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Abstract: A new augmented Lyapunov functional is constructed for delayed neural networks, free-
weighting matrix technique is employed to derive the delay- dependent stability criterion. The derived
criterion is formulated in terms of linear matrix inequality (LMI). A numerical example is given to
demonstrate the effectiveness and applicability of the criterion.
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I. INTRODUCTION

Neural networks (NNs) have received considerable attention
due to their extensive applications in a variety of areas, such
as signal processing, pattern recognition, static image
processing, associative memory, and combinatorial
optimization in the past decades See e.g. Borkar, and
Soumyanatha (1997), Nmichel and Liu (2002). In the real
world, time delay is frequently encountered in NNs, and it can
easily cause instability and oscillations in a system. Because
the applications of delayed neural networks rely heavily on
the dynamical behavior of the networks, the stability of
delayed neural network has been investigated by many
researchers and presented a number of useful and interesting
results. See e.g. Arik (2000,2003), Liao and Wang
(1999,2000), Cao and zhou (1998), Zhang, Ma, Xu (2001),
Liao and Chen (2002), Xu, Lam, Ho and Zou (2005), Hua,
Long and Guan (2006), He, Liu and Rees (2007a), Park,and
Cho (2007). According to the results, the stability criteria for
delayed NNs can be classified into two categories, namely,
delay-independent and delay-dependent. The delay-dependent
stability criteria have attracted much attention because delay-
dependent criteria make use of information on the length of
delays, and less conservative than delay-independent ones.
Among them, Cao and zhou (1998), Zhang, Ma, Xu (2001)
presented delay-independent stability criteria for a class of
NNs with delay, Liao and Chen (2002) derived sufficient
conditions of delayed NNs by using the LMI approach, the
results in Liao and Chen (2002) were improved in Arik (2003)
by constructing different Lyapunov-Krasovskii fuctionals. Xu,
Lam, Ho and Zou (2005) presented a less conservative delay-
dependent stability criteria than Arik (2003) by constructing a
more general Lyapunov-Krasovskii functional and using LMI
approach. Despite these improvements, it is still hard to
further reduce the conservatism by using the same types of
Lyapunov functional as in the above works, so a new
augmented Lyapunov fuctional is constructed to study the
problem of stability of delayed NNs. He, Wang ,Lin and Wu
(2005a) Moreover, the free-weighting matrix technique is
proved very effective for deriving the delay-dependent
stability criteria of time-delay systems He, Wu, She and Liu
(2004a,2004b), Wu, He, She and Liu (2004), He, Wang and
Wu (2005b), He, Wang and Xie (2007b). Therefore, it is a
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good idea to use augmented Lyapunov functional and free-
weighting matrix approach to derive a less conservative
stability criteria of the delayed NNs.

In this paper, the problem of asymptotic stability for delayed
neural networks is considered. Attention is focused on
derivation of the stability criterion for the delayed neural
networks. By constructing a new augmented Lyapunov
functional, employing free-weighting matrix approach, a
delay-dependent criterion in terms of LMI for delayed neural
networks is obtained.

II. PROBLEM FORMULATION
We consider the following delayed neural network:

X(t) =—-Cx(¢t)+ Ag(x(2)) + Bg(x(t — 7)) +u €))

where x(-) =[x, (-),x,(*),...,x, (-)]" € R"is the neuron state

VeCtor’ g(x()) = [gl (xl ())5 gZ (x2 ())5 e gn (xn ())]T € RV‘
denotes the neuron activation function, and
u=[u,u,,...,u,] €R" is a constant input vector.

C = diagi{c,,c,,...,c,} is a diagonal matrix with positive
entries, ¢; >0 (i=12,...,n), Aand B are the connection

weight matrix and delayed connection weight matrix,
respectively. The time delay 7 is a constant.

Assumption 1:

The activation function g,(-) , i=12,...,n , satisfies the

following condition:

Osgf(i)_?(é)sk,. , for any &, &, eR, & #&,,
i=12,...,n (2

where k., i =1,2,...,n are positive constants.

In the following, the equilibrium pointx* =[x/, x},...,x]" ,
of the system (1) will be shifted to the origin by the
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transformation z(-) = x(-) — x* which puts the system (1) into
the following form

2(1) = =Cz(t) + Af (2(1)) + Bf (2(1 = 7)) ©)

where z(t) =[z,(-),2,(),...,z,(-)]" is the state vector of
the transformed system,

SO =10 Lz £, (2,(OD]
f;'(zi('))zgi(zi(')-i_zj)_gi(zj) , i=12,...,n Note
that the functions f;(.),

conditions:

OSMSI{I’/I‘(O):O,VZI 750, i:1,2,...,n
Z.

1

and
with

i=1,2,...,nsatisfy the following

“4)

which is equivalent to
Ji@IUfi(z) — k2,10, f,(0)=0,

In the following section, we will develop delay-dependent
condition such that origin of the delayed network (3) is
asymptotically stable.

)

i=12n

III. STABILITY CRITERION

Now, we present the following new asymptotic condition for
system (3), which is dependent of the size of delay.

Theorem 1: The origin of the delayed neural network in (3)is
asymptotically stable, if there exist matrices
le} >0;

L, L
L:{ i, IZ}ZOwithLH>O; Q{Q“
Q22

LIZ L 22 ng

Z{Zé‘ Z‘Z}o and  M=[M MM MT
ZlZ 222

diagonal matrices R >0, T >0, S > 0,such that the following
LMI is feasible

o, ©, &, ®, O, O, -1C'Z,
Dy Dy Dy Dy Dy 0
* D, O, O, O w7,
©=| * * * 0, O, ©, B'Z, <0
* * * * O, O 0
* s * * * D, 0
| s * * s * ~Z, |
(6)

where

O, =-L,C-C'Li,+Z,+L,+L,+Q,,+M,+ M/
—2'(ZIZC+CTZlT2 ; CD12=—L12—M1+M2T;

O, ,=L,A+Q, +Z,A+KT —C"R+ M ;
®,=Z,B+M, +L,B; O, =-1C"L, +1L),;

22>

D =—1M,; D), =—M, -M; ~0; D, =-Mj;
O, =-0,+KS-M,; D, =—));
D, =—1M,; O, =R"A+A"R+Q,, -2T;
®,, =R"B; O, =14"L,; D, =—1M,;
®, =-0, -25; ®, =1B"L,; D, =—1M,;
O, =-1L,; O, =-12,,; o, =-17,,;

R =diag(n,r,,...,1,);
T =diag(t,.t,,....t,);

K =diag(k,,k,,....k,);
S = diag(slasz7"'ﬁsn);

and * denotes the symmetric terms in a symmetric matrix.

Proof: Choose an augmented Lyapunov functional as

V() = GO + V() + VGO +V,(20) ()
Vi(z(0)) = ng (DLS, (@)
o) = [ ¢1(9)04, (s)s
Vo= [ (924, (s)dsdo
V@) =23 fiss
where
I =|:L~1;1 L12:|20 with Lll >0 : Q=|:Q1T1 Q12i|20
L12 L22 QIZ Q22
7 = {Z'Tl Z”} > () are to be determined
ZIZ ZZZ
z(1) =(s)
and NOEIY, , &(s)= ,
SO s | SO {f(z(s))}
co-[0]

Calculating the derivatives of V,(z(¢)),i =1,2,...,4 defined
in (7) along the trajectories of (3) yields

Vi(z(t) =24 () LS, (¢)
L12
L22

= L,
A =ods | | L

o —C2@) + Af (z(0) + Bf (2(1 - 7))
z(t)—z(t—71)

Vy(2(1) =&, (D0S, (1) - &) (t—1)0&, (t— 1)
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{ 2(1) HQH Qn}{ 2(1) }
fGEO)] [0h On | f(z(0)
_{ zZ(t—1) T|:Q11 le}[ zZ(t=71) }
-] 05 On | f(z(t-1)
(@, +7C"Z,,C
o

Vi0) = (0280~ ()24, (s)ds
_ Z(t)T Zy Zy |20
NEGIZEA ED
o {Z(S)HZITl le}{z(s)}ds
1 2(s) | [ £y 2y ) 2(s)

V,(z(t)) = 22" () Rf (2(2))
= 2[-Cz(t) + Af (2(1)) + Bf (z(t — ))]" Rf (2(¢))

Using the Leibniz-Newton formula, the following equation is
true for any matrix M with appropriate dimensions

0=2" (OMI=()~=(1~7)~ [ (s)ds] ®)

where (1) =[z" (1) z" (t=7) f 7 (z(®) [ (z(t-)]'

On the other hand, it is clear from (5) that

[ OU @0 - kz,(0]<0, i=12-n ©)

and

fzt=Nf(z(t-)—kz,(t—1)]<0, i=12-n
(10)

Thus, for any T =diag(t,t,,....,t,)>0  and

S =diag(s,,s,,...,s,) = 0, it follows from (9) and (10) that
0< =21, f:(z, (O fi(z, (1) — k;z,(1)]
i=1

) I CR ) P CX e S RN ()

=2z" (OKTf (2(t)) =2 (z(0)Tf (2(1))
22" (t—)KSf (2(t = 1)) = 2L T (z(t = 7)Sf (2(t - 7))
(11

Adding the term on the right side of (8),(11) to ¥(z(¢)) yields

V(=) < % [" n" s, s)ds (12)

where

q)lz c1)13 _TCTZDA (D14 _TCTzzzB (DIS (D16
cDzz CDzs CD24 CI)25 q)26
* O, +74'Z,4 ®,+74'Z,,B D, @,
* * D, +TBTzzzB D, Dy
* * * CDss CDS6
* * * * D
and U(Z7S) :[ZT(t) ’ZT(t_T)a fT(Z(t))’ fT(Z(t_T)):

HOENOIN

and other parameters are defined in Theorem 1 and* denotes

the symmetric terms in a symmetric matrix.

By Schur complements, the matrix inequality ® <0 is
equivalent to @, <0 , then V(Z(t))<—<s‘||z(t)||2 for a

sufficiently small & >0 such that

asymptotically stable.

system (3) s

IV. EXAMPLE

In this section, one example is given to show the effectiveness
of the theorem presented in this paper. The LMI is solved by
the LMI-Toolbox in Matlab. See Nemirovskii (1995).

Example 1: Consider a delayed neural networks (1) with Xu,
Lam, Ho and Zou (2005).

C =diag(1.2769,0.6231, 0.9230, 0.4480)

[-0.0373  0.4852 —0.3351 0.2336 |
4ol 1.6033  0.5988 —-0.3224 1.2352
0.3394 -0.0860 -0.3824 -0.5785
|—0.1311  0.3253 -0.9534 -0.5015
[ 0.8674 —1.2405 -0.5325 0.0220 |
Bo 0.0474 -0.9164 0.0360 0.9816
1.8495  2.6117 -0.3788 0.8428
|—2.0413 05179  1.1734 -0.2775]

k, =0.1137,k, =0.1279,k, =0.7994 , k, = 0.2368.

Table 1

Calculated upper bounds of 7 for Example 1
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Methods 4
Cao and zhou (1998), Zhang, Ma, Xu failed
(2001), Liao and Chen (2002), Arik (2003)
Xu, Lam, Ho and Zou (2005) 1.4224
Park,and Cho (2007) 1.9320
Hua, Long and Guan (2006)

3.5841
Liu and Rees (2007a)
This paper 3.6828

It is clear that our condition has improved the existing results
both theoretically and numerically.

V. CONCLUSION

This paper has investigated the delay-dependent stability
problem of delayed neural networks. By constructing a new
augmented Lyapunov functional and employing free-
weighting matrices, a less conservative delay-dependent
stability criterion expressed in terms of LMI has been
presented. A numerical example is given to demonstrate the
reduced conservativeness of the proposed results.
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