such that for every x1 ∈ D, f2(x1, .) is locally Lipschitz
in x2 and Ix0

≡ [0, τx0
), 0 < τx0

≤ ∞, is the maximal
interval of existence for the solution (x1(t), x2(t)), t ∈ Ix0

.
Under the above assumptions the solution exists and is
unique over Ix0

.
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Stability with respect to x1 of the system defined above
can be defined as:

“ The nonlinear dynamical system (10) is Lyapunov stable
w.r.t. x1 if, for every ǫ > 0 and x20 ∈ Rn2 , there exists
δ(ǫ, x20) > 0 such that ‖ x10 ‖< δ implies that ‖ x1 ‖< ǫ
for all t ≥ 0.”

Definition which corresponds with the notion of partial
equilibria. In order to analyze partial stability, the follow-
ing results from Chellaboina [2002] are used:

Theorem 1. Consider system (10), then if there exists a
continuously differentiable function V : D×Rn2 7→ R and
a class k function α(.) such that

V (0, x2) = 0 x2 ∈ Rn2

α(‖ x1 ‖) ≤ V (x1, x2) (x1, x2) ∈ D × Rn2

V̇ (x1, x2) ≤ 0 (x1, x2) ∈ D × Rn2

(14)

Then system (10) is Lyapunov stable with respect to x1.

Corollary 2. Consider system (10). If there exists a contin-
uously differentiable, positive definite function V : D 7→ R
such that

V ′(x1)f1(x1, x2) ≤ 0, (x1, x2) ∈ D × Rn2 (15)

then system (10) is Lyapunov stable with respect to x1,
uniformly in x20.

For system (1) and control (3), the following system is
obtained

ẋ = f(µ1, µ2)x − (λ1 + λ2)x
2

ṡ1 = (−y1µ1(s1) + λ1s1in − (λ1 + λ2)s1)x
ṡ2 = (−y2µ2(s2) + λ2s2in − (λ1 + λ2)s2)x
v̇ = (λ1 + λ2)xv

(16)

For system (16) it is possible to apply partial stability
successively, first with respect to s1 and then to s2. This
is so because, as seen in expressions (16), there is no
case in which say s2 should follow a given trajectory or
reach a given point for s1 to reach s1r. There is no direct
interaction between the substrates and biomass is always a
positive common factor in the ṡi equations. Thus, affecting
performance but not stability.

Since the analysis is the same for each substrate, let us
illustrate it using s1. System (16) is reordered as follows:

f1 := ṡ1 = (−y1µ1(s1) + λ1s1in − (λ1 + λ2)s1)x

f2 :=







ẋ = f(µ1, µ2)x − (λ1 + λ2)x
2

ṡ2 = (−y2µ2(s2) + λ2s2in − (λ1 + λ2)s2)x
v̇ = (λ1 + λ2)xv







(17)

with x1 = (s1) and x2 = (x, s2, v). Whenever s1 = s1r we
have

f1 = 0 ∀x2 (18)

A candidate partial lyapunov function is

V =
1

2
(s1 − s1r)

2 (19)

Then

V̇ = (s1 − s1r)ṡ1 =
= x(s1 − s1r)(λ1s1in − (λ1 + λ2)s1 − y1µ1(s1))

(20)

with y1 = const > 0 and x > 0. Clearly, whenever s1 > s1r

the curve defined by y1µ1(s1) must be over the straight line
defined by

r = λ1s1in − (λ1 + λ2)s1 (21)

and viceversa. This will be always the case for Monod-
like kinetic functions, see figure 1. In the Haldane case
there may be several intersection points, see figure 2. Con-
sequently, depending on the initial conditions, substrate
concentrations may evolve towards undesired values.
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Fig. 1. Line 21 on top of a Monod-like curve
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Fig. 2. Line 21 on top of a Haldane-like curve

The stability region for the partial equilibrium (s1r, s2r)
is determined by the cartesian product of the intervals for
each substrate si obtained with the previous analysis.
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5. SIMULATIONS

To test the behaviour of the controller described in this
paper, the model used in Chan [2003] has been simulated.
Model parameters are shown in the following table:

µm1 = 0.5 µm2 = 0.5
Ks1 = 0.5 Ks2 = 0.5

Ki1 = 2 Ki2 = 2
Y1 = 2 Y2 = 2

s1in = 20 S2in = 20

and four scenarios have been tried:

(1) Perfect modeling: The model parameters used for the
controller design are the same as the original one.
The initial substrate concentrations start the system
to the left of the maximum growth rate of the Haldane
functions. So, in this case, growth rate increases with
the substrate concentration.

(2) Perfect modeling. But in this case the initial substrate
concentrations (both) are to the right of the maxi-
mum value. In this case, an increase of the concentra-
tion produces a decrease in the growth rate.

(3) Model errors in one of the Haldane functions. µm1 =
0.6,Ks1 = 0.3,Ki1 = 1. The initial conditions are the
same as in case 1.

(4) Model error in one of the yield coefficient (Y1 =
0.6) and in the Haldane function (case 3). Initial
conditions as in case 1

The table below briefly gives the initial values used in the
experiments.

All figures x0 = 0.5
All figures V0 = 0.2

Figures 1,3 and 4 s10 = 1 s20 = 0.5
Figure 2 s10 = 5 s20 = 4

Figures 3 to 6 show the simulation results. In all cases,
the growth rate and the substrates reach a steady state,
but not the biomass and volume (not shown), as expected.
Furthermore, when there are no model errors, the growth
rate reaches the reference specification independently of
the initial values of the substrates. It must be remarked
that the controller only uses the biomass concentration
and the volume. In figure 4 it is shown how the controller
can reduce the substrate when the system starts to the
right of the maximum of the growth rate functions and it
can reach the stability point to the left of the maximum:
the reference value can be next to the maximum value and
the system will remain stable. Also, the controller has low
sensitivity to changes in the specific growth rate function
as can be seen in figure 5. But, yield coefficient errors
produce moderate errors.

So, even though the controller shows good properties, some
further work must be done to solve the sensitivity to yield
coefficient errors. This could be accomplished with an
adaptive controller that can change the λi values to adapt
to yield coefficient errors or changes. Some ideas used in
Pico-Marco [2005] could be extended to the multisubstrate
fermentation.
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Fig. 3. Case 1
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Fig. 4. Case 2

6. CONCLUSIONS

The extended closed-loop exponential feeding law intro-
duced in the paper is very promising for practical ap-
plications given the results in simulations, the generality
of the model and the fact that only biomass and volume
must be measured. On the other hand, it assumes an ideal
model. Consequently, for refined regulation of both the
specific growth rate and the substrates ratio, an additional
structure would be needed to adapt both the reference
substrate values and the controller λ-parameters. These
developments will be studied in the future.
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Fig. 5. Case 3
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Fig. 6. Case 4
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