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Abstract: This paper presents a control synthesis approach for discrete event systems modelled by 

ordinary Petri Nets (PN) to solve a forbidden state problem. The PN herein considered are transitions 

controllable and contain measurable and non measurable transitions. The proposed PN controller is 

synthesised using the influence paths of the forbidden transitions. The latter are deduced from the PN 

reachability graph. The designed PN controller is maximally permissive because it prevents the occurrence 

of forbidden markings and guarantees exactly the desired behaviours. The proposed approach is illustrated 

by an example. 

 

1. INTRODUCTION 

Petri Nets (PN) is an appropriate tool for studying discrete 

events dynamical systems (DES). Thanks to their graphical 

representation and algebraic formulation, PN have been 

extensively used in modelling, identification, simulation, 

performances evaluation and control of DES. 

This paper is considered as a complementary phase of our 

work (Bekrar et al, 2006a, 2006b) on the identification of 

DES using PN. The proposed identification method has the 

advantage to provide a unique PN that can generate all the 

observed behaviours of the system. Nevertheless, the 

identified PN can, sometimes, generate some states, which are 

not observed in the set of the input/output signals used for the 

identification task. Thus, we suggested completing the 

obtained PN model by adding control places in order to avoid 

the undesirable states. This leads to design a PN controller 

that guarantees the desired behaviours.  

A look at the literature shows that this control problem is 

considered either as a Forbidden State Problem (FSP) or as a 

Forbidden State Transitions Problem (FSTP). Several 

techniques have, also, been proposed to treat both problems. 

Hence, formal treatment for solving the FSP and the FSTP 

using the theory of regions are proposed in (Ghaffari et al, 

2002), where necessary and sufficient conditions for solution 

existence are established. The proposed approach is valid for 

bounded PN with controllable and uncontrollable transitions. 

In addition, a method to solve the FSP for live bounded 

marked graphs with uncontrollable transitions using General 

Mutual Exclusion Constraints (GMEC) is introduced in 

(Ghaffari et al, 2003). The case of unobservable transitions is 

considered in (Achour et al 2004) and the existence of a 

maximally permissive PN controller for the FSP of bounded 

PN under partial observation is treated in (Achour et al, 

2005). Based on the supervisory theory of (Ramadge and 

Wonham, 1987), Lee et al (2006) have proposed an algorithm 

for elaborating constraint synchronous reachability graph and 

calculating forbidden and authorised sequences. Then, the 

theory of regions is adapted to calculate the control places to 

be added to the initial model. 

Based on the unfolding technique, Giua and Xie (2004) 

proposed a method to treat the control problem of safe PN by 

enforcing the marking constraints. The developed maximally 

permissive supervisor takes the form of control places to be 

added to the unfolding. The solution of deadlock problem is 

presented in (Giua and Xie, 2005). Finally, an optimisation 

approach to deal with PN control problem for enforcing 

GMEC using Integer Linear Programming techniques is 

introduced in (Basile et al, 2007a). The classical partition of 

the events set into controllable and uncontrollable events is 

replaced by associating a control and an observation cost to 

each event. Afterwards, the FSP specified by GMEC in 

backward conflict-free and free choice uncontrollable subnets 

(BCFCNs) is treated in (Basile et al, 2007b).  

The analysis of these works shows that they can not be 

exploited directly in our case because, it is impossible to 

characterise the forbidden states by constraints. Indeed, the 

control specification is mainly important to synthesise a 

controller. However, we have neither the control specification 

nor the system description because the identified PN model 

that we want to control is obtained using only the measurable 

inputs and outputs system signals. Let’s note that, we can 

determine the forbidden states uniquely by comparing the 

observed system states and those reachable by the identified 

PN model.  

This paper deals with the supervisory control problem of DES 

modelled by ordinary PN. The PN herein considered are 

transitions controllable and contain measurable and non 

measurable places. The latter represent the non measurable 

outputs system signals. Indeed, the fact that all PN transitions 

are controllable than, the PN reachability graph does not 

contains dangerous markings. In addition, we suppose that the 

initial marking is the unique marked state. Finally, we 

consider that the PN reachability graph does not contain 
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deadlock states because the input and the output signals 

observed during the identification phase represent only the 

normal behaviours of the considered system.  

Moreover, the proposed PN controller is synthesised by 

determining a set of forbidden markings and using the 

influence paths, of the forbidden transitions, which are 

deduced from the PN reachability graph. The designed PN 

controller permits to avoid the occurrence of forbidden 

markings, generated by the non controlled PN model, and 

guarantees a set of desired behaviours. 

This paper is organised as follows. Section 2 reviews some 

definitions related to PN.  Section 3 presents the considered 

FSP and introduces the control specifications. Section 4 

presents a new algorithm to design the PN controller and 

section 5 illustrates the proposed algorithm by an explicative 

example.  

2. PN NOTATIONS AND DEFINITIONS 

This section introduces brief presentations of some definitions 

used in this paper. A Petri Net (PN) with m places and n 

transitions is defined as ( , ,Pr , )N P T e Post  where, 

1,...,
{ }

i i m
P p ==  is not empty finite set of places, 

1,...,
{ }

j j n
T t ==  

is a not empty finite set of transitions, such that P T∩ = ∅ . 

Pr :e P T× → ℕ  is the pre-incidence application. Pr ( , )
i j

e p t  

is the weight of the arc from place 
i

p  to transition 
j

t  and 

1,..., , 1,...,
( )

PR m n

PR ij i m j n
W w

×

= == ∈ℕ  with Pr ( , )
PR

ij i j
w e p t=  is the 

pre-incidence matrix.  

:Post P T× → ℕ  is the post-incidence 

application. ( , )
i j

Post p t  is the weight of the arc from 

transition 
j

t  to place 
i

p  and 
1,..., , 1,...,

( )
PO m n

PO ij i m j n
W w

×

= == ∈ℕ  

with ( , )
PO

ij i j
w Post p t=  is the post-incidence matrix. The PN 

incidence matrix W  is defined as: m n

PO PR
W W W ×= − ∈ℕ .  

The set of input (respectively output) places of a transition  
j

t  

is noted by 
*

j
t  (respectively 

*

j
t ). Similarly, the set of input 

(respectively output) transitions of a place 
i

p  is noted 

*

i
p (resp.

*

i
p ). A PN is said ordinary if the weights of all arcs 

are equal to 1. 

The state of a PN is given by its current marking which is a 

mapping :M P →ℕ  that assigning to each place of the net 

a non negative integer number of so-called tokens. A marked 

PN is noted 
0

( , )N M  where 0M  is the initial marking. The 

marking of a place  ip at a marking M  is denoted by ( )
i

M p . 

A transition j
t T∈  is enabled at a marking M if and only if 

for each 
*

i j
p t∈ , it holds: ( ) Pr ( , )i i jM p e p t≥ .  We note by 

[ jM t >  where  
j

t T∈ is enabled at the marking M . When 

fired, 
j

t  produces a new marking 'M , denoted by 

'
[  

j
M t M> . The marking M  is said reachable from

0
( , )N M  

if there exist a firing sequence σ  such that 0 [M Mσ > . The 

set of reachable markings from 
0

M  denoted by 
0( , )R N M .  

3. FORBIDDEN STATE PROBLEM 

We consider the basic supervisory control problem for 

designing PN controller that restricts the reachability set of 

PN model. In the remainder of this paper we assume that, this 

PN model is identified from the I/O sequences describing all 

the behaviours of the system according to the algorithm 

presented in (Bekrar et al, 2006b). Hence, our goal is to add 

some control places in order to guarantee that all the 

behaviours generated by the identified PN model coincide 

with those generated by the real system.  

Note also that, each ' '

i G
M R∈  is composed of two parts as 

follows: 

'

'

'

im

i

im

M
M

M

 
=  
 

 where, the first one represents the 

marking of measurable places and the second one represents 

the estimated marking of the non measurable places. 

The problem herein considered is a FSP. However, it will be 

considered as a FSTP (see Ghaffari et al, 2002). To solve this 

problem we develop an algorithm that consists in: (1) 

Identifying the set of the forbidden markings. (2) Determining 

the set of the forbidden state transitions. (3) Designing the PN 

controller. 

The two first steps of this algorithm are presented in this 

section and the design of the PN controller will be detailed in 

the next section.   

3.1. Identification procedure of forbidden markings 

Contrary to studies proposed to treat the FSP where the 

forbidden states are defined explicitly by constraints, in our 

case we must calculate them using the behaviours of the real 

system and those of the PN model (Fig. 1). The behaviours of 

the considered system are represented by the set of its 

reachable states called ξ . When, those generated by the PN 

modelling the system are represented by its reachability graph 

called '

G
R .  

Definition 1: A marking ' '

i G
M R∈  reachable by the PN that 

we want to control is said forbidden marking if it’s 

measurable part is not equivalent to any state 
i

E  in ξ  (i.e., 

∃ ':
imi i

EME ξ∈ = ) otherwise it is a legal marking.  

The set of the forbidden markings can be obtained using the 

following procedure:  

Inputs: ξ  and '

G
R ,   

Output: .
fr

M  

Begin  
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1. Initialise the set of forbidden marking: : .
fr

M = ∅  

2.  For each marking ' '

i G
M R∈  do : 

2.1. If there exists a state 
i

E ξ∈  such that  '

im i
M E=   

then : 

• '

i
M  is authorised marking. 

2.2. Else '

i
M  is forbidden marking. 

•  Update the set of forbidden markings:                                          
'

: { }.
fr fr i

M M M= ∪            

              End If. 

    End For. 

End. 

 
System behaviours 

PN behaviours 

Illegal behaviours 
Discrepancy 

+ 

- 

 

Fig.1. Determining the forbidden behaviours 

Once the set of the forbidden markings is obtained, we should 

determine the set of the transitions leading to or firing from a 

forbidden marking in order to prevent the firing of these 

transitions.  

3.2. Determination procedure of forbidden state transitions 

A state transition of the PN reachability graph, which fires 

from a marking ' '

i G
M R∈  and leads to a marking ' '

j G
M R∈  

( ' '[
i i j

M t M> ) is said forbidden state transition if and only if 

one of the following conditions is verified:  

 (a). '

i
M  is forbidden marking or, 

(b). '

jM  is forbidden marking. 

Proof: the occurrence of forbidden marking can be prevented 

by avoiding the firing of the transition leading to this marking. 

Moreover, it is clear that a transition firing from a forbidden 

marking is a forbidden transition.  So, each transition leads to 

or fires from a forbidden marking is considered as a forbidden 

transition.  

Hence, the set of forbidden state transitions can be obtained 

using the following procedure:  

Inputs: ξ  and '

G
R  . 

Output: Ψ  the set of forbidden state transitions. 

Begin 

1. Initialise the set of forbidden state transitions: { }Ψ = ∅ . 

2. For each state transition ' ' '( )it

i j G
M M R→ ∈  such that 

' ' ',i j GM M R∈  do:  

2.1. If one of the conditions (a) and (b) is verified then: 
' '( )it

i j
M M→ is forbidden state transition. 

• Update Ψ  the set of forbidden state 

transitions: 
' ': {( )}it

i j
M MΨ = Ψ ∪ → . 

2.2. Else, ' '( )it

i j
M M→ is an authorised state 

transition. 

                        End If  

       End for  

End.  

One the forbidden state transitions are determined, the 

influence paths of forbidden transitions will be calculated and 

used to design a PN controller. More details about this step 

will be introduced in the next section.    

4. PN CONTROLLER DESIGN 

The supervisory control problem considered in this paper can 

be solved by adding control places defined as follows: 

Definition 2:  A control place 
ci

p  of PN model '

0
( , )N M  is 

defined by: (i) '

0
( )

ci
M p : its initial marking, (ii) ( ,.)

ci
Post p : 

the weighting vectors of the arcs connecting  the  transitions 

of '

0
( , )N M  to 

ci
p  and, (iii) Pr ( ,.)

ci
e p : the weighting vectors 

of the arcs connecting 
ci

p  to the transitions of '

0
( , )N M .  

Remark 1: Since the considered PN are ordinary then the arcs 

weighting values are equal to 1.  

Thus, the PN controller design problem consists in 

determining a set of control places 
1

{ ,..., }
c ck

p p that must be 

added to the initial PN model '

0
( , )N M  such that, the 

controlled PN 
0

( , )
c c

N M  generate the desired behaviours and 

prevents the forbidden ones.  

In order to solve this problem, we propose to use the influence 

paths of forbidden transitions, calculated from the reachability 

graph of the PN that we want to control, to determine the 

control places to be added. Note that, the influence paths of 

critical place have been used by Ghaffari et al (2003) and 

Basile et al (2007b) to treat a FSP specified by GMEC.   

To design a PN controller, we must answer to the following 

questions: (1) do we add control places as much as forbidden 

state transitions? (2) What are the inputs and the outputs 

transitions of each added control place? (3) What is the initial 

marking value of each added control place? In order to answer 

to these questions, we introduce in the following some 

definitions which will be used in the remainder of this paper. 

Definition 3: An influence path , , ,..., ,i i i j k ft M t t Mπ =  of a 

forbidden transition i
t , in the reachability graph of the PN that 

we want to control, is a directed path composed of a 

succession of forbidden markings and forbidden transitions. It 

connects the forbidden transition i
t  to a legal marking 

f
M  
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such that all other transitions and markings in the path are 

forbidden. 

In the next of the paper the first and the last transition of each 

path iπ  will be respectively noted   ( )in it π  and ( )fi it π .  

Remark 2: A forbidden transition i
t  can have several 

influence paths and its influence paths set will be noted 
1 2{ , ,...., },k

i i i iπ π πΠ =  with {1,.., | |}
i

k ∈ Π  and | |
i

Π is the 

cardinal of 
i

Π . 

Definition 4: An influence path j
π  of a forbidden transition 

jt is said included in an influence path i
π  of a forbidden 

transition i
t , noted j i

π π⊂ , if the following conditions are 

checked simultaneously: 

1. |
k j k i

t tπ π∀ ∈ ∈ , 2. |i j i iM Mπ π∀ ∈ ∈ , 3. i
π can be 

written using  
jπ  as follows: .... .i i i jt Mπ π=  

The first and the second conditions allow to verify the 

inclusion relation of each element of 
j

π  in 
i

π . These 

conditions means that, each forbidden transition and each 

forbidden marking in 
j

π  belongs to 
i

π . But, these conditions 

permit to confirm the inclusion relation of each element of 
j

π  

in 
i

π  without regarding the secession order of these markings 

and transitions. For this raison, if the third condition is not 

verified the inclusion relation becomes intersection relation 

between two influence paths. 

Remark 3: One forbidden transition can have several influence 

paths that check the inclusion property between them. For 

each transition 
j

i i
t π∈ , we note | |j

i i
t π∩ the number of 

times that the transition 
i

t  appears in 
j

i
π . 

Based on these definitions, we developed an algorithm that 

adds control places preventing the occurrence of the forbidden 

markings generated by the PN model. This algorithm is 

divided into the following steps: 

1. The first one consists in generating the reachability graph 
'

G
R  of the PN model that represents all the possible markings 

reachable from the initial marking '

0
M , 2. The second step 

allowing to identify the set of forbidden markings and 

determining the set of the equivalent forbidden state 

transitions Ψ , 3. In the third step, we calculate the influence 

paths of each forbidden transition in Ψ . 4. In this step we 

verify the inclusion relation between the influence paths of the 

same transition and between each two distinct forbidden 

transitions in order to obtain the final set of influence paths 
'Π . 5. Finally, we use 

'Π to synthesise a PN controller.  

Hence, the PN controller is worked out using the following 

algorithm:  

Inputs: ξ  the system states set,  '

0
( , )N M  PN model. 

Output: controlled PN.  

Begin  

1. Generate the PN reachability graph '

G
R  of the PN 

model '

0
( , )N M . 

2. Determine the set of forbidden markings 
fr

Μ  and 

conclude the set of forbidden state transitions Ψ by 

executing the procedures introduced in 3.1 and 3.2. 

3. For each transition it  in Ψ  do:  

3.1. Calculate the set of the influence paths 
i

Π . 

3.2. Update 
i

Π  by verifying the inclusion relation 

between the influence paths of the same forbidden 

transition as follows:  

� For each andm n

i i i iπ π∈Π ∈Π  do: 

• If 
m n

i iπ π⊂ then: 

o Eliminate 
m

iπ  from iΠ . 

o    Update iΠ  such as: iΠ := iΠ \ {
m

iπ }. 

                               End if. 

                    End For. 

               End For. 

 

4. Put all the updated influence paths of all forbidden 

transitions in the same set 
'Π  such as 

' { | {1,..., }}i i kΠ = Π ∈ (k is the forbidden transitions 

index). 

5. Update 
'Π  by verifying the inclusion relation 

between each two influence paths  of each two 

distinct transitions as follows: 

- For each 
' ',q l

i j
π π∈Π ∈Π do: 

• If  
q l

i j
π π⊂ then: 

o Eliminate 
q

iπ from 
'Π , 

o Update
'Π such as 

'Π := 
'Π \{

q

iπ }. 

                          End if. 

                   End For. 

6. For each influence path 
r

i
π  in 

'Π do: 

6.1. Determine ( )r

in i
t π  and ( )r

fi i
t π  (the first 

transition and the last transition) of the considered 

influence path. 

6.2. Add a control place 
ci

p  to the actual PN model. 

6.3. Connect the added control place 
ci

p to the actual 

PN model by arcs of weight equals to 1. ( )r

in it π  

will be output of 
ci

p and ( )r

fi i
t π  will be input of 

ci
p . 
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6.4. Mark 
ci

p  with initial marking equal to 

| ( ) |r r

in i it π π∩ .     

6.5. If there is several influence paths which have the 

same first and last transitions then, mark the control 

place 
ci

p  with initial marking equal 

to
'max(| )

in
t ∩ Π . 

End For. 

End. 

This algorithm allowing to add control places to the PN that 

we want to control by analysing the influence paths of the 

forbidden transitions. The number of the control places to be 

added is not necessary equivalent to the number of the 

forbidden state transitions. In this algorithm, each influence 

path 
r

i
π  in the final influence paths set 

'Π  characterise a 

control place to be added. Indeed, each added control place is 

an input of the first transition and an output of the last 

transition in 
r

i
π . The initial marking of each added control 

place is the number of appearance times of this transition in 

its influence path. This represents in reality the firing number 

of this transition. 

The control method proposed in this paper is a structural. It 

addition, the controlled behaviours do not contain neither 

dangerous nor blocking markings. This implies that the 

controlled behaviours of the system are maximally permissive 

within the specifications.  

5. ILLUSTRATIVE EXAMPLE 

To illustrate the proposed algorithm, let as consider the 

example of a system characterised by the identified PN of Fig. 

2 and the set of behaviours given by: 

� � �� � � �
0 1 2 3 4 5 6

0 1 0 0 2 1 1

0 0 1 0 0 1 0
, , , , ,

3 2 2 2 1 1 1

2 1 1 1 0 0 0

G

M M M M M M M

R

 
              
              
              =  
              
                                        

 


  

 

P5 

•• 

••
• 

P1 P2 

P3 

t1 

t2 t3 

t4 

P4 
Measurable place Non measurable place 

 

Fig. 2. The PN model. 

Firstly we elaborate the PN reachability graph which is 

represented in Fig. 3.  
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Fig. 3. The PN reachability graph. 

 The set of forbidden markings is: 
fr

Μ = { ' ' '

7 8 9
, ,M M M }. 

These markings must be removed from '

G
R  together with their 

arcs coming from other markings to these forbidden markings 

or going from these forbidden markings to other markings in 
'

G
R . The set of the equivalent forbidden state transitions is:  

32

3 4

2 4

' ' ' '

5 7 7 8

' ' ' '

8 9 9 3

' ' ' '

6 8 8 2

{( ), ( ),

( ), ( ),

( ), ( )}

tt

t t

t t

M M M M

M M M M

M M M M

Ψ =  →  →

 →  →

 →  →

 

On the other hand, the influence paths of forbidden transition 

in Ψ  are: 

The influence paths of 
2

t are: 1 ' ' ' '

2 2 7 3 8 3 9 4 3
t M t M t M t Mπ = , 

2 ' ' '

2 2 8 3 9 4 3
t M t M t Mπ = , 3 ' ' '

2 2 7 3 8 4 2
t M t M t Mπ = , 4 ' '

2 2 8 4 2
t M t Mπ = . 

Thus, 1 2 3 4

2 2 2 2 2
{ , , , }π π π πΠ = . 

 The influence paths of 
3

t  are: 1 ' ' '

3 3 8 3 9 4 3
t M t M t Mπ = , 

2 ' '

3 3 9 4 3
t M t Mπ = , 3 ' '

3 3 8 4 2
t M t Mπ = . Thus, 1 2 3

3 3 3 3
{ , , }π π πΠ = . 

 The influence path of 
4

t  are: 1 '

4 4 3
t Mπ = , 2 '

4 4 2
t Mπ = . Thus, 

1 2

4 4 4
{ , }π πΠ = . 

By updating the influence path sets , {2,3,4}i i∈Π : we remark 

that 2 1

3 3
π π⊂  then 1 3

3 3 3
{ , }π πΠ = . Hence, the set of all 

influence paths of all forbidden transitions is: 
'

2 3 4
{ , , }.Π = Π Π Π  

In addition, by updating 
'Π : we remark that: 

2 3 4 3

4 3 2 2
{ , , }π π π π⊂ , 1 1 2 1

4 3 2 2
{ , , }π π π π⊂ , 3 3

3 2
π π⊂ , 1 1

3 2
π π⊂ .   

        So, ' 1 2 3 4

2 2 2 2 2
{ , , , }.π π π πΠ = Π =  

Finally, we can remark that all the influence paths in 'Π  have 

the same input and output transitions. These transitions are 

respectively 
2in

t t=  and 
4fi

t t= . Therefore, we add control 

place 
1c

p  with initial marking
'

0 2
( ) max(| ) 1

c c
M p t= ∩ Π = . 
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This place is an input of 2t and output of 4t as depicted in the 

figure 4. 

 

P5 

•• 

••
• 

P1 P2 

P3 

t1 

t2 t3 

t4 

P4 
Measurable place Non measurable place 

•

pc1 

Control place 
 

Fig. 4. The controlled PN model  

6. CONCLUSION 

This paper presents a structural method to solve a FSP of DES 

modelled by ordinary PN. The PN model to be controlled is 

marking partially measurable and transitions controllable. 

Using system behaviours and PN ones, forbidden states are 

identified and forbidden state transitions are determined. The 

influence paths of forbidden transitions are used to synthesis a 

PN controller. The later is maximally permissive within the 

specifications which, guarantees only desired behaviours. 

Future research concerns the extension of this work to PN 

with uncontrollable transitions.   
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