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Abstract: Cyclin B1 tracking provides information on cell cycle progression and cell-cycle
regulator dynamics. We have developed a mathematical model which describes the continuous
tracking of cyclin B1 through the cell cycle at the single cell level, including interactions with
the cyclin B1 inhibitor, p21. The cell line used is a cancer cell line, human osteosarcoma (U-2
OS). An examination of the sensitivity of the model is presented, where the aim is to identify
those parameters which have most influence on the cyclin B1 profile and its changes through
the cell cycle. High temporal resolution cyclin B1 data involving non-invasive techniques (green
fluorescent protein, GFP) were used to validate the model.
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1. INTRODUCTION

We have developed a mathematical model of cyclin B1
dynamics through the cell cycle. Data arising from indi-
vidual human osteosarcoma U-2 OS cells, produced by the
Department of Medical Biochemistry and Immunology at
Cardiff University, were used in the development of the
model and subsequently for model validation. The model
is an extended version of a transition state cell cycle model
by Tyson and Novak [2001] and has been linked with a
model accounting for the inhibition dynamics of p21 on
cyclin B1 [Pomerening et al., 2003, 2005].

Populations of cells regulate proliferation through the cell
cycle. The cell cycle is a sophisticated mechanism which
ensures that cellular division will lead to two identical
daughter cells. The cell cycle is usually divided into four
phases: Gap 1 (G1), Synthesis (S), Gap 2 (G2) and Mitosis
(M) [Thomas and Goodyer, 2003]. See Fig. 1 (A) to (C).
The cycle is tightly regulated and includes checkpoints at
which it could stop if the correct signals are not satisfied
[Thomas and Goodyer, 2003]. Central molecules in the
regulation of the cell cycle are cyclins and cyclin-dependent
kinases (Cdks). There are several different cyclins which
are active in different parts of the cell cycle, cyclin B1
in particular is a mitotic cyclin. The amount of cyclin B1
(which binds to its cyclin-dependent kinase Cdk1) and the
activity of the cyclin B1-Cdk1 complex rises through the
cell cycle until mitosis and later decreases (see Fig. 1 (D)).
The action of the Cyclin and cyclin/Cdks complexes are, in
turn, regulated by inhibitors (such as p21) and activators.

Novel technologies like time lapse microscopy [Feeney
et al., 2003, White and Errington, 2005] allow high res-
olution live-cell protein-tracking providing, in particular,
continuous read-out of cyclin B1 through labelling with
green fluorescent protein (GFP). High resolution monitor-
ing of cyclin B1 levels through the mammalian cell cycle
has proved to be useful at different levels, from testing
research hypotheses to developing experimental therapeu-
tics [Thomas, 2003]. In particular, it potentially offers the
opportunity to study the cell cycle under stress conditions
(DNA damage) [Khan et al., 2007]. For example, DNA
damage activates a signalling cascade that can block cell
cycle progression, which directly affects the cyclin B1
profile.

The model reproduces basic features of cyclin B1 tracking
through the cell cycle, for example cyclin B1 concentration
at the start of tracking (this is equivalent to the cell cycle
phase in which the cell was at the time of the start of
the tracking) will affect the time of the first mitotic event.
If the tracking starts when a cell is in G1-phase the first
mitotic event will take longer than for a cell in G2, we have
verified this with the model simulations. More importantly,
the model has also generated predictions that may be
testable experimentally. For example our model predicts
that cells will not enter mitosis under some circumstances,
for example if levels of p21 are changed. As part of the
analysis performed to our model, we study the sensitivity
of the parameters involved. This allows us to infer informa-
tion from the model concerning components of the system
that cannot be measured directly experimentally. We also
successfully fit our results to the experimental data. We
are able to investigate how the parameters affect factors
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Fig. 1. Continuous cell cycle tracking: (A) Schematic di-
agram of a cell expressing the cyclin B1-GFP re-
porter as it progress through the cell cycle to mito-
sis. (B) Snapshots from a time lapse phase contrast
sequence. (C) Corresponding fluorescence channel,
cell is tracked through G1, S and G2 and mitosis.
(D) Single cell tracking of cyclin B1-GFP intensity
throughout the cell cycle phases. Time scale is in
hours.

such as time between mitotic events, time of first mitotic
event, number of mitotic events and cyclin levels.

2. DYNAMICS OF CYCLIN B1

Cell cycle events are controlled by a network of molecular
signals, whose central components are cyclins, Cdks and
a group of proteins, making up the anaphase-promoting
complex (APC), activated at the end of the cell cycle. The
concentration of cyclins varies in a cyclical fashion during
the cell cycle. A cyclin forms a complex with its partner, a
cyclin-dependent-kinase. There are several types of cyclins.
As an example, Cyclin B1 is a mitotic cyclin which has
an important role in the G2-M phase transition of the
cell cycle. Cyclin B1 binds to the cyclin-dependent kinase
Cdk1. Cyclin B1/Cdk1 inhibitors can increase or decrease
the frequency of cell division or stop division all together.

2.1 p21, a Cyclin Inhibitor

The cyclin-dependent kinase inhibitor p21 is a human
gene that encodes a cyclin-dependent kinase inhibitor
that directly inhibits the activity of cyclin-Cdk complexes.
The p21-activated kinases signal through a number of
cellular pathways is fundamental to growth [Anupama
et al., 2005], for example p21 could directly prevent mitosis
by inactivating and maintaining the inactive state of
mitotic cyclin-Cdks complexes [Charrier-Savournin et al.,
2004]. The expression of p21 is controlled by the tumour
suppressor protein p53.

2.2 Cdc25, a Cyclin Activator

Cdc25 proteins control entry into and progression through
various phases of the cell cycle, including mitosis and S

phase. “Cdc” refers to cell division cycle. The central role
of Cdc25 in the cell cycle makes them potential targets for
novel anti-cancer agents.

2.3 Experimental Data

The parental cell line used was a human osteosarcoma
cell line U-2 OS derived from a 15 year old Caucasian
female. High temporal resolution monitoring of cell cycle
progression enabled the tracking of single cells in a non-
invasive manner, using green fluorescent protein (GFP)
(see Figs. 2(a) and 2(b)). The cells were transfected with
G2M Cell Cycle Phase Marker (GE Healthcare, UK).
The expressing cells were enriched using high speed FACS
and sorted into well plates (1 green fluorescent cell/well).
Colonies were expanded and clones whose green fluores-
cence varied with the cell cycle as predicted and as de-
termined by flow cytometry were selected for the current
study. The cultured dishes were placed on to a time-lapse
instrument designed to capture bright-field phase images
and GFP fluorescence. Sequences were captured every 20
minutes for 48 hours, ordinarily at least three fields per
treatment regime. At the end of the experiment the images
were stacked, saved and transformed into a parametised
database using MetaMorph (Molecular Devices, Califor-
nia) and FluroTRAK (Cardiff in-house software). These
data attribute a unique encryption tag for each starting
cell within the field (termed progenitor cell), so that every
subsequent event within the lineage can be rooted to the
progenitor cell including tagged parameters.

3. CELL CYCLE MODELS

During the cell cycle the cell passes through two irre-
versible transitions. The first of these transitions occurs
at the end of G1 and can be called Start . If conditions
are suitable, the cell commits itself to DNA synthesis and
division. This transition is irreversible and can be called
Finish, it occurs when DNA replication is completed. In
parallel, as mentioned earlier, progression through the cell
cycle is controlled by a series of molecular signals whose
central components are the proteins: cyclins, their associ-
ated Cdks and APC. Their role is highly complex, but for
modelling purposes Tyson and Novak [2001] suggested to
take into account only their essential features. During G1,
Cdk activity is low because the relevant cyclin partners
are missing. At Start , Cdks are activated and remains
high during S, G2 and M. At Finish, the anaphase protein
complex (APC) is activated. Tyson and Novak developed
a model that reproduces these antagonistic interactions
between cyclin/Cdks and APC to show how the progress
through the cell cycle can be thought of as the irreversible
transitions Start and Finish between two stable states G1
and S-G2-M.

Tyson and Novak’s model is just one example of a huge
range of more general cell cycle models proposed by their
research group, see the review by Clyde et al. [2006]. Al-
though a great deal of knowledge of the biochemistry and
the physical processes of the proteins that regulate the cell
cycle is fairly recent, mathematical models of the cell cycle
can be traced back to as early as the 1970s [Hastings et al.,
1977, Tyson and Sachsenmaier, 1978, Tyson, 1974/75].
The focus of such theoretical studies ranges from phase
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(a)

(b)

Fig. 2. (a) An example of encoded cell lineage from a
progenitor cell (B) where the cell divides into two
daughter cells. The north daughter (BN) divides again
into BNN and BNS, while the south daughter BS
failed to divide within the duration of the experiment.
Three living cells (BNN,BNS and BS) at the end of
the experiment yielded three tracks labelled as track
1, 2, and 3, respectively. (b) Single cell tracking of
intensity for the three tracks derived from the encoded
lineage, the plot depicts the cyclin B1-GFP intensity
(nucleus) profile along each track.

transitions in the cell cycle [Alarcón and Tindall, 2007,
Novák et al., 1999] to the response of the cell cycle under
special conditions, such as for cancer cells and the use
of anticancer agents [Alarcón et al., 2004, 2006], includ-
ing some cyclin B-based early models [Goldbeter, 1991,
Tyson, 1991]. There are instances where the predictions
of mathematical models have been tested. Pomerening
et al. [2003] carried out experiments and concluded that a
bistable positive feedback system together with a negative
feedback loop produces self-sustaining oscillations (spikes).
Their model is for the cell cycle of Xenopus laevis embryos,
which they used to investigate whether Cdc2-cyclin B
functions as an autonomous oscillator. They also examined
Cdc2 activation and showed this to be bistable, exhibiting
hysteresis.

Negative feedback and oscillations have been consistently
discussed in cell cycle models [Baguley and Marshall,
2005]. Negative feedback occurs where the products of a
process can act at an earlier stage in the process to inhibit
their own formation. We have used an adaptation of the
approach of Pomerening et al [Pomerening et al., 2003,
2005] to regulate Cyclin B1 dynamics. Pomerening et al

studied the changes of Cdc2/cyclin B through the cell cycle
as an autonomous oscillator. Their model crucially requires
a negative feedback loop: cyclin accumulates and produces
active Cdc2/cyclin B2; Cdc2 activates APC; APC then
promotes cyclin degradation and inactivates Cdc2. Cdc2
regulation also requires positive feedback loops, in which
active Cdc2/cyclin B stimulates its activator Cdc25 and
inactivates its inhibitors Wee1 and Myt1.

4. THE MODEL

A model is formulated here in which the essential com-
ponents are cyclin B1 dynamics and p21 activity. The
model is a modified version of the approach taken by
Tyson and Novak [2001] where the governing equations
account for the regulation of Cdk/Cyclin B and APC,
which constitute the cell cycle engine. Additionally, we
account for Cyclin B1 regulation through the dynamics of
the cyclin B1 activator and inhibitors. The equations are
for Cyclin B1/Cdk dimers Y ; active Cdh1/APC complexes
X (average concentrations, grams of protein per gram of
total cell mass); P21 a cyclin inhibitor; an equation for
cell growth (mass, M); and Z a cyclin activator. Cdh1
is activated by a generic APC activator A. The model
equations are given below:

dY

dt
= k

′

1 − (k
′

2 + k
′

3X + k
′

4A)Y + k
′

5P21, (1a)

dX

dt
=

(k
′′

1 + k
′′

2 A)(1 − X)

(k
′′

3 + 1 − X)
−

(k
′′

4 MXY )

(k
′′

5 + X)
(1b)

dM

dt
= gM(1 −

M

ms

) (1c)

dA

dt
= a1A − a2X (1d)

dZ

dt
=

z1Y
4Z

z4
2 + Y 4

− z3Z (1e)

dP21

dt
=−

p1Y
4P21

p4
2 + Y 4

+ p3P21 (1f)

Equations (1a)-(1d) are an adaptation of Tyson and No-
vak’s equations for the antagonistic interactions between
cyclin/Cdks and APC [Tyson and Novak, 2001]. Equa-
tions (1e)-(1f) account for cyclin B inhibition and acti-
vation, being an adaptation of Pomerening’s mechanism
[Pomerening et al., 2003]. The term − a2X in equation
(1d) is a negative feedback by X on the production of
A since an increase in X decreases the production of A.
Similar negative feedback mechanisms in cell cycle models
have been considered previously [Pomerening et al., 2005].

Note that A is an activator of x if ∂f
∂A

> 0 [Murray,
2001], where f is the right-hand-side of equation (1b). In

our case ∂f
∂A

=
k
′′

2
(1−X)

k
′′

3
+1−X

which is positive for our chosen

parameter values (see Table 1), as X ≤ 1. It is assumed
that p21/CycB/Cdk trimers are always in equilibrium
with p21 monomers and CycB/Cdk dimers; an equation
for the trimer can be written in terms of y and the cyclin
inhibitor (see [Tyson and Novak, 2001]).

We solved system (1) numerically using the commercial
simulation software package Facsimile (MCPA Software,
UK) , which uses a robust (implicit prediction-correction)
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Original Fitted Component

k
′

1
0.04∗ 0.04 cyclin synthesis

k
′

2
0.04∗ 0.041 cyclin degradation

k
′

3
1∗ 1 cyclin degradation

by Cdh1/APC

k
′

4
1∗ 1 cyclin degradation

by Cdh1 Activator

k
′

5
0.000154 0.00015821 p21

k
′′

1
1∗ 1 Cdh1/APC production

k
′′

2
12 12 Cdh1/APC activation

k
′′

4
35∗ 35 Cdh1/APC degradation

g 0.01∗ 0.01 growth rate
ms 10∗ 10 maximum size to which a cell

may grow if it does not divide
a1 0.001336 0.0013 Cdh1 activator production
a2 0.001336 0.001 Degradation of Cdh1

activator by Cdh1
z1 0.0016 0.0016 Rate of cyclin B1

activator synthesis
z2 0.001336 0.0013 Hill coefficient
z3 0.001336 0.0013 Rate of cyclin B1 activator

degradation
p1 0.0000008 0.0000008 p21 activation rate
p2 0.001336 0.0013 Hill coefficient
p3 0.000144 0.0001443 p21 deactivation rate

Table 1. Model constants (min−1). Dimension-

less constants k
′′

3 = 0.04, k
′′

5 = 0.04. Source for
∗: Tyson and Novak [2001].

numerical integrator. The model parameters are listed in
Table 1. We use initial conditions X(0) = 0.05;Y (0) =
1.05;M(0) = 5;A(0) = 0.9;P21(0) = 1.3;Z(0) = 0.001.
Typical simulations are presented in Fig. 4.
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Fig. 3. Simulation of system (1), with parameter values
in Table 1. Cyclin B1 and APC profiles. The spike in
the Cyclin B1 profile is only an indication (time) of
mitosis (cell division).

4.1 First Mitosis and Initial Cyclin B Concentration

For a single cell, Cyclin B1 concentration at the start of the
tracking is equivalent to the cell cycle phase in which the
cell lies. If the tracking starts when a cell is in G1-phase,
and therefore the Cyclin B1 concentration is low, the first
mitotic event will take longer than for a cell that was in G2
(and for which Cyclin B1 concentration is higher) at the
start of the tracking . The model reproduces this feature
(see Fig. 5).
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Fig. 4. Simulation of system (1), with parameter values in
Table 1. From top to bottom: (a) APC activator, (b)
Z and (c) P21 profiles (d) Cyclin B1. Spikes are an
indication of cell division.
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Fig. 5. Changing the initial cyclin concentration Y (0)
affects the time of the first mitotic event, note however
that the time between mitotic events (intermitotic
time) remains relatively unchanged. Simulations of
system (1) and parameter values from Table 1, for
the solid curve Y (0) = 0.05 and for the dashed curve
Y (0) = 10.05.

4.2 Parameter Sensitivity

We note that not all variables in the model are observable
experimentally, in which case our model can still produce
information concerning parts of the system that are not
directly measured. We now analyze the effects of varying
certain chosen parameter values. To this end, we first
vary k

′′

1 ; this parameter controls Cdh1/APC production.
In Fig. 6 we show how the behaviour of the model variables
changes as k

′′

1 is increased. The main feature is that, for

k
′′

1 = 1.2, the first mitotic event happens earlier than

when k
′′

1 = 1 (see Fig. 6(b)), which is to be expected, if
there is a higher concentration of APC than usual this
seems to speed up the cycle. This, in turn, affects the
time of the second mitotic event and gives enough time
to produce a third mitosis. Note that the intermitotic
time is also affected, in particular it decreases when k

′′

1
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Fig. 6. Varying the parameter k
′′

1 . The solid line corre-

sponds to k
′′

1 = 1 and the dashed line k
′′

1 = 1.2. (a)
APC (b) Cyclin B1 (c) A. The parameter values used
for these simulations are shown in Table 1.

increases. Indeed for values of k
′′

1 < 1 we are not able to
see any mitosis whatsoever (results not shown), which is in
qualitative agreement with the role of APC, if there is no
or little effect of APC, the cell cycle will not be completed.
This change (as one may expect) does not affect the cyclin
regulators, but it does produce a slight effect on the APC
activator Z (see Fig. 6 (c)).

4.3 Comparison to Experiments

Figure 7 shows model fits with the parameters taking val-
ues from Table 1. These fits show that there is close repro-
duction of the data by simulated output from the model,
which confirms Pomerening’s results regarding the need for
positive feedback together with a negative feedback loop.
Note that the comparison to experiments considers one full
mitosis (from the first mitotic event to the second), once
the cell has divided and produced two daughters they will
each have their own cyclin B1 track (see Fig. 2(b)) and
therefore parameter values (volume for example) would
need to be adjusted.
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Fig. 7. Simulated output from model (1) with parameters
taking values from Table 1 plotted (solid) against the
experimental data (dotted).
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Fig. 8. Simulated output from model (1) (parameter fitting

was performed on a2 and k
′

5) plotted (solid) against
the experimental data (dotted). One mitotic event.
Parameter Values from Table 1.

4.4 Parameter Estimation

Model fits in Fig. 7 compris one full mitotic event. After
mitosis, the size of the cell changes and therefore it is
expected this will have an effect on the rest of the system
conditions and parameters would need to be estimated
for each mitotic event. Facsimile (MCPA Software, UK),
which uses a robust (implicit) numerical integrator, is used
to perform the parameter estimation. Figure 8 shows the
model fits using the fitted parameters over one mitotic
event for a typical cell.

5. CONCLUSION

We have developed a mathematical model of cyclin B1
progression through the cell cycle. We have used cyclin
B1 data arising from individual human osteosarcoma U-2
OS cells to validate the model. Our model is an extended
version of the Tyson and Novak [2001] transition state cell
cycle model and has been linked with a model accounting
for the inhibition dynamics of p21 on cyclin B1 [Pomeren-
ing et al., 2005, 2003]. We have shown that the model
reproduces basic features of cyclin B1 tracking through the
cell cycle, but also offers the possibility to infer information
from the model concerning parts of the system that are not
directly measured. We successfully fit our results to the
experimental data provided for certain sets of parameter
values. More importantly, the model has also generated
predictions that may be testable experimentally. Through
the study of the sensitivity of the parameters we have been
able to identify which (and how) parameters affect impor-
tant features of the cell cycle, like time between mitotic
events, time of first mitotic event, number of mitotic events
and cyclin levels.

Tyson and Novak’s Cell Cycle model allows us to account
for cyclin B1 dynamics. However, our model confirms
Pomerening’s results on the need for the inclusion of
both a negative and a positive feedback loop and it
becomes unnecessary to artificially introduce periodic-like
behaviour.While our model is consistent with experimental
results and is able to generate predictions, there are some
additional features that could improve the current version
of the model, in particular we need to define how the cell
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volume will be divided after mitosis. In addition we could
incorporate a stochastic approach to deal with the issue of
asymmetric division. At present we have only accounted
for the Cyclin B1 present in the nucleus but this is a
simplification. Experimental data are available for other
cell regions and this will be the subject of future work.
One of the main things to point out is the need of the APC
activator profile to be cyclic, introduced by the negative
feedback.

Having successfully reproduced cyclin B1 dynamics in
normal conditions, our aim is to extend the current model
to introduce the cell cycle response to perturbations, such
as anti-cancer agents. In such cases our model would
correspond to describing cells in control conditions and we
can add the effect of drug by incorporating its dynamics.
This could be done by considering the coupling of our cell
cycle model with a pharmacokinetic (PK) model [Evans
et al., 2005, 2004]. This approach allows the dynamic and
temporal interactions of the drug with its target to be
examined and would enable us to investigate how the cell
cycle can be affected by the delivery of the agent and its
impact on cell growth and death. Our aim will be to study
the drug dynamics as a perturbation of the mammalian
cell cycle using the same protein-tracking technologies as
the control case. There are already available data for this
purpose produced by the same research group at Cardiff.
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