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Abstract: A new time-domain model order reduction method based on the Laguerre function
expansion of the impulse response is presented. The Laguerre coefficients of the impulse response
of the reduced-order model, which is calculated using a projection whose matrices form basis
of appropriate Krylov subspaces, match, up to a given order, those of the original system. In
addition, it is shown that the obtained reduced-order model in time-domain, is equivalent to the
one obtained by the classical moment matching around a single expansion point in frequency-
domain. Accordingly, a new time-domain interpretation for the rational interpolation problem
is deduced.
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1. INTRODUCTION

In numerous fields of engineering, large-scale models are
becoming nowadays a common and unavoidable result for
the accurate modeling of complex systems. With an order
of at least a few hundred thousands, handling such models
for the purpose of simulation, optimization or control
has become impractical or even unfeasible. One of the
most popular approaches to solve this problem is Model
Order Reduction (MOR) where, with the aim of using
it in place of the original system, a reduced-order model
that approximates the behavior of the original model is
calculated.

In order reduction of large-scale systems, the various re-
duction methods (including their modified and improved
versions) based on moment matching using the Krylov
subspaces are nowadays among the best choices (Freund,
2003; Bai, 2002; Antoulas, 2005; Odabasioglu et al., 1997).
Even though the reduced-order model is calculated, via a
projection, in a relatively short time with a good numerical
accuracy, these methods are restricted to the approxima-
tion of the frequency response of the original system, as
they match the moments in the frequency-domain. Conse-
quently, they can not guarantee a good approximation of
the impulse response, as it is quite hard in most practical
cases, to predict the accuracy of the time-domain response
of the reduced-order model from its frequency-domain one.

It is then more natural to do order reduction directly in the
time-domain through the approximation of the system’s
impulse response while benefiting from the numerical and
computational advantages of the Krylov subspace-based
methods. The first work to use the Krylov subspace
approach in the time-domain appeared to be (Gunupudi
and Nakhla, 1999), where some of the first derivatives of
� This work is partially supported by the German Academic Ex-
change Service (DAAD).

the time response of the large nonlinear system and those
of its corresponding reduced-order model are matched.

Lately, based on the various successful methods of approx-
imating the impulse response using orthogonal polynomi-
als, several approaches tried to improve these methods
to make them suitable for the reduction of large-scale
systems based on projecting the time response of the
original system onto a lower order dimensional subspace
spanned by an orthogonal basis. Consequently, some of
the first coefficients of the orthogonal series’ expansion of
the impulse response of the reduced order model match
those of the original one. For instance, in (Wang et al.,
2000), the Chebyshev expansion have been used in time-
domain for passive model order reduction of interconnect
networks. In (Chen et al., 2002), a time-domain approach
involving the Laguerre polynomials and some Krylov sub-
spaces for the approximation of the impulse response has
been presented. A disadvantage of this method is that it
employed the Laguerre polynomials which are known to
form an unbounded basis for the Hilbert space L2(R+).

In this paper, the results of Chen et al. (2002) are gen-
eralized to involve the Laguerre functions - instead of the
Laguerre polynomials -, which are exponentially decreas-
ing and form a bounded orthonormal basis for L2(R+).
This results in a purely time-domain Krylov-based model
reduction approach. In addition, and based on the work
in (Eid et al., 2007), where the equivalence between the
classical moment matching and the Laguerre-based re-
duction approach in frequency-domain (Knockaert and
De Zutter, 2000) has been shown, a similar equivalence
between the time-domain Laguerre-based approach and
moment matching around a single expansion point is pre-
sented. The importance of this equivalence lies in the
fact that it allows a first interpretation of the moment
matching approach - which is developed and applied in
the frequency-domain - in the time-domain. In addition, by
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showing that the time scale factor α in the Laguerre func-
tions corresponds to the expansion point in the frequency-
domain, the open problem of choosing a suitable expansion
point in the rational Krylov subspace reduction methods,
is converted into the problem of finding the optimal time
scale α in the Laguerre-based reduction methods.

The rest of the paper is organized as follows: In the next
section some preliminary facts related to the Laguerre
series expansion and the impulse response of state-space
models is presented. In section 3, order reduction by
moment matching is reviewed. In section 4, the new
time-domain approach involving the Laguerre functions is
introduced. The equivalence between moment matching
and different Laguerre-based order reduction approaches
in the time domain is presented in section 4.

2. BACKGROUND

2.1 Problem Formulation

Consider the dynamical system of the form:{
Eẋ(t) = Ax(t) + bu(t),
y(t) = cT x(t), (1)

where E,A ∈ R
N×N , b ∈ R

N , c ∈ R
N are constant

matrices, u(t) ∈ R, y(t) ∈ R, and x(t) ∈ R
N are,

respectively, the input, output and states vectors of the
system. For the simplicity of exposition, the SISO case is
only considered, however all the results of this paper can
be easily generalized to the MIMO case. After integration
and assuming zero initial conditions, the state equation of
system (1) becomes

Ex(t) = A
∫ t

0

x(τ)dτ + b
∫ t

0

u(τ)dτ, (2)

and its impulse response can be shown to be

y(t) = cT x(t) = cT e(E−1A)tE−1b. (3)

2.2 The Laguerre function expansion

The ith Laguerre polynomial is defined as

li(t) =
et

i!
di

dti
(e−tti) (4)

and the scaled Laguerre functions (see Fig. 1) are
φα

i (t) =
√

2αe−αtli(2αt) (5)
where α is a positive scaling parameter called time-scale
factor. These functions, form a uniformly bounded or-
thonormal basis for the Hilbert space L2(R+) (Szegö,
1959). Hence, every function in L2(R+) admits the La-
guerre expansion

f(t) =
∞∑

i=0

fiφ
α
i (t), (6)

where fi are defined as the Laguerre coefficients. When
truncated to order k, this series results in an optimal
approximation f̂k(t) =

∑k
i=0 fiφ

α
i (t) of the function f(t)

and minimizes the following integral:∫ ∞

0

(
f(t) − f̂k(t)

)2

dt. (7)

This approximation is thus the optimal projection of f(t)
into the k-dimensional subspace spanned by the first k
Laguerre functions.

Fig. 1. The first five Laguerre functions with α = 1.

3. ORDER REDUCTION BY MOMENT MATCHING

The transfer function of the system (1) is
H(s) = cT (sE− A)−1b, (8)

and the moments, which are defined as the negative
coefficients of the Taylor series expansion about zero of
the system’s transfer function,

H(s) = −cT (I − sA−1E)−1A−1b = −cT A−1b

−cT A−1EA−1bs − · · · − cT (A−1E)iA−1bsi − · · ·
are calculated as follows (Antoulas, 2005):

mi = cT (A−1E)iA−1b i = 0, 1, · · · . (9)

The aim of order reduction by moment matching is to find
a reduced order model of order k � N , whose moments
match some of those of the original one (Freund, 2003).

One way to calculate this reduced order model is by
applying a projection to the original model,{

WT EVẋr(t) = WT AVxr(t) + WT bu(t),
y(t) = cT Vxr(t),

(10)

by means of the so-called projection matrices, V and
W. For the choice of the projection matrices, the Krylov
subspace, defined in e.g., (Freund, 2003; Antoulas, 2005)
is used,

Kk(A1,b1) = span{b1,A1b1, · · · ,Ak−1
1 b1} (11)

where A1 ∈ R
N×N , and b1 ∈ R

N is called the starting
vector. Now, when the matrices V and W form basis of the
the input and output Krylov subspaces Kk(A−1E,A−1b)
and Kk(A−T ET ,A−T c) respectively, the first 2k moments
around s0 = 0 1 , are matched, and hence, a good approx-
imation of the low-frequency behavior is achieved.

For the numerical computation of the matrices V and W,
the known Lanczos or Arnoldi or one of their numerous
improved and modified versions are used. For more de-
tails, see (Antoulas, 2005; Salimbahrami, 2005) and the
references therein.

Now, in order to produce a reduced-order model that
approximates the middle or high frequency behavior of the
1 In the so called one-sided method, only one Krylov subspace is
used with a common choice W = V and only k moments match.
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original system, matching some of the moments around
s0 �= 0 is required. This is achieved by choosing V and W
as basis of the following Krylov subspaces:

Kk

(
(A − s0E)−1E, (A − s0E)−1b

)
, (12)

Kk

(
(A − s0E)−TET , (A − s0E)−T cT

)
. (13)

4. TIME-DOMAIN ORDER REDUCTION USING
LAGUERRE FUNCTIONS

4.1 Approximation of the state vector

As a first step towards the approximation of the impulse
response, the state vector x(t) is approximated as

x(t) ≈ xk(t) =
k∑

i=0

fiφα
i (t). (14)

Based on(Szegö, 1959; Lee et al., 2006), the integral of x(t)
can be expressed as∫ t

0

x(τ)dτ =
1
α

∞∑
i=0

⎛
⎝fi + 4

i−1∑
j=0

(−1)i+jfj

⎞
⎠ φα

i (t), (15)

and thus (2) can be rewritten, after replacing x(t) by xk(t),
as:

E
k∑

i=0

fiφα
i (t)−A

α

k∑
i=0

fiφα
i (t)−4A

α

k∑
i=0

i−1∑
j=0

(−1)i+jfjφα
i (t) = b.

It can be easily shown that

Φ

⎡
⎢⎢⎣

fk
...
f1
f0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
...
0
b

⎤
⎥⎥⎦ , (16)

where

Φ=

⎡
⎢⎢⎣

(αE − A)−1 −4A 4A −4A 4A
· · · · · ·

(αE − A)−1 −4A 4A

(αE − A)−1 −4A

α (αE − A)−1

⎤
⎥⎥⎦,

and k is an even integer.

As the first k entries of the vector on the r.h.s. of (16) are
zero, the Laguerre coefficients fi of xk(t) can be expressed
using the following recursive formulas:

f0 = α (αE − A)−1 b, (17)

fi = (αE − A)−1
i−1∑
j=0

(−1)i+j4Afj , 1 ≤ i ≤ k. (18)

Based on the approximation (14), xk(t) can be reformu-
lated as:

xk(t) = Fk

⎡
⎢⎢⎣

φα
0 (t)

φα
1 (t)
...

φα
k (t)

⎤
⎥⎥⎦ , (19)

with
Fk = [ f0 f1 · · · fk ] . (20)

Thus, xk(t) lies in the subspace spanned by the columns
of Fk for all t.

4.2 Model order reduction

The key idea of the reduction method presented here
consists of projecting the state vector x(t) of system (1)
onto the k-th subspace spanned by the first k Laguerre
functions φα

i (t), resulting in a reduced order model whose
impulse response’s Laguerre coefficients match some of the
first coefficients of the original response y(t).

The reduced order system is obtained by applying the
projection x = Vx̂, V ∈ R

k×N , k < N to the system
(1) and multiplying the state equation by the transpose of
the matrix V,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ê︷ ︸︸ ︷
VT EV ˙̂x(t) =

Â︷ ︸︸ ︷
VT AV x̂(t) +

b̂︷ ︸︸ ︷
VT bu(t),

y(t) =
T

cT V︸︷︷︸
ĉ

x̂(t),
(21)

where k is the order of the reduced system.
Lemma 1. If the columns of V used in (21), form an or-
thonormal basis for the subspace spanned by the columns
of Fk, then the first k Laguerre coefficients of the Laguerre
series expansions of the original and reduced state vectors
satisfy

fi = Vf̂i, 0 ≤ i ≤ k. (22)

with x(t) =
∑k

i=0 fiφα
i (t) and x̂(t) =

∑k
i=0 f̂iφα

i (t).

Proof. After integration, the state equation of system
(21) becomes

VT EVx̂(t) − VT AV
∫ t

0

x̂(τ)dτ = VT b, (23)

with x̂(t) as its solution. As the coefficients fi ∈
colspan(V), they can be written as a linear combination
of the columns of V,

fi = Vzi.

By substituting the above equation in (16) and multiplying
both sides by VT , we get

⎡
⎢⎢⎢⎢⎣

(
αÊ − Â

)−1 −4Â 4Â −4Â 4Â

· · · · · ·(
αÊ − Â

)−1 −4Â 4Â(
αÊ − Â

)−1 −4Â

α
(
αÊ − Â

)−1

⎤
⎥⎥⎥⎥⎦

∗

⎡
⎢⎢⎣

zk

...
z1

z0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
...
0
b̂

⎤
⎥⎥⎥⎦ . (24)

Now, from (23) and (16), the equations for f̂i are found to
be
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⎡
⎢⎢⎢⎢⎣

(
αÊ − Â

)−1 −4Â 4Â −4Â 4A

· · · · · ·(
αÊ − Â

)−1 −4Â 4Â(
αÊ − Â

)−1 −4Â

α
(
αÊ − Â

)−1

⎤
⎥⎥⎥⎥⎦

∗

⎡
⎢⎢⎢⎣

f̂k
...
f̂1
f̂0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
...
0
b̂

⎤
⎥⎥⎥⎦ . (25)

The proof is completed by comparing (25) and (24).

Based on the previous lemma, the main theorem of this
section is stated:
Theorem 2. If the columns of V used in (21), form an or-
thonormal basis for the subspace spanned by the columns
of Fk, then the first k Laguerre coefficients of the Laguerre
series expansions of the impulse response of the original
and reduced systems match, i.e.,

yi = ŷi, 0 ≤ i ≤ k. (26)

with y(t) =
∑k

i=0 yiφ
α
i (t) and ŷ(t) =

∑k
i=0 ŷiφ

α
i (t).

Proof. From (1), we have yi = cT fi, and similarly from
(21), ŷi = ĉT f̂i. Based on the orthonormality of V and
lemma 1, it can be easily shown that f̂i = VT fi. Hence,
using Lemma 1, VVT fi = VVT Vf̂i = Vf̂i = fi Finally,

ŷi = ĉT f̂i = cT VVT fi = cT fi = yi.

In the following theorem, it is shown that the subspace
spanned by the matrix of Laguerre coefficients Fk can
be formulated as Krylov subspace involving the system
matrices.
Lemma 3. The subspace spanned by the columns of Fk is
equivalent to the Krylov subspace:

Kk

(
(A − αE)−1A, (A − αE)−1b

)
. (27)

Proof. Let Pi and P̂i be the basic blocks of the matrix
Fk and the Krylov subspace Kk , respectively. It is shown
that the basic blocks of the two subspaces span the same
space by proving that the ith basic block of one subspace
can be written as a linear combination of the first i blocks
of the other.

As α is a constant, and based on (17), it is clear that the
starting vectors are the same, i.e., P0 = P̂0. Recall that
multiplying any basic block by a minus sign or a constant
does not affect the spanned subspace. For the next two
basic blocks, we have,

P1 = (A − αE)−1(4Af0)
= −4α(A − αE)−1A(A − αE)−1b

= −4αP̂1.

P2 = (A − αE)−1[4A(−f0 + f1)]
= −P1 + 4α(A − αE)−1A(A − αE)−1A(A − αE)−1b

= 4αP̂1 + 4αP̂2.

Now consider that Pn =
∑n

j=1 βjP̂j for n = 2, · · · , k − 1,
where βn is a constant. For an even 2 i = k, we have, based
on (18),

Pk = (A − αE)−1[4A(−f0 + f1 + · · · − fk−1)]
= −4P1 + 4P2 + · · · − 4(A − αE)−1APk−1

=
k−2∑
j=1

β′
jP̂j − 4(A− αE)−1APk−1

=
k−2∑
j=1

β′
jP̂j − (A − αE)−1A

k−1∑
j=1

β′
jP̂j

=
k−2∑
j=1

β′
jP̂j −

k∑
j=2

β′
jP̂j

The proof is completed by induction.

The importance of this theorem lies in the fact that it
allows a numerically stable and computationally efficient
way of calculating the projection matrix V using the
well-known Arnoldi and Lanczos algorithms or one of
their improved versions (Antoulas, 2005; Salimbahrami,
2005). In addition, it shows the direct dependance of the
projection matrix V, and thus the reduced system, on
the parameter α. By varying α, different basis functions
φα

i (t) are produced and consequently the error-spreading
of the approximation of the impulse response along the
temporal axis can be controlled. Due to space limitations,
the discussion related to the possible choices of α is kept
for further publications.

5. THE EQUIVALENCE

In order to be able to prove the equivalence between
the moment matching and both Laguerre-based order
reduction approaches presented here and in (Chen et al.,
2002), it is important to recall the theorem from (Eid et al.,
2007) proving the invariance of the transfer function of the
reduced order model to the change of basis of the Krylov
subspaces.
Theorem 4. The transfer function of the reduced-order
model depends only on the choice of the Krylov subspaces
and not on the bases of these subspaces.

Another lemma that is relevant for the results of this
section and presenting a main property of the krylov
subspaces is the following (Eid et al., 2007):
Lemma 5. The Krylov subspaces Kk(M,v) and Kk(N,v)
with M + cN = γI where 0 �= c, γ ∈ R, are identical.

Consequently,
Theorem 6. The Krylov subspaces Kk

(
(A − αE)−1E,v

)
of (5) and Kk

(
(A − αE)−1A,v

)
of (12) with v =

(A − αE)−1b, are identical.

Proof. Set N = (A − αE)−1E and M = (A − αE)−1A.
M can be rewritten as:

2 for an odd k the same proof is valid, however the following
derivation will have the opposite alternating sign of the coefficients
because of the (−1)i+j in (18).
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M = (A − αE)−1(A − αE + αE)
= I + α(A − αE)−1E
= I + αN.

By applying Lemma 5 with γ = 1 and c = −α, the proof
is completed.

Based on what was presented, the main theorem stating
the equivalence of the two approaches is the following:
Theorem 7. Reducing a state space model in time-domain
by matching the Laguerre coefficients of the impulse re-
sponses of the original and reduced models is exactly
equivalent to matching the moments of their transfer func-
tions around s = α in the frequency-domain.

Proof. Using theorem 4, it is shown that the subspaces
involved in both approaches are equivalent, and using the
fact that the transfer function of the reduced-order model
depends only on the choice of the Krylov subspaces as
stated in theorem 6, the proof is completed.
Corollary 8. Based on Theorem 7, an important time-
domain interpretation of the moment matching approach
can deduced. In fact, if order reduction is carried out com-
pletely in time-domain to match some of the first Laguerre
coefficients with a certain parameter α as proposed in
section 4, the same number of moments around s0 = α
in the frequency-domain automatically match. Similarly,
if order reduction is carried out completely in frequency-
domain to match some of the first moments around s0,
the same number of the first Laguerre coefficients of the
Laguerre series expansion of the impulse response with
α = s0 automatically match.

It should be noted also, that Theorem 7 indirectly states
that the reduced systems obtained by the two different
methods have the same input-output behavior, however,
they may generally possess different realizations. Now,
since the two methods employ equal subspaces, the result-
ing reduced models will have exactly the same realization
when using the same numerical algorithm (e.g. Lanczos or
Arnoldi) for the calculation of the projection matrices.

From the numerical point of view, by considering the corre-
sponding subspaces (12) and (27), it can be remarked that
both approaches require almost the same computational
effort, however, for the case where E = I, the Laguerre-
based method is numerically more expensive.

6. ILLUSTRATIVE EXAMPLE

To illustrate the equivalence results of this paper the
following very low order example has been chosen in
order to make the calculations more transparent and the
reduction steps and results easily visualized:

H(s) =
(s + 4)(s + 5)

(s + 1)(s + 3)2(s + 7)(s + 12)
.

The corresponding state space matrices are:

A =

⎡
⎢⎢⎢⎣
−1 1 1 0 0

0 −3 1 0 0
0 0 −3 1 0
0 0 0 −7 1
0 0 0 0 −12

⎤
⎥⎥⎥⎦ ,

bT = [ 0 0 0 0 2 ] , c = [ 0.5 0.5 0.5 0 0 ]

This system is reduced to order k = 3 first by the classical
moment matching around s0 = 1.5 and then by the new
proposed method with α = 1.5.

In order to match the moments around s0 = 1.5, the
projection matrix,

Vm =

⎡
⎢⎢⎢⎣

−0.1894 0.1618 −0.0923
−0.0861 0.0548 −0.0225
−0.3873 0.1603 −0.0465
−1.7429 0.3342 −0.0489
−14.8148 1.0974 −0.0813

⎤
⎥⎥⎥⎦ × 10−2,

whose columns form a basis for the Krylov subspace
K3

(
(A − 1.5I)−1, (A − 1.5I)−1b

)
, is used with the choice

W = V, leading to the following reduced system Hm:

Am =

[ −21.8158 1 0
−149.7183 1.5 1
−230.7410 0 1.5

]
,

bT
m = [−21.8158 −149.7183 −230.7410 ] ,

cm = [−0.3314 0.1884 −0.0806 ] × 10−2.

The first six moments of the original and reduced systems
denoted as m and mr are shown in Fig. 2. As expected,
the first 3 moments are matching.

In order to match the Laguerre coefficients in time-domain
with α = 1.5, the projection matrix,

VL =

⎡
⎢⎢⎢⎣

−0.1894 0.0533 0.0883
−0.0861 −0.0039 0.0276
−0.3873 −0.1468 −0.0109
−1.7429 −1.2417 −0.8504
−14.8148 −13.1687 −11.7055

⎤
⎥⎥⎥⎦ × 10−2,

whose columns form a basis for the Krylov subspace
K3((A − 1.5I)−1 A, (A − 1.5I)−1 b), is used with the choice
W = V, leading to the following reduced system HL:

AL =

[ −24.5551 −24.5551 −24.5551
105.2909 106.7909 106.7909
−102.5515 −102.5515 −101.0515

]
,

bT
L = [−26.0551 105.2909 −102.5515 ] ,

cL = [−0.3314 −0.0487 0.0525 ] × 10−2.

The first six Laguerre coefficients of the original and
reduced systems denoted as f and fr are shown in Fig.
2. As expected, the first 3 coefficients are matching.

Although the two systems Hm and HL appears to be differ-
ent, they are connected by the similarity transformation,

Q =

[ 1 −2 4
0 2 −8
0 0 4

]
,

and have the same transfer function,
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Fig. 2. Moments and Laguerre series coefficients of the
original and reduced systems.

Hm(s) = HL(s) =
−0.04389s2 + 0.1503s + 0.5648

s3 + 18.05s2 + 77.35s + 53
.

Moreover, the projection matrices satisfy the relationship
VL = VmQ due to the proof Theorem 4.

This confirms the results of Theorem 7 and therefore the
reduced system Hm matches also the first 3 Laguerre
coefficients of the original system in the time-domain and
the reduced system HL matches also the first 3 moments
in the frequency-domain.

As illustrated in Fig. 2, the equivalence property does
not imply that the Laguerre coefficients are equal to
the moments but only states that matching one set of
coefficients results in matching the other one.

7. CONCLUSION

A new time-domain order reduction method based on the
Laguerre function expansion of the impulse response has
been presented. By showing that the subspace spanned
by the Laguerre coefficients vectors is a Krylov subspace
and thus can be computed very efficiently, the method
can be applied for the reduction of large-scale systems.
In addition, a time-domain interpretation of the classical
moment matching approach has been developed based on
the fact that the reduced order model obtained by the
new method and the one obtained by order reduction by
rational interpolation around a single point, are exactly
the same.

Even though the methods were shown to be equivalent,
it has to be noted that the results of this paper does not
degrade any of the two methods because each of them
possess its own advantages and has some very unique
properties, but offer new possibilities to improve each of
them by importing the properties of the other one.
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