
Lagrangian Relaxation Technique for
Solving Scheduling Problems by

Decomposition of Timed Petri Nets

Tatsushi Nishi ∗ Kenichi Shimatani ∗ Masahiro Inuiguchi ∗

∗ Mathematical Science for Social Systems, Graduate School of
Engineering Science, Osaka University,

1-3 Machikaneyama, OSAKA 560-8531 (Tel: +81-6-6850-6351),
(e-mail: nishi@sys.es.osaka-u.ac.jp).

Abstract: In this paper, we propose Lagrangian relaxation technique for solving scheduling
problems by decomposition of timed Petri nets. The scheduling problem is represented by the
transition firing sequence problem to minimize a given objective function. The timed Petri net
is decomposed into several subnets so that the subproblem for each subnet can be easily solved
by a shortest path algorithm. The optimality of solution can be evaluated by the duality gap
derived by Lagrangian relaxation method. The performance of the proposed method is compared
with the conventional optimization algorithm with penalty function method. The results show
that the duality gap within 1.5% can be derived for AGVs routing problems. The effectiveness of
the proposed method is demonstrated by comparing the performance between the conventional
method.

1. INTRODUCTION

Petri net is a mathematical modeling tool for represent-
ing wide range of discrete event systems as graphical
and algebraic description. As a general scheduling solver,
scheduling methods combined with Petri net modeling and
novel combinatorial optimization algorithm have received
much attention. This paper concentrates on the develop-
ment of general scheduling tool for scheduling problems
represented by timed Petri nets. The dynamics for Petri
nets are determined by finding transition firing sequence
from an initial marking to a final marking. The problem
to determine a reachable transition firing sequence from
initial marking to final marking is an NP-hard combi-
natorial optimization problem. It is well known that the
legal firing sequence problem for Petri nets is NP-complete
(Watanabe et al. [1989]). The problem to determine an
optimal transition firing sequence to minimize the given
objective function is also NP-hard. Typical approach for
scheduling Petri nets is heuristic search for finding optimal
transition sequence(Lee and DiCeare [1994]). The primal
difficulty associated with the optimization of Petri nets
is caused by state explosion problem for handling large-
scaled problems. Conventionally, several decomposition
methods for Petri nets are proposed to reduce computa-
tional complexity. Teng and Zhang [1993] developed a
decomposition procedure for analysis and simulation of
manufacturing systems for Petri nets. He et al. [2000]
proposed an automatic generation procedure of decom-
posed Petri net model using IDEF3 methodology and its
scheduling method by simulated annealing method. Petri
net decomposition and coordination approach and its ap-
plication to AGV routing problems, flowshop scheduling
problems [Nishi and Maeno 2007] have been constructed
� This work was supported in part by 2007 Tateishi Science and
Engineering Foundation

by a penalty function optimization method. However, the
conventional methods cannot ensure the optimality of so-
lution derived by the optimization algorithm because lower
bound for the original problem cannot be obtained by the
conventional approaches.

The objective of the paper is to develop effective solu-
tion method for scheduling problems represented as timed
Petri nets to resolve state explosion problem by the novel
decomposition approach. The Lagrangian relaxation tech-
nique is used to evaluate the optimality of the solution
derived by the proposed method. The tight lower bound
and upper bound are derived by the proposed approach.
The proposed method is applied to solve routing problems
for multiple automated guided vehicles which is one of
large scale optimization model by timed Petri nets.

The main contribution of the paper is stated as follows. We
present a general decomposition and coordination method
for solving scheduling problems represented by timed Petri
net. The use of the Petri net decomposition procedure
leads to derive separable formulation of Lagrangian func-
tion, which enables us to derive a lower bound to evaluate
the optimality of solution by the duality gap between
the lower and upper bounds. The reachability of the de-
composed subnet is discussed from the setting of initial
number of tokens for the decomposed subnet. Secondly, we
give the proof that the subproblem is solved by Dijkstra’s
algorithm in polynomial computing time.

The paper is organized by the following sections. In Sec-
tion 2, we present a mathematical modeling and formu-
lation of scheduling problems represented by timed Petri
nets. In Section 3, the timed Petri net is decomposed into
several subnets. In Section 4, we propose the Lagrangian
relaxation method for solving transition firing sequence
problem by decomposition of timed Petri nets. Compu-

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 10528 10.3182/20080706-5-KR-1001.2316

tational experiments for examples are demonstrated on
AGVs routing problems and the performance of the pro-
posed method is compared with the conventional optimiza-
tion algorithm with penalty function method in Section 5.
In Section 6, we conclude our research and discuss some
future works.

2. MODELING SCHEDULING PROBLEMS BY
TIMED PETRI NETS

In this section, scheduling problems are represented as an
transition firing sequence problem for timed Petri nets.

2.1 Definition of t-timed Petri Nets

Transition-timed Petri nets are used for modeling timed
events for representing scheduling problems. A parameter
θ(t) is introduced to describe transition firing time dura-
tion. In this model, firing transition is continued during
θ(t) time period after the tokens of the input place are
removed from the input place when a transition t is fired.
If the firing is completed, the tokens are placed into the
output place. Throughout the paper, we use the following
notations. R is set of real values, N is set of non-negative
integers. AB represents set of vector with elements of A
whose dimension is |B|. AB×C represents set of vector
with elements of A whose dimension is |B| × |C|. AT is
transposed matrix of A.

The notation of TPN , marking, firing vector, and firing
condition are defined as follows.
Definition 1: Transition-timed Petri net TPN is defined
as TPN = (P, T, w,M0, θ) where P is finite set of places;
P = {p1, p2, · · · , p|P |}, T is finite set of transitions; T =
{t1, t2, · · · , t|T |}, w is incident relationship between places
and transitions; w : (P×T)∪(T×P) → N, and M0 is initial
marking; M0 : P → N, θ : T → N − {0} is the function
of transition sets to time duration. For p ∈ P, t ∈ T ,
w(p, t) = 0 (w(t, p) = 0)) indicates that there is no arc
from p to t (from t to p). The value w(p, t) > 0(w(t, p) > 0)
indicates the weight on arc from p to t (from t to p). t′ ∈ T
is an input transition for place p′ if w(t′, p′) > 0.
Definition 2: A firing vector rk : T → {0, 1} is a
vector with 0-1 binary valuables whose elements take the
value of if a transition is fired at time k ∈ N and zero
otherwise. A marking vector Mk : P → N is a vector whose
elements are the number of tokens. These variables can be
defined as column vector Mk ∈ N

P , rk ∈ {0, 1}T satisfying
(Mk)i = Mk(pi) (∀pi ∈ P), (rk)j = rk(tj) (∀tj ∈ T).
Definition 3: The incident matrices A+

TPN ∈ N
T×P ,

A−
TPN ∈ N

T×P are defined as (A+
TPN)ji = w(tj , pi),

(A−
TPN)ji = w(pi, tj).

Definition 4: ck(t) represents the residual time for firing
duration. ck ∈ N

T is a column vector of ck(t) for t ∈ T .
The firing condition for TPN is given by

Mk − (A−
TPN)Trk ≥ 0 (1)

(ck)T · rk = 0 (2)
where rk ∈ {0, 1} is a firing vector which takes a value of 1
if transition is fired at time k and otherwise takes a value
of 0. If a feasible firing vector rk is given, the marking Mk

is changed into the marking M+
k .

M+
k = Mk − (A−

TPN)Trk (3)

The residual time is assigned if a transition is fired at time
k.

c+
k (t) =

{
θ(t) (rk(t) = 1)
ck(t) (otherwise) (4)

w(t, p) tokens are added to the output place for transition
t if c+

k (t) = 1.

Mk+1 = M+
k + (A+

TPN)Tek (5)

ek(t) =
{

1 (c+
k (t) = 1)

0 (otherwise) (6)

c+
k (t) is changed by the following equation in time k + 1.

ck+1(t) =
{

c+
k (t) − 1 (c+

k (t) ≥ 1)
0 (otherwise) (7)

2.2 Decomposable formulation of optimal transition firing
sequence problem

The problem to determine a feasible firing sequence to
minimize the given objective function for TPN is defined
in this section. Given TPN = (P, T, w,M0, θ), a final
marking Mf : P ′ → N (P ′ ⊂ P), time horizon Nt ∈ N −
{0}, and objective function J : ({0, 1}T)Nt → R, the prob-
lem is to derive a set of firing vector (r0, r1, . . . , rNt−1) ∈
({0, 1}T)Nt to minimize J satisfying cNt = 0 ∧ MNt(p) =
Mf(p) (∀p ∈ P ′). We call the problem as an optimal
transition firing sequence problem.

The decomposable TPN satisfies the following three con-
ditions.

(i) The entire system consists of several entities. The
dynamics of each entity ui (1 ≤ i ≤ m) is represented
by each subnet described by TPN .

(ii) The entire objective function J =
∑m

i=1 Jui can
be written by the sum of each objective function
Jui(r

ui
0 , rui

1 , . . . , rui

Nt
) for each entity ui (1 ≤ i ≤ m).

(iii) The final marking Mf(p) is not defined for any place
p ∈ PR. PR is defined in Section 3.1.

The entire system consists of entities u1, u2, . . . , um. Mui

f

is the final marking for entity ui. A variable δui,k indicates
0 if the marking for entity ui has reached the final marking
Mui

f and otherwise 1. The sum of total transition time
from initial marking to the final marking for entity ui can
be written as

∑Nt

k=0 δui,k. Here, Nt is sufficiently large time
horizon to complete all of the transitions for the entities.
The variable δui,k satisfies the following equation.

δui,k =
{

1 (Mui

k
= Mui

f)
0 (Mui

k = Mui

f) (8)

Under the assumption that the objective function is ad-
ditive for each entity ui, the optimal transition firing
sequence problem can be formulated as the following equa-
tions.

min
{rk}

m∑
i=1

Jui({δui,k}}) (9)

subject to (1) − (9)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10529

where Jui is the given objective function depending on
variable δui,k defined for entity ui, and δui,k ∈ {0, 1},
rk ∈ {0, 1}T .

3. LAGRANGIAN RELAXATION METHOD FOR
SOLVING OPTIMAL TRANSITION FIRING

SEQUENCE PROBLEM BY DECOMPOSITION OF
PETRI NETS

3.1 Decomposition of Petri nets

In this section, we propose the Lagrangian relaxation
method for solving optimal transition firing sequence prob-
lem by the decomposition of TPN . The transition firing
sequence problem (P) is a combinatorial optimization
problem which is extremely difficult to solve in realistic
computing time. The Lagrangian relaxation method re-
moves the complicating constraints from constraints and
replaces with a penalty term in the objective function of
the original problem(Fisher [1981]). It is difficult to select
which constraints should be relaxed or not from the set of
constraints for problem (P). To reduce the complexity, we
first apply a general decomposition scheme to decompose
timed Petri Nets (TPN) into several subnets.

The set of transitions T is divided into the set of transitions
Tui for each entity ui by (10). Here, A�B indicates disjoint
union of the set A and the set B.

T = Tu1 � Tu2 � · · · � Tum (10)
The set of places P is divided into Pui and PR. Pui is the
set of places where both of the input transition of the place
and the output transition of the place are the elements of
the set of Tui . PR is the set of places where the place is not
the element of Pui . Thus, the set of places can be divided
into subsets by (11).

P = Pu1 � Pu2 � · · · � Pum � PR (11)
where Pui and PR are defined as the following equation.
OUT (p) is the set of output transitions for place p, IN(p)
is the set of input transitions for place p.

Pui = { p | IN(p) ⊆ Tui , OUT (p) ⊆ Tui} (12)

PR = P\(Pu1 � Pu2 � · · · � Pum) (13)

rui

k ∈ {0, 1}Tui is the column vector comprising t ∈ Tui

for rk(t). Mui

k ∈ N
Pui is the column vector comprising

Mui

k ∈ N
Pui , and MR

k ∈ N
PR is the column vector

comprising p ∈ PR for Mk(p). Thus, the firing condition for
TPN can be written as (14) and (15) by A+

ui
∈ N

Tui
×Pui ,

A−
ui

∈ N
Tui

×Pui , and

B− = [(B−
u1

)T, . . . , (B−
um

)T]T (B−
ui

∈ N
Tui

×PR)

B+ = [(B+
u1

)T, . . . , (B+
um

)T]T (B+
ui

∈ N
Tui

×PR)

Mui

k − (A−
ui

)Trui

k ≥ 0 (1 ≤ i ≤ m) (14)

MR
k − (B−)Trk ≥ 0 (15)

(cui

k)Trui

k = 0 (1 ≤ i ≤ m) (16)

The state equation can be written as (17)–(20).

Mui+
k = Mui

k − (A−
ui

)Trui

k (17)

Mui

k+1 = Mui+
k + (A+

ui
)Teui

k (18)

MR+
k = MR

k − (B−)Trk (19)

MR
k+1 = MR+

k + (B+)Tek (20)

where eui

k ∈ {0, 1}Tui is the column vector satisfying (6)
for each t ∈ Tui . Consider a TPN model illustrated in
Fig. 1(a). The transitions t1, t2 represent the dynamics
of entity u1, and transitions t3, t4 represent the dynamics
of entity u2. The set of transitions T are decomposed as
T = Tu1 ∪ Tu2 where Tu1 ∩ Tu2 = φ. The set of places
whose input and output transitions are the elements of Tui

is defined as Pui(1 ≤ i ≤ 2). The set of places which are
not belong to Pu1 and Pu2 is defined as PR. Here, Pu1 =
{pu1,s1 , pu1,s2 , pu1,s3}, Pu2 = {pu2,s4 , pu2,s2 , pu2,s5},
PR = {po,s2}. The resource places are duplicated as Po,s2

into P
′
o,s2

and P
′′
o,s2

. The entire Petri net is decomposed
into two subnets as illustrated in Fig. 1(b).

pu ,s 1 1 pu ,s 1 2 pu ,s 1 3

pu ,s 2 4 pu ,s 2 2 pu ,s 2 5

p´o,s 2

p˝o,s 2

pu ,s 1 1 pu ,s 1 2 pu ,s 1 3

pu ,s 2 4 pu ,s 2 2 pu ,s 2 5

po,s2

(a) Before decomposition (b) After decomposition

t1 t2

t3 t4

t1 t2

t3 t4

Fig. 1. An example of decomposition for timed Petri net

From the decomposition scheme, TPN is decomposed into
each subnet TPN i = (Pui ∪ PRui , Tui , w

ui , M i
o) for entity

ui. PRui is the set of places which has one-to-one mapping
with PR. M i

o is the initial marking defined as (22). wui can
be expressed by the bijection ζ : PRui → PR,

wui (p, t) = w(p, t) (∀p ∈ Pui ; ∀t ∈ Tui)

wui (t, p) = w(t, p) (∀p ∈ Pui ; ∀t ∈ Tui)

wui (p, t) = w(ζ(p), t) (∀p ∈ PRui ; ∀t ∈ Tui)

wui (t, p) = w(t, ζ(p)) (∀p ∈ PRui ; ∀t ∈ Tui) (21)

The aggregated TPN model TPND = (PD, T, wD, MD
o) is

defined for all of the decomposed subnets for TPN i (1 ≤
i ≤ m). By using the aggregated model, the initial marking
and the final marking for the decomposed subnet TPN i

are also defined.

PD =
m⋃

i=1

(Pui ∪ PRui)

wD(p, t) = wui(p, t) (∀p ∈ Pui ∪ PRui ; ∀t ∈ Tui ; ∀i)

wD(t, p) = wui(t, p) (∀p ∈ Pui ∪ PRui ; ∀t ∈ Tui ; ∀i)

MD
0 (p) = M i

0(p) (∀p ∈ Pui ∪ PRui ; ∀i) (22)

Since PR is not included in the domain P ′ for the final
marking for TPN from the decomposable condition (3),
the final marking M i

f : Pui ∩ P ′ → N for TPN i and the
final marking for MD

f : PD ∩ P ′ → N can be written as
the following equations.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10530

M i
f(p) = Mf (p) (∀p ∈ Pui ∩ P ′) (23)

MD
f (p) = Mf (p) (∀p ∈ PD ∩ P ′) (24)

M i
k : Pui ∪ PRui → N is the marking for TPN i, and

MRui

k ∈ N
PRui is the column vector comprising M i

k(p) for
p ∈ PRui . The firing condition for TPN i can be described
as (14), (15), and (25). The state equation for TPN i can
be written as (17), (20), and (26).

MRui

k − (B−
ui

)Trui

k ≥ 0 (25)

MRui

k+1 = MRui

k + (B+
ui

)Teui

k − (B−
ui

)Trui

k (26)

4. LAGRANGIAN RELAXATION METHOD

Lagrangian relaxation method is widely used for obtain-
ing lower bound for combinatorial optimization problems
which has been applied to solve complex scheduling prob-
lems recently. The optimality of solution can be evaluated
by using duality gap. The method is used for solving
optimal transition firing sequence problems for Petri nets.

4.1 Separable formulation of Lagrangian function

The firing condition for PRui is removed and added to the
objective function multiplied by non-negative Lagrangian
multiplier vector λk ∈ R

PRui
+ . The Lagrangian relaxation

problem is decomposed into several subproblems. The La-
grangian function can be defined by the following equation.

L =
m∑

i=1

Jui +
Nt∑

k=0

λT
k {(B−)Trk − MR

k } (27)

From the state equation of (20), we can obtain MR
k =

MR
k−1 + (B+)Tek − (B−)Trk = MR

k−2 + (B+)T(ek−2 +
ek−1)−(B−)T(rk−2+rk−1) = · · · = MR

0 +(B+)T
∑k−1

l=0 el−
(B−)T

∑k−1
l=0 rl. Thus, MR

k = MR
0 + (B+)T

∑k−1
l=0 el −

(B−)T
∑k−1

l=0 rl can be derived. By using the equation, the
Lagrangian function can be rewritten as:

L =
m∑

i=1

Jui −
Nt∑

k=0

λT
k MR

0

+
Nt∑

k=0

λT
k [(B−)Trk − {(B+)T

k−1∑
l=0

el − (B−)T
k−1∑
l=0

rl}]

=
m∑

i=1

Lui −
Nt∑

k=0

λT
k MR

0 (28)

where Lui = Jui +
Nt∑

k=0

λT
k [(B−

ui
)Trui

k − {(B+
ui

)T
k−1∑
l=0

eui

l −

(B−
ui

)T
k−1∑
l=0

rui

l }]. From the above formulation, the La-

grangian relaxation problem to minimize L can be reduced
to the minimization problem defined by (RPui) as the
following equation for each Lui for entity ui.

(RPui) minLui , where Lui = Jui + (29)
Nt∑

k=0

λT
k {(B−

ui
)Trui

k − (B+
ui

)T
k−1∑
l=0

eui

l + (B−
ui

)T
k−1∑
l=0

rui

l)}

s. t. (14), (17), (25), (26)

4.2 Solving subproblem

The subproblem of (29) is an integer programming prob-
lem. The subproblem can be formulated by Dijkstra’s
algorithm. For example, Juj is the total time for AGV
ui required for marking M

uj

k to transit from the initial
marking M

uj
o for multiple AGV routing problems. Let P j

s
denote the set of states. hk is a function which indicates 1
if the marking has reached to the final marking and zero
otherwise.

P j
s = {σ | σ = (M j

k , k, hk); k ∈ N; 0 ≤ k ≤ Nt;

hk ∈ {0, 1}; hk = 0 ∨ (Muj

k = M
uj

f → 1)} (30)

If the marking M
uj

k is the same as the final marking, two
types of states, (M j

k , k, 1) and (M j
k , k, 0) are generated.

(M j
k , k, 1) is the state that the marking is identical with

the final marking and all of the transitions are completed.
On the other hand, (M j

k , k, 0) is the state that the marking
is identical with the final marking but the transitions are
not completed. Once the state (M j

k , k, 1) is generated, no
other states can be reachable except (M j

k , k + 1, 1) from
the state.

The cost function from a state σa = (M ′
k, k, hk) ∈ P j

s to a
state takes the value of 1 if hk = 0 (the marking is not the
final one) and zero otherwise when hk = 1 (the marking is
the same as the final one). The transition cost from state
σa to state σb can be represented as the following equation
from the constraints stated above.

dui,a,b = δui,k

+
∑

p∈PR

λp,k{(B−
ui

)Trui

k − (B+
ui

)T
k−1∑
l=0

eui

l + (B−
ui

)T
k−1∑
l=0

rui

l }

The Dijkstra’s algorithm for solving subproblem is de-
scribed as the following steps.

Step 1. The initial condition is set as σ0 = (M j
0 , 0, 0),

Po = P j
s −{σo}, G(σ0) = 0, g0(σ) = ∞ (∀σ ∈ Po), k = 0.

Step 2. if Pk = φ, then the algorithm is completed.
Step 3. For every state σ, the following recursion is

calculated.

gk+1(σ) = min{gk(σ), G(σk) + duj ,σk,σ} (∀σ ∈ Pk)

Step 4. Find a state σk+1 where G(σk+1) = gk+1(σk+1) =
min
σ∈Pk

gk+1(σ) and Pk+1 = Pk\{σk+1}.
k := k + 1 and return to Step 2.

If the cost function is a monotonic function with respect to
the number of states, the subproblem can be formulated as
a shortest path problem that can be solved by Dijkstra’s
algorithm where P j

s is the set of nodes, da,b is the length
of nodes. The computational complexity for Dijkstra’s
algorithm is O(m2) where m is the number of nodes.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10531

4.3 Optimization algorithm using Lagrangian relaxation

The optimization algorithm using Lagrangian relaxation
is explained in this section.
Step 1. Initialization
The number of iteration is initialized as N := 1. The value
of Lagrangian multipliers is also initialized (λ(N)

p,k = {0}).
Step 2. Solving subproblem
Each subproblem (RPui , i = 1, . . . , m) is sequentially
solved from RPu1 , RPu2 , . . . , RPum . The value of L ob-
tained from the solution of Lagrangian relaxation problem,
gives the lower bound LB for the original problem as the
following equation.

LB =
m∑

i=1

Lui(r̃
ui

k) −
Nt∑

k=0

λT
k MR

0 (31)

r̃ui

k = arg min
{r

ui
k

}
Lui (32)

s. t. (14), (17), (25), (26)

Step 3. Construction of a feasible solution
The solution derived at step 2 is not always feasible.
Some firing constraints may be violated. To ensure the
generation of feasible solution, the procedure to construct
a feasible solution (See section 4.4) is executed. The upper
bound UB of original problem is updated by the value of
objective function for the derived feasible solution.
Step 4. Evaluating convergence
The difference between the upper bound and the lower
bound is less than pre-determined value, the algorithm is
completed.
Step 5. Updating Lagrange multipliers
The Lagrangian multipliers are optimized by subgradient
method. The subgradient of Lagrangian function can be
calculated from the tentative solution of each subproblem
by (33).

gk = (B−)Tr̃k − MR
k (33)

r̃k is the firing vector derived at step 2. The value of
Lagrangian multiplier is updated by (34).

λ
(N+1)
p,k = max{0, λ

(N)
p,k + α

UB − LB

|gk|2 gk} (34)

α is a positive constant. N := N +1 and return to Step 2.

4.4 Construction of a feasible solution

In most cases, the solution derived at step 2 of the
algorithm in section 4.3 is infeasible for the entire system.
To ensure the generation of feasible solution, the following
procedure is executed during the iteration if the solution
derived at step 2 is infeasible. The key idea of the algorithm
is that conflicts between the entities are resolved by
successively delaying the firing time for each entity if
the firing constraints are violated. rk is the firing vector
obtained at step 2. τui

k is the firing delay time for entity
ui.
[Procedure for constructing a feasible solution]

Step 1 τui

k := 0 (0 ≤ k ≤ Nt, 1 ≤ i ≤ m), k := 0, F := ∅

Step 2 r̃k := [(r̃u1
k)T, (r̃u2

k)T, . . . , (r̃um

k)T]T, r̃ui

k = 0 if
ui ∈ F , r̃ui

k = rui

k−τ
ui
k

ui /∈ F . If MR
k − (B−)Tr̃k ≥ 0,

then go to Step 4, otherwise go to Step 3.

Step 3 G := {ui | ∃p ∈ Pinf , B−
ui

(p)T ˜rui

k ≥ 1} where
Pinf := {p | MR

k (p) − (B−(p))Tr̃k < 0}, MR
k (p)

is the element of MR
k for place p, B−

ui
(p)T, B−(p)T

represents the row vector corresponding to place p for
(B−)Tui

, (B−)T, respectively. The entities which have
the minimum delay are selected as Sk such that Sk :=
{ui | τui

k = minuj∈G τ
uj

k }. An entity is selected from Sk.
τul

k := τul

k + 1, F := F + {ul}, return to Step 2.

Step 4 τui

k+1 := τui

k (1 ≤ i ≤ m), k := k + 1, F := ∅, if
k = Nt, the algorithm is completed. Otherwise return
to Step 2.

Note that the procedure can derive a feasible solution
on the assumption that there exists at least a feasible
solution to satisfy firing condition and state equation. If
even a feasible solution does not exist for the problem, the
procedure is terminated with Pinf
= φ.

5. COMPUTATIONAL EXPERIMENTS

5.1 Application to muitiple AGVs routing problems

The performance of the proposed method is investigated
for routing problems for automated guided vehicles in
transportation system with 143 nodes which is illustrated
in Fig. 2. The routing problem for AGVs is to determine
a feasible routing for multiple AGVs to minimize the
total transportation time satisfying the condition that the
AGVs do not collide with other AGVs on each node and
each edge when the starting and ending node for each AGV
are given. The formulation of routing problem for multiple
AGVs is described in Nishi et al. [2005]. The difficulty to

Fig. 2. An example of vehicle scheduling problem for 10
AGVs

find an optimal routing to minimize total transportation
time is much more increasing when the number of AGVs
is increased with a fixed number of nodes because the
deadlock and interferences with AGVs are also increased.

To evaluate the performance of the proposed algorithm,
the exact solution should be derived. However, branch and
bound method cannot derive exact optimal solution for
practical size of problems in realistic computation time.
Therefore, the performance of the proposed algorithm is
compared with a conventional algorithm [Nishi and Maeno
2007]. The conventional algorithm is based on the penalty
optimization method where the infeasibility of violating
firing condition is included in the objective function.
The weighting factor for penalty function is gradually

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10532

increased at each iteration of solving subproblem. For the
conventional penalty function method, the solution of the
subproblem cannot provide a lower bound of the original
problem. Thus, the optimality of solution derived by the
conventional method cannot be evaluated.

The transportation system consists of 143 nodes and 190
edges. The number of places, transitions are |P | = mn +
n, |T | = 2em where m is the number of AGVs, n is
the number of nodes and e is the number of edges for
the layout model. 15 cases of the problems are created
when the number of AGVs is changed from 4 to 15.
For 15 AGVs problems, |P | = 2, 288, |T | = 5, 700. For
the decomposed subnets derived by using the proposed
decomposition scheme, the subnets are evaluated as |Pui ∪
PRui | = n + n = 286, |Tui | = 2e = 380. Therefore,
the proposed decomposition method can reduce the state
explosion problem caused by the increase of the size of
Petri nets.

For each case of the problem, five problems are solved for
randomly generated requests. The time horizon is Nt = 60,
α = 1. The average of total computation time, average
duality gap, performance ratio are summarized in Table 1.
The duality gap (DGAP) is calculated by DGAP [%] =
(UB − LB)/LB × 100.

The program is coded as Visual C++ (R) 6.0. A personal
computer with Pentium IV 3GHz with 512 Mbyte memory,
windows XP operating system is used for computation.
The parameters for the proposed method are set up as
Nt = 60 and α = 1. The results are summarized in Table 1.

Table 1. Comparison of performance between
LR and penalty function method (PM)

LR method PM method
|V | CPU time DGAP CPU time Solution ratio

4 0.09 0.67 0.06 1.00
6 0.44 1.36 0.07 1.00
8 0.68 0.99 0.13 1.00
10 1.69 0.91 0.20 1.00
12 4.72 0.56 0.23 0.95
14 6.89 0.52 0.31 0.95
15 12.81 0.79 0.37 0.97

(CPU time: [sec.]. DGAP: average gap: [%])

The average computation times for both methods are
increasing with respect to the increase of the number of
AGVs because the routing problems with a large number
of AGVs within a pre-defined number of nodes are increas-
ingly difficult. The average performance of the proposed
method is the same as that of the penalty function method
when the number of AGVs is 4 to 10. However, for 10 to 15
AGVs problems, the average performance of the proposed
method (LR) is better than that of the penalty function
method (PM) even though the computation time for the
proposed method is more than 10 times larger than that of
the penalty function method. This is because constructing
a feasible solution (Step 3 of the algorithm in Section 4.3)
is added at each iteration of the algorithm. The reason
why the proposed algorithm can derive better solution
than the penalty function method is that the penalty
function method (PM) may converge to a bad local opti-
mal solution when the weighting factor is extremely large.
For large-sized problems, a large number of iterations are

needed to derive a feasible solution for the penalty function
method. The average duality gap for the proposed method
is within 2% and the worst duality gap is 5.5% for all cases.
Therefore, the proposed method can derive a near-optimal
solution for AGVs routing problems.

6. CONCLUSION AND FUTURE WORKS

In this paper, Lagrangian relaxation method for solving
AGV routing problems by decomposition of timed Petri
nets has been proposed. The decomposition procedure
and the formulation of Lagrangian function have been
developed. The entire Petri nets are decomposed into
several subnets by using the decomposition procedure. The
main advantage of the methodology is that the proposed
method can evaluate the optimality of performance by
obtaining lower bounds by Lagrangian relaxation. The
benefits of the decomposition scheme represented by timed
Petri nets is that the proposed methodology can easily
extend to AGV routing problems with various constraints
such as loading, unloading, buffering, or coordination
with material handling machines based on the proposed
decomposition scheme. The further research is to study the
computational complexity with the overall coordination
algorithm and to apply the proposed method for dynamic
environment for practical use.

REFERENCES

H. Darabi, M.A. Jafari, S.S. Manapure. Finite automata
decomposition for flexible manufacturing systems con-
trol and scheduling, IEEE Transactions on System,
Man, and Cybernetics - Part C, volume 33, pages 168–
175, 2003.

M.L. Fisher, The Lagrangian Relaxation Method for Solv-
ing Integer Programming Problems, Management Sci-
ence, volume 27-1, pages 1–18, 1981.

D.W. He, B. Strege, H. Tolle, A. Kusiak. Decomposition
in automatic generation of Petri nets for manufacturing
system control and engineering, International Journal of
Production Research, volume 38, pages 1437–1457, 2000.

D.Y. Lee, F. DiCesare. Scheduling flexible manufacturing
systems using Petri nets and heuristic search, IEEE
Transactions on Robotics and Automation, volume 10,
pages 123–132, 1994.

T. Nishi, M. Ando, M. Konishi. Distributed route plan-
ning for multiple mobile robots using an augmented La-
grangian decomposition technique, IEEE Transactions
on Robotics, volume 21, pages 1191–1200, 2005.

T. Nishi, R. Maeno. Petri Net Modeling and Decomposi-
tion Method for Solving Scheduling Problems, Journal
of Advanced Mechanical Design, Systems, and Manufac-
turing, pages 262–271, 2007.

S.H. Teng and J. Zhang. A Petri net-based decomposition
approach in modelling of manufacturing systems, In-
ternational Journal of Production Research, volume 31,
pages 1423–1439, 1993.

T. Watanabe, Y. Mizobata, K. Onaga, Time Complexity
of Legal Firing Sequence and Related Problems of Petri
Nets, The Transactions of the IEICE, volume E-72,
pages 1400–1409, 1989.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10533

