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Abstract: This paper presents an efficient state estimation algorithm for hybrid systems based
on a least-squares Interacting Multiple-Model setup. Under some conditions, the proposed
algorithm is shown to perform similarly and even better than the Kalman filter. However,
due to the possibility of incorrect estimation of the discrete mode, performance deterioration
may occur. The computational efficiency of the proposed algorithm is obtained by discarding
as many discrete mode sequences as possible while performing the least computations possible.
This is done by rapidly computing good estimates, separating the constrained and unconstrained
estimates and using some auxiliary coefficients computed off-line. A numerical example shows
the characteristics of the proposed algorithm and compares it with the Kalman filter.
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1. INTRODUCTION

The present work focuses on the state estimation prob-
lem for hybrid systems. In recent years the industry and
research community have shown an increasing interest on
hybrid systems due to their capability of describing the
interaction between dynamical and logical components
Antsaklis [2000]. This interaction can be found in many
real world systems, embedded control systems and in the
control of many complex industrial systems via the combi-
nation of classical continuous control laws with supervisory
switching logic.

The class of hybrid systems considered in this paper
is Piecewise Affine (PWA) systems. These are basically
composed by a set of affine dynamics and a discrete mode
that defines the active dynamics. In Heemels et al. [2001]
PWA systems are proven to be equivalent, under some
mild assumptions, to many other classes of hybrid systems,
and so, the proposed techniques can be interchanged
among all the referred classes.

The estimation problem for hybrid systems has already
been tackled by several authors. For instance Bemporad
et al. [1999] and Pina and Botto [2006] proposed different
Moving Horizon Estimation (MHE) schemes that rely on
the application of brute force optimization algorithms
to estimate both the discrete mode and the continuous
state of the system. Some other approaches consider that
the discrete mode is known in advance, which greatly
simplifies the problem. For example in Boker and Lunze
[2002] a bank of Kalman filters is used and in Alessandri
and Coletta [2003] an LMI based algorithm computes the
stabilizing gains for a set of Luenberger observers.
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Most of the synthesis and analysis problems involving
hybrid systems are in general NP-complete, as shown in
Torrisi and Bemporad [2001], and the estimation problem
is no exception. Researchers have then focused on deriving
algorithms that despite having a NP-complete complex-
ity are relatively efficient in practical applications. The
present work is an example of such research direction.

The derivation of the truly optimal filter for systems with
switching parameters was first presented in Athans and
Chang [1976]. However, the requirement for exponentially
growing computational resources prohibits its practical ap-
plication. Suboptimal multiple model estimation schemes
where then developed and applied for tracking maneuver-
ing vehicles, as surveyed in Mazor et al. [1998], and sys-
tems with Markovian switching coefficients, Blom and Bar-
Shalom [1988], proving their efficiency for state estimation
in multiple model systems.

Multiple model estimation algorithms use a set of filters,
one for each possible dynamic of the system. The proposed
algorithm uses least-squares filters since they require very
mild assumptions to be applied and can easily coupe
with constraints. Moreover, in Sayed and Kailath [1994],
where a very detailed description of least-squares filters is
presented, their equivalence to truly optimal filters such
as the Kalman filter was proven for some special setups.

The paper is organized as follows: Section 2 provides a
description of the considered PWA model and in section 3
the proposed Interacting Multiple-Model estimation algo-
rithm is presented. In Section 4 a demonstrative numerical
example is presented and in section 5 some conclusions are
drawn along with some possible future developments.

2. SYSTEM DESCRIPTION

The proposed estimation algorithm is developed for PWA
systems which were introduced in Sontag [1981]. The
following stochastic PWA model will be considered:

10.3182/20080706-5-KR-1001.2326
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(k4 1) = Ajgyz (k) + Bigyu(k) + figy + Ligyw(k)  (1a)

y(k) = Cigeyx (k) +Djgyu(k) +gir) +v(k) (1b)
z(k)
w(k)

where k is the discrete time, z(k) € X C R" is the
continuous state, u(k) € U C R™ is the input, y(k) € R™
is the output, i(k) € Z = {1,..., s} is the discrete mode,
and s is the total number of discrete modes. The matrices
and vectors A;, By, fi, L;, C;, D;, g; depend on the discrete
mode i(k) and have appropriate dimensions. The input
disturbance w(k) and the measurement noise v(k) are
modelled as independent identically distributed random
variables, belonging to the sets W; and V;, with expected
values E{w(k)} = 0, E{v(k)} = 0 and covariances X,
and ¥,,, respectively. These conditions are not restrictive
at all since the zero mean can be imposed by summing a
constant vector to the disturbances and compensated in
the affine term of the system dynamics (1) and, the sets
W, and V; can be considered large enough to contain all
possible disturbances relevant for practical applications,
for instance 99.99% of all admissible values. Notice that
the input disturbance and measurement noise pdfs may
depend on the actual mode of the system i(k). The sets
W; and V; are respectively defined for each mode i(k) by:

Hwi(k) w(k) < hWi(k) ) VkENo (2)

HVi(k') U(k) < hvi(k) ’ vaNO (3)
The discrete mode i(k) is a piecewise constant function of

the state, input and input disturbance of the system whose
value is defined by the regions €;:

Some helpful notation regarding the time-compressed rep-
resentation of Kamen [1992] for system (1) will now be in-
troduced. The time-compressed representation of a system
defines the dynamics of the system over a sequence of time
instants in opposition to the single time step state-space
representation. Consider the time interval [k, k+T—1], the
sequence of discrete modes over this interval is represented
as ip = ip(k) = {i(k),...,i(k+T—1)}. To simplify the
notation, the time index k is removed from the discrete
mode sequence (dms) whenever it is obvious from the
other elements in the equations. In view of this, the output
sequence over the same interval can be computed by:

Yr (k) = Cipx(k)+Diy Ur (k)+gip+Li, Wr (k)+Vr (k) (5)
where the input, input disturbance and measurement
noise sequences Up(k), Wr(k) and Vp(k) respectively are
defined in the same way as the output sequence Y (k) =
[y(k)T,...,y(k+T—1)"]T. The matrices and vectors Ci,.,
Di,, gi, and L;, are computed from the system dynamics
(la-1b) according to what is presented in Kamen [1992].
The same reasoning can be applied to the constraints €2,

Qi Sip z(k)+ Ry, Ur(k)+ Qi Wr(k) < Ti. (6)
where the matrices Si,, Ri,, Qi, and T;, can be com-
puted from the system dynamics (1a) and partitions (4).
The inequalities that define the disturbance and noise sets
over a dms ir, Wi, and V;,. respectively, can also be easily
found from equations (2) and (3):

HWiT WT(k) S hWiT (7)
Hy, Vr(k) <hy, (8)
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Fig. 1. Interacting Multiple-Model Estimation Algorithm.

3. INTERACTING MULTIPLE MODEL ESTIMATION

The proposed Interacting Multiple-Model (IMM) Esti-
mation algorithm is composed of three parts; the Un-
constrained Filter Bank (UFB), the Constrained Filter
Bank (CFB) and, the Discrete Mode Sequence Estima-
tor (DMSE). A schematic representation is presented in
figure 1. The estimation algorithm works as follows: first
the continuous state estimates are computed in the UFB
without considering the constraints. Then, the DMSE
computes the squared errors of these estimates and ranks
them. Finally, starting with the estimate with the lowest
squared error, the estimates are recomputed in the CFB
considering the presence of constraints. When the most
accurate estimate is already a constrained estimate the
whole process stops.

As the estimation is based on sequences of measurements
Yr(k) and discrete modes ir(k), two distinct time instants
must be considered: the time instant at the beginning of
the sequences, k, and the time instant at the end of these
sequences, which is the present time instant t = k+71 —
1. The state estimates will be computed at time instant
k, and can be propagated to the present time instant
according to the estimated dynamics.

3.1 Unconstrained Filter Bank

The UFB computes the unconstrained state estimates. It
is composed by a set of unconstrained least-squares filters,
one for each possible dms jr:

ﬁfT(k‘t) :‘i‘JT(k|t_1)+ (9)
K, (klt—=1)[ (Yr(k)—Dj, Ur (k) — i, ) — Cir 2y, (Klt—1)]
where &, (k|t—1) is the a priori continuous state estimate

for mode sequence jr using measurements up to time
instant t—1. Kj, (k|t—1) is the filter gain:
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-1
K, (klt-1) = (25,1 (klt—1)+CF, 551 C5,) CL=5! - (10)
EW‘ 0 T
z:YJT = [LJT IT"y} |: OJT EV]T:| [LJT ITny] (11)
The covariance of the obtained unconstrained estimate can
also be computed:

Sy, (k|t) = <ij1T(k\t—1) +Ch 3! ch)
This covariance matrix not only provides some insight on
the accuracy of the continuous state estimate 23, (k[t), but
also defines the confidence on the past mformatlon at the
subsequent time instant Z;j, (k+1|t):

Sy, (kH1[E) = Ay By, (k18 A )L (0 B Ly (13)

When computing the unconstrained state estimate, no
a priori information may be avallable or one may be
interested in discarding it, then X (k;|t— 1) should be

set to 0. The corresponding unconstramed state estimate
is referred to as 2} (k[t).

(12)

3.2 Constrained Filter Bank

The CFB will recompute the state estimates but now
considering the constraints (6), (7) and (8). The con-
strained least-squares filter is somehow more complicated.
First the least-squares state vector must be augmented to
incorporate both the input disturbance and measurement
noise vectors, since there exist explicit constraints on these
variables:

i ()

e

Vir (k)
Notice that by explicitly considering the input disturbance
and measurement noise sequences, all the uncertainty is
removed from the observation equation (5) and it becomes
an equality constraint:

(14)

ij(k)
H. W]T(k) = he < (15)
VJTEk;
‘T.iT k
<~ [CjT LjT ITLY] W]T(k) :[YT(k)_DjTUT(k)_ng}
Vir (k)

The constraints of the dms (6) and the bounds on the
input disturbance and measurement noise vectors defined
by the sets W, and Vj,. described by equations (7) and
(8) compose the inequality constraints of the least-squares
problem, according to:

x.]T (k)
H; Wip (k) | < hy < (16)
(k)
SjT QjT 0 x,]T (k) T.]T_RjTUT(k)
<~ O HWjT O W]T(k) S thT
0 0 HVJT Vir (k’) thT

Having defined the constraints matrices, the constrained
least-squares filter corresponding to the mode sequence jr
is given by:

j:‘jT(k|t) '%jAT(Z’klt_l)
Wip (klt) | = | Wi (klt=1) | +
Vir (Klt) Vir (|t —1)
s )
KJT(k|t) '.3 - '.3 : WiT klt—1
SRR I

The constrained least-squares filter gain is defined as:
K;, (k[t) =

-1
S, (klt=1) 0 077

T T
H, H H
0 B, 0 1+[jie zunriof i | [ e it
0 OZV H; H;|| |H;

(18)

where X, (k[t—1) is the covariance matrix associated
with the a priori state estimate &;j, (k|t—1). Zj,(k|t) is
the diagonal matrix that defines the active constraints.

There are several methods, most of them iterative, for
determining the matrix Z;, (k|t), or equivalently the set of
active constraints. Here, the active set method presented
in Fletcher [1987] will be used.

As in the unconstrained case, a priori information may be
discarded by setting EQZle(k\t—l) to 0. The corresponding

constrained state estimate is referred to as {7 (k[t).

8.8 Discrete Mode Sequence Estimator

The DMSE deals with the estimation of the discrete mode
sequence and, consequently, selects the filter which will
provide the final continuous state estimate.

According to the least-squares philosophy, an approxima-
tion of the measured output sequence is computed for
every possible dms and then, the one providing the small-
est squared error should be selected as the least-squares
estimate.

The dms estimate is then selected as the one that presents
the lowest constrained squared error, oy,
ip(k|t) = arg min oy, (k|t) (19)

ir
The squared error associated with the dms jr is given by:

a3, (kIt) = [¥5. (k) — o), =

—1
. i (20)
= [Via (it = ve(0)] =51 [T (k1) = v (k)]
where:
iy (k[t) = Cjr @, (k[t) + D Ur (k) + gjr (21)
and 27 (k[t) is the estimated state of the dms jr when all

past information is discarded, (2;; (klt—1) = 0).

The squared errors computed by equation and (20) are
useful when comparing continuous state estimates from
the same dms. However, when the covariance matrices
are different, an additional factor, &;,, must be consid-
ered to allow a meaningful comparison between squared
errors. Recalling the relation between least-squares and
the maximization of the Gaussian likelihood function (or
its logarithm), the value of &;, should be defined as:

) 1 .
Gy = —5In ((27r) ¥ det (2YjT)) (22)
Equation (20) should be modified to:
2
g (KIt) = ay, + V50 k1) = YeR)|| L, (29)
Y

JT
Equation (23) can be used to compute the squared errors of
both the unconstrained estimates, oj’ (k[t), and the con-
strained estimates, o (k[t), using 2{ (k[t) and 2{*(k|t),
respectively.
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3.4 Computational Issues

Concerning computational requirements, it is noticed that
there can be as many as nl dms, which becomes an
extremely large number even for relatively small ng and
T. So, computationally demanding calculations should be
preformed for the minimum number of dms possible.

Analyzing the required computations one concludes that
23" (k[t) can be determined by simple matrix sums and
multiplications if the filter gain Kj, (k|t — 1) is com-
puted off-line, since there are no varying terms as can
be seen in equation (9). The corresponding squared error
o, (k|t), computed through equation (23), can also be
determined using simple matrix sums and multiplications
from 27 (k[t). The continuous state estimate #}' (k|t) on
the other hand, requires a matrix inversion to determine
the corresponding filter gain using equation (10) since the
matrix E;JlT (k|t—1) is not known in advance.

The constrained estimates require much more complex
computations in the solution of the inequality constrained
least-squares problem. An iterative algorithm has to be
preformed online, and involves one matrix inversion at
each iteration which is computationally heavy. There is
the possibility that the solution corresponding to the true
dms is the same as the unconstrained solution and the
iterative algorithm stops at the first iteration. In general,
however, this will not be the case. So, the computation
of constrained solutions should only be done in cases of
absolute necessity. The squared error of the constrained
estimates o, (k[t) can be determined using simple matrix
sums and multiplications from #{(k[t).

The proposed algorithm should take these knowledge into
account and arrive at the final estimates in the most
efficient way possible.

To avoid the computation of the constrained least-squares
estimates from all discrete mode sequences, the follow-
ing relation between the constrained and unconstrained
squared errors for a given discrete mode sequence is used:

al (k[t) < af, (k[t) (24)

An efficient reduction on the number of constrained es-
timates that have to be computed can be achieved by
computing all unconstrained estimates #j*(k[t) and the
corresponding squared errors a}‘T(k|t) and then, start re-
placing the unconstrained solutions with the correspond-
ing constrained ones, from the lower values of the squared
error. Whenever the lowest squared error corresponds to a
constrained solution, the algorithm stops since no further
reduction of the squared error can be done. The discrete
mode sequence and continuous state estimates are the ones
corresponding to that lowest squared error.

This algorithmic procedure may provide a substantial
reduction in the number of inequality constrained least-
squares problems to be solved since the increase in the
squared error should be small, or even zero, for the true
dms. However, the unconstrained solutions of incorrect
dms may have low squared errors, which rise substantially
only when the respective constrained solutions are com-
puted. An efficient procedure to detect these incorrect dms
before computing the respective constrained estimates
would reduce the computational requirements even more.

To further improve the algorithm, the following B matrix
must be introduced. Each coefficient (3;, j, of the matrix
B is defined as the maximum value of af  under which af
is always smaller than «f , or in an even more restrictive
way, under which jr is never the estimated sequence. The
coefficients i, j, can be computed off-line by the following
optimization problem, which falls in the general class of
Second-Order Cone Programs for which efficient solvers
have already been developed, for instance, by Alizadeh and
Goldfarb [2001]: .
ir.jr — min OziCT (YT, UT)
. Yr,Ur
subject to :
UT c UT (25)
ir =jr
By this definition of 8, j,., when the constrained solution
of a dms ir is computed, all dms jr such that 5, j, is
greater than of (k[t) can be discarded. This algorithmic
procedure provides an even greater reduction on the num-
ber of constrained problems to be solved. Notice that this
procedure does not even require the computation of the
unconstrained solutions of the dms to be discarded.

Both previous modifications to the algorithm require the
existence of one constrained solution to discard any other
dms. Furthermore, the number of discarded dms depends
on the quality of the constrained solution. In the following,
some attention will be given to the recursiveness of the
DMSE and the methodology to determine the dms that
will most likely provide good constrained estimates.

At a given time instant t41 the following quantities have
been computed at the previous time instant: the discrete

mode sequence estimate, iT(k‘|t), the squared errors (or
lower bounds) of all dms, of (k[t) and, the continuous
state estimates 2§ (k[t) and the values of the estimated
input disturbances W'JT(k‘|t) for the dms whose squared
errors have been computed, including the dms estimate.
These quantities allow the computation of the a priori
continuous state estimate corresponding to the discrete
mode sequence estimate at the following time instant:

5, (1)) = (Aj(w Aj(k)ﬁﬁ‘T(kltH
[Aj(t) - Aj(k+1)Bj(k)a ey Bj(t):| UT(k‘)—F
{Aj(t) Ay Wity 5 Wj(t)} Wiy (K[t)+

(Am) Ay fig +- fj(t))

This estimate can be used to obtain some insight on the
likelihood of the discrete mode at the next time instant
j(t+1). The discrete modes j(t+ 1) can be sorted by
ascending values of:

’ij’j(t+1|t) =
. . (27)
max (Sj :ch(t+1\t)+Rju(t+1)+ij(t+1\t)—Tj)
The value of w(t+1) should be set to E{w;}.

The discrete modes j(t+1) that provide the lower values
of 75, ;(t+1|t) correspond the discrete mode sequences
jr = {j(k+1),...,4(t),j(t+1)} at time instant ¢ + 1 most
likely to succeed to jr at time instant ¢.

(26)

Applying this methodology to the discrete mode sequence
estimate at the previous time instant, ir(k[t), should
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provide dms with very low squared errors that discard
most of the other candidate dms. The same reasoning
should be applied to all other discrete mode sequences of
the previous time instant that have not been discarded yet,
starting from the ones that present lowest squared errors
and then the ones with the lowest bounds.

4. NUMERICAL EXAMPLE
Consider the following stochastic PWA system:

8] 1 7]

iff [10]x(k)<0 (mode 1)
z(k+1)=
[067 0%9}95(1@)4{”10(1@)4{‘;’]

iff [10]x(k)>0 (mode 2)
y(k) = [1 0] (k) + v(k)
z(k) e X£ [-10, 10] x [-10, 10]
wk)eW=[-2,2] , E{fw}=0 , %,=03
v(ik)eV£E[-2,2] , E{v}=0 , %, =03

The input disturbances and measurement noises are as-
sumed to be Gaussian with expected value 0 and variance
0.3. The disturbance sets are not restrictive since they
contain over 99.7% of the possible values.

The developed IMM estimation algorithm will now be
applied considering a window of length T = 2. The admis-
sible discrete mode sequences are {[1 1], [1 2],[2 1], [2 2]}.

The B matrix, whose coefficients were introduced in equa-
tion (25), is given by:

0 0 0 4.395

0 0 17578 0

0 439 0 0
17.578 0 0 0

The following examples will show the main characteristics
of the proposed IMM estimation algorithm.

B= (28)

4.1 Example 1

This example will show that the proposed algorithm be-
haves similarly to the Kalman filter. However, it can en-
force the constraints of the system, providing consistent
estimates at every time instants and possibly improving
the estimation. The system will be simulated from the
initial position x(1) = [6,6]" and, the estimators are
initialized with initial guess Zo = [4,4]T and correspond-
ing covariance matrix ¥,, = I,,. The initial time instant
(k = 0) is only used to represent the initial conditions.
Figure 2 shows the evolution of both real and estimated
continuous states and dms.

As can be seen from figures 2(a) and 2(c), the estimate of
the continuous state z; from the IMM algorithm is always
in the same region as the real one, while the estimate from
the Kalman filter is sometimes in the wrong region, despite
having a priori knowledge of the discrete mode sequence.

The Kalman filter is clearly unable to enforce consistency
in the estimates, for instance at time instants & = 6
and k = 7. Nevertheless, no significant deterioration of
the continuous estimates occurs, as shown by the mean

squared errors of table 1. The IMM algorithm, on the other
hand, is able to enforce the constraints, slightly reducing
the estimation error at those time instants.

4.2 Ezample 2

This last example will provide some insight on the behavior
of the IMM estimation algorithm when incorrect dms are
estimated, and explore the benefits of considering the
information of past estimates in the estimation of the dms.

The system will be simulated from z(1) = [-1,-4]T
and the estimators are initialized with initial guess zo =
[-2,-5]T and corresponding covariance matrix ¥,, =
I, . Figure 3 shows the evolution of real and estimated
continuous states and dms. Figure 3(c) also shows the dms
estimates when past information is not discarded, that is,
the matrix E;JlT (k|t—1) is not set to zero.

As can be seen from figures 3(a) and 3(c), the IMM
estimation algorithm can estimate incorrect dms, which
becomes very likely to occur when the continuous state lies
near the boundaries separating the two discrete modes. In
this example, the incorrect estimation of last mode of the
dms enforces the constraints of the incorrect dms at that
time instant, while incorrect estimation of the first mode
of the dms induces large errors in the continuous state
estimates since these are estimated considering incorrect
dynamics. This can be clearly seen by the deviation of the
estimate of x5 at time instants £k = 31 and k£ = 32, in
figure 3(b).

MSE (example 1)
0.3806
0.3778

MSE (example 2)
0.4002
5.1734

Kalman filter
IMM algorithm

Table 1.

Mean squared estimation errors
(examples 1 and 2).

It would be expected that the consideration of past infor-
mation could lead to significant improvements on the dms
estimation. This example, however, shows that this may
not be the case since the consideration of past information
led to an increase of the number of time instants where
the discrete mode sequence is incorrectly estimated. This
problem has not been thoroughly addressed and the cause
of such result has not been investigated. For this specific
example, a possible explanation may be related to the
behavior of the state x1, which varies smoothly in the
discrete mode 1 and jumps abruptly when the boundary
to the discrete mode 2 is crossed.

(example 1)
3.12
2.42

(example 2)
3.16
2.76

Unconstrained
Constrained

Table 2. Mean number of computed estimates
(examples 1 and 2).

5. CONCLUSIONS AND FUTURE WORK

This paper presented an efficient hybrid estimation algo-
rithm based on an IMM setup composed by a set of least-
squares filters. The computational efficiency is obtained by
some algorithmic procedures that discard many candidate
dms before performing heavy computations. These proce-
dures rely on the early determination of good estimates, on
the separation of constrained and unconstrained estimates
and on some bounding parameters for the squared errors.
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Fig. 2. Hybrid estimation using the Kalman filter and the IMM estimation algorithm (example 1).
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Fig. 3. Hybrid estimation using the Kalman filter and the IMM estimation algorithm (example 2).

Despite being very simple, the numerical example showed
that some heavy computations are avoided. This reduction
becomes more evident for higher complexity systems.

The comparison of the proposed algorithm with the
Kalman filter showed that when the dms is correctly esti-
mated, both performances are very similar. Moreover, the
possibility of enforcing constraints not only enhances the
performance of the proposed IMM estimation algorithm
in the vicinity of constraints but the computed continuous
state and dms estimates are always coherent.

In hybrid estimation there is always the possibility of
computing incorrect dms estimates which deteriorates the
continuous state estimates. It would be expected that the
consideration of past information in the estimation of the
dms could lead to better results, however, the numerical
example showed that this may not always be the case.

Future work should focus on the consideration of past
information in the dms estimation and, on determining
quantitative measures for the associated uncertainty.
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