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Abstract: This paper considers a new approach to fault detection and isolation (FDI) for systems modeled as an 
interconnection of subsystems that are each subject to parametric faults. The paper develops i) the concept of a 
diagnostic model that parameterizes all possible subsystem faults, ii) an off-line scheme for identification of the 
diagnostic model, iii) a parity equation that results in a residual that is a linear function of the change in the diagnostic 
parameters and iv) a fault isolation scheme that does not require a recursive least squares type identifier. 

 

1. INTRODUCTION 

This paper considers a new approach to fault detection and 
isolation (FDI) for systems modeled by an interconnection 
of subsystems that are each subject to parametric faults. 
Each subsystem is modelled as a transfer function and a 
fault occurs in a subsystem when one or more of its 
transfer function coefficients change. The coefficients 
subject to failure are called the diagnostic parameters.  
 Existing approaches, (Simani et al., 
2003),(Gertler, 1998), use an on-line identifier that usually 
takes the form of a recursive least squares filter to estimate 
the parameters, θ, of a transfer function. The overall 
system is modeled by a transfer function, P(z, θ), with the 
input, r, and parametric faults represented by changes in 
the diagnostic parameter vector, γ.  
 The diagnostic parameters influence the system 
parameters through the nonlinear function, θ = ϕ(γ). At a 
particular time instant, measurements of the output, y, 
(corrupted by noise, v), and measurements of the input, r, 
are used by the on-line identifier to generate the estimate, 
$θ . An inverse mapping, $γ  = g( $θ ), where ϕ(g()) = I, is 

used to compute $γ . Faults are then detected and isolated 

based on the difference, Δγ  = γ - $γ . One issue with this 
approach is the requirement to know ϕ() a-priori. If it is 
based on a simplified linear model then there may be 
significant uncertainty in ϕ(). Another issue is the effect of 
measurement noise, v. Even if ϕ() is known exactly there 
will be errors in the estimate, $θ , as a result of the noise, v.  
 We take a different approach. First, we formalize 
the nonlinear function, ϕ(), for an interconnection of 
subsystems subject to parametric faults. For the class of all 
possible parametric faults including multiple faults, we 
show that θ = Qρ where ρ is a vector with elements that 
are multi-linear in γ, and Q is a matrix that depends on the 
interconnection topology of the subsystems but is 
otherwise independent of ρ and γ. 

We also develop a diagnostic model that governs 
the mapping among the system input, the system output 

and subsystem faults. . The notion of a diagnostic model is 
new. The diagnostic model characterizes the evolution of a 
feature vector and influence matrix as the diagnostic 
parameters change. We assume ϕ() is not known a-priori 
and therefore the diagnostic model needs to be identified. 
The identification problem reduces to that of identifying 
the multilinearity matrix, Q, from measurements of r and y. 
It need only be identified once. However the identification 
procedure requires the ability to change γ over some range. 
An important consideration is the choice of the order of 
the identified model since there is uncertainty in the 
physical system that may take the form of unmodeled 
dynamics, disturbances, noise and nonlinear effects such 
as friction, deadzone and saturation. 
 The FDI scheme uses measurements of the 
system input, r, and output, y, to detect and isolate failures 
without the need for an on-line recursive parameter 
identifier. A parity equation is derived and used to form a 
residual that is a linear function of the change in the 
diagnostic parameters. A fault is detected whenever the 
moving average of the residual energy exceeds a threshold 
value. Once detected, the isolation scheme uses on a 
pattern classification paradigm and a Bayes decision 
strategy where the maximum correlation between the 
measured residual and a number of residual estimates is 
generated by a set of failure hypotheses 
The paper first lays the mathematical foundation for the 
diagnostic model. Then we show how the diagnostic 
model may be identified using measurements of the 
system input and output. Next we show how faults may be 
isolated using on-line measurements and a decision 
making strategy that is based on the identified diagnostic 
model. The complete methodology including identification 
of the diagnostic model and on-line fault detection and 
isolation was evaluated and verified on a physical system 
that consisted of a computer controlled servo system.  

2. MATHEMATICAL MODEL 

 The system is assumed to be a linear time invariant system 

described by, 
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where z-1 is a unit delay operator, y(k) is the scalar output, 
r(k) is the scalar input, v(k) is the totality of measurement 
noise and disturbances. The noise, v(k), is assumed to have 
a rational spectra and uncorrelated with the input, r(k), 

( ) ( ) ( )vz G z z=v ξ  (2.3) 
where ξ represents zero mean white noise if v is a 
stochastic process or ξ represents a Kronecker delta 
function if v is a deterministic process such as a bias or 
sinusoidal. The feature vector, θ, is defined as a (2L + 
1)×1 vector of the coefficients of N(q-1) and D(q-1), 

[ 1 2 0 1
T

L= K La a a b b bθ ]L

z

( )

( 1) ( 2) . ( ) ( ) ( 1) . ( ) T
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y k y k y k L r k r k r k L

 (2.4) 
The feature vector, θ, and the transfer function, 

, are equivalent representations. The 
mathematical model may also be represented in θ -form, 

( ) ( ) / ( )z z=T N D

( ) ( ) ( )Ty k k kψ= + vθ  (2.5) 
where ψ(k) is the regressor or data vector,                                   

[ ]
ψ =

− − − − −
    (2.6) 

3. PARAMETERIC FAULT MODEL 

 The overall system consists of an interconnection of 
subsystems, Gi(z), i = 1, 2, … nf . Each subsystem, Gi(z), is 
a transfer function that may represent a physical entity 
such as a sensor, actuator, controller or other system 
component that is subject to parametric faults. Each 
subsystem may be driven by additive noise or disturbance 
input. The numerator and denominator coefficients of 
subsystem, Gi(z), form a (qi × 1) vector, iγ . The 
diagnostic parameter, γ, is a (q×1) vector that augments 
the coefficients of all subsystems, iγ ,1,2, nf , 

1 2 3
1 2... ...f

T Tn
qγ γ γ γ γ γ γ γ⎡ ⎤ ⎡ ⎤= = ⎣ ⎦⎣ ⎦  

3.1 Illustrated example 

Consider the discrete model of a sampled data servo 
control system. It consists of subsystems that include a 
PID controller, a PWM amplifier, position sensor, velocity 
sensor and the open loop motor dynamics. Let's say there 
are four subsystems subject to failure: the controller, 
position sensor, velocity sensor and the amplifier. Then the 
diagnostic parameter, γ , is given by the 5 1 vector, ×
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If the controller is not subject to failure then the diagnostic 
parameter vector, γ , is given by, 

[ ] [1 2 3
T

s v aK K Kγ γ γ γ= = ]T  (3.4) 
The feature vector, θ, is a 6×1 vector given by, 
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The parameter γ is assumed to be measured. It is assumed 
that the feature vector, θ , is multilinear in γ .  Define a 
set ϒ  formed of the monomials of { } of the 
order 0,1,2,..,q, that is, 

1, 2,...,i iγ = q
ϒ , is a set formed of unity and the 

products of { }1,2,...,i i qγ =  taken one at-a-time, two at-a-
time and so on till q at-a-time given by 

{ }1 1 2 1 2 3 1 2 3 41 . . . . . . ..i i j i j k qγ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γϒ =  (3.6) 
T         The feature vector θ  is multilinear in γ  and the map 

γ θ→ takes the form 
Qθ ρ  =

           ρ  is a Mx1 vector formed of the elements of  ϒ ,  

[ ]1 2 3 . ,T
M iρ ρ ρ ρ ρ ρ  = ∈ Γ  (3.7) 

A      and Q is a (2L+1)xM matrix. It does not depend upon the 
parameter, γ  and depends only upon the system 
parameters, which do not vary with time. The matrix, Q 
depends upon the topology of the system: the 
interconnection of the functional units forming the system. 
The dimension of ρ has an upper bound 2qM ≤ . 
However, in practice M is much smaller its upper bound. 

          Example: Consider the example in Section 3.1. The 
multilinear relationship, θ  = Qρ, is given by, 
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where ρ  is a subset of the elements of given by (3.6). ϒ
 

4. THE DIAGNOSTIC MODEL 
 

The idea is to derive a diagnostic model that characterizes 
the interaction among the system input, r(k), the error term, 
v(k), and the changes in the diagnostic parameter vector, 
Δγ = γ - γ0 about a nominal value, γ0 . At time instant, k, the 
diagnostic parameter vector, γ(k), influences the feature 
vector, θ(k). The input r(k) affects the data vector, ψ(k), 
and the noise term, v(k), corrupts the output, y(k). The 
diagnostic model is a map, [ ]: ( ) ( ) ( ) ( )r k v k k y kγℑ ⇒ , 
that may be described by the recursive model, 
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where 0ρ  is the nominal value of 0ρ , and ( )kρΔ  
denotes the variation in the multilinear diagnostic 
parameter. Let (1)

iρ , (2)
ijρ , (3)
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The associated Jacobian matrix, such as (3)
ijkρ , may be 

obtained by replacing those elements of ρ(k) by 1 if they 
contain , ,i j k ,γ γ γ  and by zero otherwise. Now 
consider the following M hypotheses where M = 2q. 
Using (4.1) and (4.2) the expression for y(k) becomes 

( )0( ) ( ) ( ) ( )Ty k k Q k v kψ ρ ρ= + Δ +  (4.3) 

Substituting for ( )kρΔ we obtain the diagnostic model, 

( ) ( ) ( ) ( ) ( )Ty k k Q k k vψ= ℘ Δϒ + k
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 (4.4) 
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and the matrix, ℘, is the Jacobian of ρ with respect to all 
the members in the set, ,  ϒ

0 (1) (2) 3 ( )
1 12...( ) ( ) ( ) ( ) ( )

Tq
ij ijk qk k k kρ ρ ρ ρ ρ⎡℘ = ⎣ k ⎤⎦

ξ

 (4.6) 
The diagnostic model is characterized completely by Q.  

5. IDENTIFICATION OF THE DIAGNOSTIC MODEL 
Identification of the diagnostic model reduces to 
identifying Q using measurements of y, r andγ. The 
diagnostic model need be identified only once but it 
requires access toγ. This is a constraint of the methodology. 
In the absence of a-priori knowledge of Q, adjustment of 
the elements of γ is required in the identification stage. 
Once the data is collected, the elements of Q are identified 
using a least squares formulation.To reduce the effects of 
noise and disturbances both the input and the output are 
filtered. Applying the filtering operation to both sides of 
(2.5) we get,  

( ) ( ) ( ) ( ) ( )T
f fy k k Q k k kψ= ℘ Δϒ +                              (5.1) 

where ξ is white noise and ( )f kψ  is the filtered data 
vector formed from the filtered input and the filtered 
output, 

5.2. Perturbed parameter experiments 

Substituting  from (4.11) into (5.4) we get, ( )kΔϒ
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where  
are 2L

0 0 (1) (1) (2) (2) (3) (3), , ,i i ij ij ijk ijkQ Q Q Qθ ρ θ ρ θ ρ θ ρ= = = = ,..
× 1 vectors representing the partial derivatives as 

defined in (4.2). The criterion for identifying Q is that the 
mean-squared error of the identified diagnostic model, 

, be less than some specified ε for all perturbations of ˆ( )y k
γΔ  in a given range, δ,  

{ }ˆmin ( ) ( )
Q

y k y k ε γ δ− ≤ ∀ Δ ≤  (5.3) 

To identify Q, a series of experiments is performed for 
particular values of γ and an associated data record, 
{ }( ) ( 1)f fy k i r k− − , i = 0, 1, 2, … N - 1, is obtained. In 
general the experiments consists of perturbing the physical 
parameters, γ, one-at-a time, two-at-a-time, three-at-a-time 
and so on until all of the parameters have been perturbed. 
If ρ  contains no product terms then the parameters need 
be perturbed one-at-time. If it contains a double product, 

i jγ γ , then two parameters iγ  and jγ  need be perturbed 
and so on. 
Consider the example of section 3. We will choose ρ  to 

contain all combinations of the parameters, 1γ , 2γ ,and 3γ  
instead of using the mathematical model to define the 
vector as, [ ]1 3 2 31Tρ γ γ γ γ= , to emphasize the case 
when the structure as well as the model are unknown.  
The vector ρ  is                      

[ ]1 2 3 1 2 1 3 2 3 1 2 31Tρ γ γ γ γ γ γ γ γ γ γ γ γ=   
The model is 

3
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The number of experiments to be performed is M=8. In the 
first experiment no parameters is perturbed and N input 
and output data record is obtained.   

0 0
0( ) ( ) ( )Tk k vθ= +y ψ k                                                 (5.5)

In second experiment γ  is varied one at-a-time and we 
     (5.10)                  0 (1)( ) ( ) ( ) ( ) 1,2,3i T T

i i i ik k k v k iθ θ γ− = Δ + =y ψ ψ
In third experiment γ  is varied two-at-a-time and we get 
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 In fourth experiment all elements of γ  is varied. We get 
3 3 3
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⎞
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where , , and are Nx1 vector, ( )i ky ( )ij ky 123 ( )ky
(1)
iθ , (2)

ijθ .and (3)
123θ  are 6x1 vector and , , and 

 is Nx6 matrix. The estimates of, 

( )T
i kψ ( )T

ij kψ

123 ( )T kψ (1)
iθ , (2)

ijθ .and 
(3)

123θ , are obtained recursively using SVD based least-
squares approach. After estimating them, the columns of 
the Q matrix are obtained recursively.   
 

6. FAULT ISOLATION 
 

6.1. Assumptions 
 
We assume that at a given time instant, k, only one 
subsystem may change, i.e.,  may change while 

 do not change, and the diagnostic parameters 
remain constant during the execution of the fault 
diagnostics algorithm.     

( )j kγ
( ),i k i jγ ≠

 
6.2. Parity equation 
The residual, , is generated by the parity equation, ( )fe k

0( ) ( ) ( )T
f f fe k y k kψ θ= −  (6.1) 

where θ 0 is the nominal value of the feature vector. The 
residual has the property,  

0

0

( )
( )

( )f
k no fault

e k
k fault

ξ θ θ
ξ θ θ

⎧= =
⎨

≠ ≠⎩
 (6.2) 

 
6.3. Model of the residual 
Denote the nominal value of θ , ρ  and γ  by 0 0Qθ ρ= , 

0ρ  and 0γ . Then, 
0( ) ( ) ( ) ( ) ( )T T

f f fe k k Q k k Q kψ ρ ρ ψ ρ⎡ ⎤= − =⎣ ⎦ Δ

j

                
(6.3)  
If hypothesis Hj and Assumptions (i) and (ii) hold then, 

( ) ( ) ( ) ( )j j
fe k k k kγ ξ= Φ Δ + (6.4) 

where (1) (1)( ) ( ) ,j T j j
f jk k Qψ ρ θΦ = Ω Ω = = (6.5) 

A record of N samples of { }  is 
employed to isolate a fault at time instant, k. N is chosen 
sufficiently large to attenuate the effect noise and 
sufficiently small to ensure a timely diagnosis. Since 

( ) : 0, 1, ..., 1fe k i i N− = −

( )kγ  
remains constant during the diagnosis interval, 
[ ]1,k N k− + , the parameters 

also remains constant. 
Using (6.3) we may write, 
{ ( ), ( ), ( )k i k i k iθ γ ρ− − − }

k

⎤+ ⎦

( ) ( ) ( ) ( )j jk k kγ= Δ +z Φ ξ      (6.6) 

where,  [ ]( ) ( 1) ( 2) . ( 1) Tk e k e k e k N= − − − +z

( ) ( ) ( 1) . ( 1)
T

f f fk k k k Nψ ψ ψ⎡= − −⎣
T
fΨ   

[ ]( ) ( ) ( 1) . ( 1) Tk k k k Nξ ξ ξ= − − +ξ  

and z is a residual vector, jγΔ  is a qj × 1 vector, 
( ) ( )j jk k= ΩT

fΦ Ψ  is a N q× j matrix called the residual 
influence matrix to distinguish it from the influence matrix, 

jΩ . j jγΔΦ  is the estimate of the residual and  the Nξ ×1 
noise  vector. Assumptions 1) and 2) in Section 6.1 imply 
the residual, , is affine in the change in the diagnostic 
parameter, .  

( )kz
( )j kγΔ

 
6.4. The fault isolation scheme 
 
The detection problem amounts to selecting the correct 
hypothesis, H0 : no fault or H1 : fault, given measurements 
of z(k) defined by, 

0

1

: ( )

: ( ) ( )j j

H k

( )H k kγ k

=

= Δ +

z(k)

z(k)

ξ

Φ ξ
                                 (6.7) 

There are a variety of well known and feasible algorithms 
for solving the detection problem in the literature. We will 
focus on the fault isolation scheme. Once a fault is 
detected, the residual is predicted under different 
hypotheses and then correlated with the measured residual 
to classify the fault. There are nf hypotheses of the form, 

: ( ) ( ) ( ) 1, 2, .i i
i f..H k k k iγ= Δ + =z(k) Φ ξ n     (6.8)       

If ξ is a zero mean Gaussian random variable, then the 
Bayes strategy suggests the most likely hypothesis, Hi , is 
the one that satisfies, 

2
min ( ) ( ) ( )j j

j
k k kγΔz - Φ                                            (6.9) 

where 2 1Tx x − x= Σ  and Σ is the covariance matrix of ξ. 
Equation (6.10) says that the distance between the vectors 
z and the hyperplane generated by the columns of the 
residual influence matrix  must be a 
minimum. Since the fault is unknown, , is 
unknown. Therefore a composite hypothesis testing 
scheme is used in which we substitute the unknown 

 by its least-squares estimate,  

( ) ( )j jk γΔΦ k
( )j kγΔ

( )j kγΔ

( )†
( ) ( ) ( )j jk kγΔ = zΦ k                                           (6.10) 

( )2 2 2( ) ( ) ( ) ( ) 1 cos ( )j j
jk k k k kγ ϕΔ = −z - zΦ    (6.11) 
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f f
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k
ϕ

−Ω Σ Ω
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T
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k
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=

Ω

z

z

Ψ

Ψ
                            (6.13) 

If a fault has been detected then hypothesis, Hj , signifying 
a change in , is asserted true where j is given by, ( )j kγ
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arg cos ( )ij

i
ϕ
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k
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The case of isolating a the change in a single diagnostic 
parameter, jγ , has a simpler interpretation than the case 
of simultaneous changes in several elements of the vector, 

jγΔ . The jth subsystems is faulty if the angle between the 
residual vector z and the vector  is minimum for i = j 
indicating that the vectors are maximally aligned in a plane. 

jΦ

7. EVALUATION ON A PHYSICAL SYSTEM 

The diagnostic model identification and FDI scheme was 
implemented and tested on the DC servo system. The 
motor was driven by a PWM amplifier. A tachogenerator 
and quardrature position encoder provided measurements 
of angular velocity and position. The control input to the 
PWM amplifier, u, is generated by a DAC on the target PC. 
The scaled velocity sensor voltage, v, is applied to the 
input of an ADC and the position sensor is interfaced to an 
incremental position decoder on the target PC.  A host PC 
and target PC were used as part of a rapid prototyping 
system that included MATLAB, Simulink, Real Time 
Workshop, MS Visual C++ and xPC Target. The target PC 
boots a real-time kernel which permits feedback and signal 
processing algorithms to be downloaded from the host PC 
and executed in real time. The host PC and target PC 
communicate through a communication channel used for 
downloading compiled code from the host PC and 
exchanging commands and data.  

With the initial choice of ρ the identified value of Q had 
full rank and none of the columns had negligible energy. 
Hence all of the elements of ρ were retained. However if 
the range of the diagnostic parameters, γ , was restricted 
to a very small region in neighbourhood of the nominal 
value, 0γ , a third order model was adequate with 

[ ]1 3 2 31Tρ γ γ γ γ= . For different model orders, the time 
and frequency response of the identified model was 
analyzed over the range of diagnostic parameter variations 

The model was identified by performing experiments in 
which 1γ , 2γ  and 3γ  were perturbed. The probing input 
was a square wave of 0.5 Hz and the sample frequency 
was 100Hz and the data records contained 1000 sample 
points. The set of experiments with diagnostic parameter 
values used in the identification phase is called the 
training set. The diagnostic parameters used in the 
validation test are termed the validation set. For different 
model orders the mean-squared error between the 
identified model output and the actual physical system 
using blind test input.  For different model orders the 
mean-squared error between the identified model output 
and the actual physical system output using blind test input 
are listed in Table 7.1. The performance of the 
conventional scheme with a model order of 3 was 
compared. . The system was identified for the nominal 
values, 1, 1, 2, 3i iγ = =  and validated when one of 

the diagnostic parameter varies and all others are fixed. In 
this case the identified model is not robust to parameter 
variations. Faults were injected by changing the diagnostic 
parameters stepwise in small increments. The sample 
period selected as 6 ms. The isolability measures are listed 
in Table 7.2. It can be seen that all faults are isolable, 
however, Ka versus Ks has poor isolability. 

For comparison, the performance of the conventional 
scheme with a model order of 3 is given in Fig. 7.2 (a) 
when 1γ  changes. The system was identified for the 
nominal values, 1, 1, 2, 3i iγ = =  and validated when 
one of the diagnostic parameter varies and all others are 
fixed. In this case the identified model is not robust to 
parameter variations. The performance of a 10th order 
model identified using the scheme outlined in this paper is 
shown in Fig. 7.2 (b) when 1γ  in the physical system 
changes with the test set within the range of the training 
set. It can be seen that a very good fit is achieved. Fig. 7.2 
(c) is similar to 7.2 (b) but with the test set outside the 
range of the training set. The actual and the estimated 
faults are shown in Fig. 7.4 where each of three faults in 
sequence increase in a stepwise fashion to 1.5 times the 
nominal value and then decreases suddenly back to the 
nominal value of unity. The implementation indicates that 
the methodology is able to capture incipient faults and 
sudden faults.  
 

8. CONCLUSIONS 
 
 
This paper presents a new approach both for modelling 
parametric faults and isolating parametric faults using the 
diagnostic model. The diagnostic model eliminates the 
need for on-line parameter identification to isolate 
parametric faults. The basic idea is that parametric faults 
in particular subsystems are isolated on the basis of their 
propagation to the parameters of the overall system. This 
requires knowledge of the influence matrix or Jacobian of 
the system parameters with respect to the diagnostic 
parameters. We assume this relation is unknown and is 
identified off-line, greatly simplifying the on-line 
calculations required for fault detection and isolation. The 
scheme for identifying the diagnostic model and isolating 
parametric faults in real time was successfully 
implemented, verified and tested on a DC servo control 
system. 
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Table 7.1. Maximum and average model error 

Order 3 10 25 

Max Error 0.1371 0.0880 0.0601 

Avg Error 0.0139 0.0106 0.0101 

Table 7.2. Worst case of isolability. 
γi γj max(| cos ϕij |) 
Kv Ks 0.6255 

Kv Ka 0.8005 

Ks Ka 0.7817 
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Fig.7.4. Implementation of fault isolation showing the 

faults, (solid lines) and the fault estimates (dotted lines). 
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Fig. 7.2. Comparison of the physical system with the 
output when 1γ  in the physical system changes. The top 
two figures a 3th order diagnostic model and bottom two 
are 10th order model.  
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