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Abstract: This paper presents a novel dynamic control approach to acquire biped walking of
humanoid robots focussed on policy gradient reinforcement learning with fuzzy evaluative feed-
back . The proposed structure of controller involves two feedback loops: conventional computed
torque controller including impact-force controller and reinforcement learning computed torque
controller. Reinforcement learning part includes fuzzy information about Zero-Moment Point
errors. To demonstrate the effectiveness of our method, we apply it in simulation to the learning
of a biped walking.

1. INTRODUCTION

A practical biped needs to be more like a human - capable
of switching between different known gaits on familiar ter-
rain and learning new gaits when presented with unknown
terrain. In this case, even if stable trajectories are used,
the existence of impulse disturbances on foots sole can
make robot to tumble. Inherent walking patterns must
be acquired through the development and refinement by
repeated learning and practice as one of important prop-
erties of intelligent control of humanoid robots. Learning
enables the robot to adapt to the changing conditions and
is critical to achieving autonomous behavior of the robot.
However, it is very difficult to control robots with human
generated, preprogrammed, learned behavior. Learned be-
havior should be acquired by the robots themselves in
a human-like way, not programmed manually. Humans
learn actions by trial and error procedure or by emulat-
ing someone else’s actions. Hence, therefore reinforcement
learning could be applied for the control of humanoid
robots because this process resembles a human’s trial
and error learning process through constant evaluation of
performance in constant interaction with environment.

In area of humanoid robotics, there are several approaches
of reinforcement learning (RL) (Benbrahim and Franklin
[1997], Mori et al. [2004], Nakamura et al. [2003], Pe-
ters et al. [2003], Tedrake et al. [2004]) with additional
demands and requirements because high dimensionality
of the control problem. Furthermore, Benbrahim and
Franklin showed the potential of these methods to scale
into the domain of humanoid robotics (Benbrahim and
Franklin [1997]).

� This work was supported by Ministry of Science and Environmen-
tal Protection of the Republic of Serbia under the national research
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In this paper, we use a policy-gradient method for learning
efficient biped motion. The policy-gradient method is a
kind of reinforcement learning method which maximizes
the average reward with respect to parameters controlling
action rules known as the policy (Shibata et al. [2007],
Tedrake et al. [2004], Peters et al. [2003]). In comparison
with most standard value function-based reinforcement
learning methods, this type of method has particular
features suited to robotic applications. Firstly, the policy-
gradient method is applicable to Partially Observable
Markov Decision Processes]. It is almost impossible to
consider all possible states of the robot because even if
it has a complete set of sensors there will be a degree of
noise. The using of gradient-policy enables smooth change
of parameters, stability of algorithm, incorporation of prior
and incomplete information in control process.

The new integrated dynamic control structure for the
humanoid robots is proposed, based on model of robot
mechanism. Our approach consists in inclusion of rein-
forcement learning part only for compensation joints. The
basic part of control algorithm represents computed torque
control method. The external reinforcement signal was
simply defined as fuzzy measure of Zero-Moment-Point
(ZMP) error). Internal reinforcement signal is generated
using external reinforcement signal and appropriate Critic
network. The Critic network provides policy evaluation
and can be used to perform policy improvement. For the
Critic network, the two layer neural network is proposed.
The critic is trained to produce the expected sum of fu-
ture reinforcement that will be observed given the current
values of deviation of dynamic reactions and action.
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Fig. 1. Model of the biped locomotion mechanism

2. DYNAMIC MODEL OF THE SYSTEM AND
CONTROL REQUIREMENTS

2.1 Model of the Robot’s Mechanism

The kinematic scheme of the biped locomotion mechanism
whose spatial model will be considered in this paper, is
shown in Fig. 1a. The mechanism possesses 18 powered
DOFs, designated by the numbers 1-18, and two underac-
tuated DOFs (1’ and 2’) for the footpad rotation about
the axes passing through the instantaneous ZMP position.
The overall dynamic model of the locomotion mechanism
is represented in the following vector form:

P + JT (q)F = H(q)q̈ + h(q, q̇) (1)

where: P ∈ Rn×1 is the vector of driving torques at the
humanoid robot joints; F ∈ R6×1 is the vector of external
forces and moments acting at the particular points of the
mechanism; H ∈ Rn×n is the square matrix that describes
‘full’ inertia matrix of the mechanism shown in Fig. 1;
h ∈ Rn×1 is the vector of gravitational, centrifugal and
Coriolis moments acting at n mechanism joints; J ∈ R6×n

is the corresponding Jacobian matrix of the system; n = 20
, is the total number of DOFs (Fig. 1); q ∈ Rn×1 is the
vector of internal coordinates; q̇ ∈ Rn×1 is the vector of
internal velocities. Exactly, the relation (1) represents the
model of a biped mechanism relying on the absolutely
rigid environment. In a general case, the constrained foot
of biped locomotion mechanism has corresponding linear
and rotational relative motions with respect to the fixed
coordinate system attached to the ground. As example, it
is case of robot’s walking on an immobile support (plain
surface, staircases, etc.) involving passive compliance ele-
ments in the form of elastic pads on the feet (Fig.1b).In
Fig.1b is illustrated an example of spatial dynamic envi-
ronment model suitable for describing the contact elasto-
dynamics. Linear and angular deformations/displacements

of the elastic pad attached to the foot sole influence the
dynamic behavior of the biped mechanism. The velocity
ẋcf and acceleration ẍcf of the constrained foot (due to
the elastic properties of the pad and ground surface) are
transferred to all of the links of the robotic mechanism.
Taking into account the considered transitive motion and
relative position of the constrained foot xcf with respect
to the immobile fundament, as well as using the vector of
measured external forces and moments F , equation (1)
can be re-written in a similar form:

P + JT (q, xcf )F = H(q, xcf )q̈ + h(q, q̇, xcf , ẋcf , ẍcf ) (2)

In that sense, equation (2) represents the model of a robot
mechanism supported to the dynamic environment.

2.2 Gait phases and indicator of dynamic balance

The robot’s bipedal gait consists of several phases that are
periodically repeated (Vukobratović et.al [1990]). Hence,
depending on whether the system is supported on one or
both legs, two macro-phases can be distinguished, viz.: (i)
single-support phase (SSP) and (ii) double-support phase
(DSP). Double-support phase has two micro-phases: (i)
weight acceptance phase (WAP) or heel strike, and (ii)
weight support phase (WSP). The indicator of the degree
of dynamic balance is the ZMP, i.e. its relative position
with respect to the footprint of the supporting foot of the
locomotion mechanism. The ZMP is defined (Vukobratović
et.al [1990]) as the specific point under the robotic mecha-
nism foot at which the effect of all the forces acting on the
mechanism chain can be replaced by a unique force and
all the rotation moments about the x and y axes are equal
zero. Figs 2a and 2b show details related to the determi-
nation of ZMP position and its motion in a dynamically
balanced gait. The ZMP position is calculated based on
measuring reaction forces Fi, i = 1, ..., 4 under the robot
foot. Force sensors are usually placed on the foot sole in
the arrangement shown in Fig. 2a. Sensors’ positions are
defined by the geometric quantities l1 , l2 and l3. If the
point 0zmp is assumed as the nominal ZMP position (Fig.
2a), then the following equations to determine the relative
ZMP position with respect to its nominal:

ΔM (zmp)
x =

l3
2

[
(F2 + F4) − (F 0

2 + F 0
4 )

] −
l3
2

[
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3 )

]
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y = l2

[
(F3 + F4) − (F 0

3 + F 0
4 )
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[
(F1 + F2) − (F 0
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]

F (z)
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4∑
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Fi Δx(zmp) =
−ΔM (zmp)

y

F
(z)
r

Δy(zmp) =
ΔM (zmp)

x

F
(z)
r

(3)

where Fi and F 0
i , i = 1, . . . , 4 , are the measured and

nominal values of the ground reaction force; ΔM (zmp)
x and

ΔM (zmp)
y are deviations of the moments of ground reaction

forces around the axes passed through the 0zmp ; F (z)
r is
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Fig. 2. Zero-Moment Point

the resultant force of ground reaction in the vertical z -
direction, while Δx(zmp) and Δy(zmp) are the displace-
ments of ZMP position from its nominal 0zmp . The de-
viations Δx(zmp) and Δy(zmp) of the ZMP position from
its nominal position in x- and y-direction are calculated
from the previous relation . The instantaneous position of
ZMP is the best indicator of dynamic balance of the robot
mechanism. In Fig. 2b are illustrated certain areas ( Z0 ,
Z1 and Z2 ), the so-called safe zones of dynamic balance of
the locomotion mechanism. The quality of robot balance
control can be measured by the success of keeping the
ZMP trajectory within the mechanism support polygon
as explained above.

3. DYNAMIC CONTROL ALGORITHM WITH
POLICY GRADIENT REINFORCEMENT

STRUCTURE

In order to enable a balancing controller, the application
of the so-called integrated dynamic control was proposed.
Based on the above assumptions, the control algorithm
involves three parts: (i) basic dynamic controller for tra-
jectory tracking P1, (ii) dynamic controller tuned by rein-
forcement learning structure for compensation joints P2,
(iii) impact-force feedback at the foot of the free (uncon-
strained) leg P3.

3.1 Dynamic Controller of trajectory tracking

The controller of trajectory tracking of the locomotion
mechanism has to ensure the realization of a desired mo-
tion of the humanoid robot and avoiding fixed obstacles
on its way. As our applied approach, the controller for
robotic trajectory tracking was adopted using the com-
puted torque method in the space of internal coordinates
of the mechanism joints based of the robot dynamic model.
The proposed dynamic control law has the following form:

P1 = Ĥ(q, xcf )[q̈0 +Kv(q̇ − q̇0) +Kp(q − q0)]

+ĥ(q, q̇, xcf , ẋcf , ẍcf ) − ĴT (q, xcf )F (4)

where Ĥ ,ĥ and Ĵ are the corresponding estimated values of
the inertia matrix, vector of gravitational, centrifugal and
Coriolis forces and moments and Jacobian matrix. The ma-
trices Kp ∈ Rn×n and Kv ∈ Rn×n are the corresponding

matrices of position and velocity gains of the controller.
The gain matrices Kp = diag{ki

p},Kv = diag{ki
v}, i =

1, .., n. can be chosen in the diagonal form by which the
system is decoupled into nindependent subsystems. The
proposed controller is valid for both the single-support
and double-support gait phase, whereby it is assumed that
in each instant, at least one foot is in contact with the
support surface.

3.2 Compensator of dynamic reactions based on RL
structure

Hence in this paper, main intention and idea is to include
learning control component based on constant qualitative
evaluation of biped walking performance. The reinforce-
ment learning control as kind of unsupervised learning
environment (evaluation of control action based on ZMP
error rather than numerical error of state variables) can be
very suitable for searching of optimal and balanced biped
walking.

The main idea is to use chosen control policy (computed
torque controller) but with tuning of policy control pa-
rameters by appropriate policy-gradient procedure. This
reinforcement control part P2 is realized only for special
compensation joints. P2 is the vector of compensation
control torques at the selected compensation joints The
control torques P2 has to be ‘displaced’ to the other
(powered) joints of the mechanism chain. Considering the
model of locomotion mechanism presented in Fig. 1, the
compensation was carried out using the following mecha-
nism joints: 1, 6 and 14 to compensate for the dynamic
reactions about the x -axis, and 2, 4 and 13 to compensate
for the moments about the y-axis.

The proposed Reinforcement learning structure is based on
policy gradient Methods (Peters et al. [2003], Shibata et al.
[2007], Tedrake et al. [2004]).The policy-gradient method
is a stochastic gradient-descent method. The policy can
therefore be improved upon every update. In this case,
control policy represents computed torque controller struc-
ture with aim to select/tune the best control parameters.
Exactly, the control policy in this case, represents the set of
control algorithms with different control parameters. The
input to control policy is state of the system, while the
output is control action (signal). The general aim of policy
optimization in reinforcement learning is to optimize the
control parameters policy κ in this way that the expected
return

J(κ) = E{
L∑

i=0

γiri (5)

is optimized (where γi ∈ [0, 1] is a discount factor; ri is
reward or reinforcement signal. It is important to notice
that for biped motion, drastic change of control parameter
is not valid and and smooth parameter change is required.
Hence, policy gradient method based on steepest descent is
chosen. The control parameter policy is updated according
to the following rule:

κt+1 = κk + α∇κJ(κ) (6)

where α is learning rate; κ = (0, 1, 2, ...). In this case,
policy parameter vector is is defined as κ = [KpKvσ]T ,
while control policy is defined as
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π =
1√
2πσ

(
−(P2 − ψ(x, κ))2

2σ2
) (7)

where ψ(x, κ) = κTφ(x);X is the state of the system; φ(x)
is the Gaussian basis function.

There are various methods for gradient estimation Peters
et al. [2003], but following algorithms is chosen:

κt+1 = κt + αBtδt (8)
Bt = βBt−1 + ∇logπ (9)

where β is a constant factor; defined by state value
function.

The estimated value function represents a Critic, because
it criticizes the control actions made by the basic con-
troller. Critic network maps position and velocity tracking
errors and external reinforcement signal R in scalar value
which represent the quality of given control task. The
output scalar value of Critic is important for calculation of
internal reinforcement signalR̂. Critic constantly estimate
internal reinforcement based on tracking errors and value
of reward. Critic is standard 2-layer feedforward neural
network (perceptron) with one hidden layer. The activa-
tion function in hidden layer is sigmoid, while in the output
layer there are only one neuron with linear function. The
input layer has a bias neuron. The output scalar value v is
calculated based on product of set C of weighting factors
and values of neurons in hidden later plus product of set
A of weighting factors and input values and bias member.
There are also one more set of weighting factors A between
input layer and hidden layer. The number of neurons on
hidden later is determined as 5.

The most important function is evaluation of TD error, ex-
actly internal reinforcement. The internal reinforcement is
defined as TD(λ) error defined by the following equations:

et = 1 + γλet−1 if x = xt (10)
et = γλet−1 otherwise (11)

R̂t+1 = δt = (Rt + γvt+1 − vt)et (12)

where γ is a discount coefficient between 0 and 1 (in this
case γ is set to 0.9). λ, 0 ≤ λ ≤ 1 is a new parameter.

The learning process for value function is accomplished by
step changes calculated by products of internal reinforce-
ment, learning constant and appropriate input values from
previous layers.

3.3 Fuzzy Reinforcement Signal

The detailed and precise training data for learning is often
hard to obtain or may not be available in the process of
biped control synthesis. Furthermore, a more challenging
aspect of this problem is that the only available feedback
signal (a failure or success signal) is obtained only when
a failure (or near failure) occurs, that is, the biped robot
falls down (or almost falls down). But for human biped
walking, we usually use linguistic critical signal, such as
”near fall down”, ”almost success”, ”slower”, ”faster” and
etc., to evaluate the walking gait. In this case, using
fuzzy evaluation feedback is much closer to the learning
environment in the real world (Zhou and Meng [2000]). It
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R ( t )R ( t )

Fig. 3. The Membership functions for ZMP deviations and
external reinforcement

is possible to use scalar critic signal, but as one of solution,
the reinforcement signal was considered as a fuzzy number
R(t). We also assume that R(t) is the fuzzy signal available
at time step t and caused by the input and action chosen at
time step t-1 or even affected by earlier inputs and actions.
For more effective learning, a error signal that gives more
detail balancing information should be given, instead of a
simple ”go -no go” scalar feedback signal. As an example
in this paper, the following fuzzy rules can be used to
evaluate the biped balancing according to following table.

Δx(zmp) SMALL MEDIUM HUGE
Δy(zmp)

SMALL EXCELLENT GOOD BAD
MEDIUM GOOD GOOD BAD
HUGE BAD BAD BAD

Fuzzy rules for external reinforcement

Fuzzy rules for external reinforcement The linguistic vari-
ables for ZMP deviations Δx(zmp) and Δy(zmp) and for
external reinforcement R are defined using membership
functions that are defined in Fig.3.

3.4 Impact-force controller

The role of impact-force controller in the proposed control
structure is to counteract the ground reaction force that
appears when the locomotion mechanism foot strikes the
ground (heel strike). The control law can be defined in the
form of a PI-regulator as:

Fc = F0 −
t∫

0

Q(ΔF ) · dt, t ∈ (0, T ], ΔF = F − F0(13)

F0 =
[
F0x F0y F0z M0x M0y M0z

]T
,

F =
[
Fx Fy Fz Mx My Mz

]T
, (14)

Q(ΔF ) = KPF ΔF +KIF

t∫

0

ΔF · dt, t ∈ (0, T ] (15)

where Fc ∈ R6×1 is a vector of the so called generalized
forces. F0 ∈ R6×1 and F ∈ R6×1 represent the respective
vectors of nominal and measured values of forces and
moments of the ground reaction along, i.e. about three
coordinate axes (x, y and z ); ΔF ∈ R6×1 is the vector of
deviation of forces (moments) F of the ground reactions
from their nominal values F0 calculated for the nominal
robot’s motionq0 ; KPF ∈ R6×6 and KIF ∈ R6×6 are the
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Fig. 4. Experimental capture motion studio

square matrices of proportional and integral gains of the
designed PI-regulator. Finally, since the generalized forces
Fc cannot be realized in a direct way, the control torques
P are determined from the relation:

P3 = −ĴT (q, xcf )Fc (16)

where Ĵ(q, xcf ) is the Jacobian matrix; xcf is position
vector of constrained foot

4. EXPERIMENTAL AND SIMULATION STUDIES

The corresponding experiments were carried out in a cap-
tion motion studio (Rodic et al. [2007]). For this pur-
pose, a middle-aged (43 years) male subject, 190 [cm]
tall, weighing 84.0728 [kg], of normal physical constitu-
tion and functionality, played the role of an experimental
anthropomorphic system whose model was to be identified
. The subject’s geometrical parameters (the lengths of the
links, the distances between the neighboring joints and the
particular significant points on the body) were determined
by direct measurements or photometricaly. The other kine-
matic parameters, as well as dynamic ones, were identified
on the basis of the biometric tables, recommendations and
empirical relations. The selected subject, whose parame-
ters were identified, performed a number of motion tests
(walking, staircase climbing, jumping), whereby the mea-
surements were made under the appropriate laboratory
conditions. Characteristic laboratory details are shown in
Fig.4. To detect current positions of body links use was
made of the special markers placed at the characteristic
points of the body/limbs. Continual monitoring of the
position markers during the motion was performed us-
ing six VICON high-accuracy infra-red cameras with the
recording frequency of 200 [Hz]. To mimic a rigid foot-
ground contact, a 5 [mm] thick wooden plate was added
to each foot.

A moderately fast walk (v =1.25 [m/s]) was considered
as a typical example of task which encompasses all the
elements of the phenomenon of walking. We assumed that
it is possible to design a bipedal locomotion mechanism
(humanoid robot) with defined parameters (same as in
Fig. 1) . On the basis of the measured values of positions
(coordinates) of special markers in the course of motion it
was possible to identify angular trajectories of the partic-
ular joints of the bipedal locomotion system. Animation

Fig. 5. Animation of biped locomotion
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Fig. 6. Position errors

of the biped gait of the considered locomotion system, for
the given joint trajectories, is presented in Fig.5 through
several characteristic positions.

Some special simulation experiments were performed in
order to validate the proposed reinforcement learning con-
trol approach. Initial (starting) conditions of the simu-
lation examples (initial deviations of joints’ angles) were
imposed. The results obtained by applying the controllers
(position and velocity errors) are shown on Figs. 6 and 7.
The tracking errors converge to zero values in the given
time interval. It means that the controller ensures good
tracking of the desired trajectory. Also, the application
of reinforcement learning structure ensures a dynamic
balance of the locomotion mechanism. In the simulation
example, it was shown how the basic dynamic controller
together with reinforcement learning control structure is
able to compensate the deviations of dynamic reactions
even in the presence of uncertainty of the ground surface
inclination. The simulation experiment considered in this
example deals with a real case of robot walking on a quasi-
horizontal ground surface. In that sense, small inclinations
of the supporting surface in the longitudinal γ1 = 3◦ and
lateral direction γ2 = 2◦ were introduced in the scope of
the considered simulation experiment. 100 basis functions
φ(x) are allocated to represent mean of the policy φ(x). In
Figs.8 and 9 the comparison of the simulation results for
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ZMP errors in coordinate directions are shown. In Fig. 10
value of reward or internal reinforcement through process
of walking is presented. It is clear that task of walking
within desired ZMP tracking error limits is achieved in a
good fashion.

5. CONCLUSION

This paper presented an approach for acquiring biped
motion focussed on learning a control policy. As a result,
we demonstrated that it is possible to acquire dynamic
motions though reinforcement learning using policy gradi-
ent method. The algorithms is based on fuzzy evaluative
feedback that are obtained from human intuitive balancing
knowledge. The reinforcement learning with fuzzy evalua-
tion feedback is much closer to the human biped walking
evaluation than the original one with scalar feedback. The
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Fig. 10. The acquired reward

proposed intelligent control scheme fulfills the preset con-
trol criteria. Its application ensures the desired precision of
robot’s motion, maintaining dynamic balance of the loco-
motion mechanism during a motion. The developed intel-
ligent dynamic controller possesses both the conventional
position-velocity feedback and dynamic reaction feedback.
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