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Abstract: In this work the three–level hierarchical control problem and the decentralised control
problem are investigated and a general optimisation strategy is developed for solving these problems
based on recent developments on multi–parametric programming. The main idea is to recast each
optimisation subproblem in the multilevel hierarchy as a multi–parametric programming problem and
then transform the multilevel problem into a single-level optimisation problem. This allows for the
control policies (decisions) at each level of the multilevel optimisation problem to be obtained as explicit
functions of the state of the dynamic systems involved in each level and the control policies of the
higher levels. A three person dynamic optimisation problem is presented to illustrate the mathematical
developments.
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1. INTRODUCTION

In optimisation and control of large–scale dynamic systems,
hierarchical and decentralised control allow for the decom-
position of the original problem into smaller, interconnected
problems which are typical arranged into a multilevel hier-
archy (Mesarovic et al. [1970], Cohen [1977], Morari et al.
[1980], N.R. Sandell et al. [1978], Stephanopoulos and Ng
[2000], Venkat et al. [2005]). Various applications of hierarchi-
cal and decentralised control arise in process systems engineer-
ing (Morari et al. [1980], Stephanopoulos and Ng [2000]), me-
chanical and power systems (Delaleau and Stanković [2004]),
aeronautics (Tolani et al. [2004], Li et al. [2002]), traffic con-
trol (Shimizu et al. [1995]) and large-scale systems control
(N.R. Sandell et al. [1978], Roberts and Becerra [2001]). In
most of these problems the general formulations of the decom-
posed multilevel hierarchy is given in Figures 1-2.

Examples of the hierarchical structure in Figure 1 can be
found in Delaleau and Stanković [2004], Singh et al. [1975],

Stanković and Šiljak [1989]. In Delaleau and Stanković [2004]
the control problem of a PM synchronous motor is decomposed
into a bi–level hierarchical control problem (similar to Figure 1
without the third level). A high–level controller, corresponding
to the slow dynamics of the motor’s mechanical system, is de-
signed to obtain the right set points for the low–level controller
which controls the fast dynamics of the electrical system. In

[Singh et al., 1975, Section 5] and Stanković and Šiljak [1989]
the same hierarchical decomposition was used to deal with opti-
mal LQG and optimal LQR control of sequentially (or serially)
interconnected linear dynamical systems. Decentralised control
of large-scale systems also yields a two–level structure where
in the lower level more than one subproblems are considered
(Figure 2) (N.R. Sandell et al. [1978], Venkat et al. [2005]).
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Nash equilibrium is often a preferred strategy to coordinate
such decentralised systems Venkat et al. [2005]. Similarly, this
is also the hierarchical structure that is found in a typical leader
– multi–follower problem Li et al. [2002].

Generally, it is widely recognised that the successful design of
large and complex systems involves some type of decompo-
sition of the original problem into smaller and intercommuni-
cating subsystems, typically arranged in one of the multilevel
hierarchies described in Figures 1 and 2. Multilevel and decen-
tralised optimisation problems, which typically arise in many
engineering Clark [1983], Morari et al. [1980], Stephanopoulos
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and Ng [2000], Venkat et al. [2005] and financial applica-
tions Anandalingman [1988], Nie et al. [2006], involve such an
hierarchy of optimisation levels, where each optimisation level
(or subproblem) controls a subset of the overall optimisation
variables.

Despite their significance, general solution strategies for solv-
ing such complex problems are limited, especially due to the
multi-layer nature, non-linearities and non-convexities Vicente
and Calamai [1994]. In addition, the potential presence of logi-
cal decisions (which requires the inclusion of binary variables)
increases further the complexity of the problem. Therefore,
it is widely accepted that a global optimisation approach is
needed for the solution of such multilevel optimisation prob-
lems Floudas [2000].

Recently, Pistikopoulos and co-workers Acevedo and Pis-
tikopoulos [1997], Dua et al. [2002], Faı́sca et al. [2007, 2008],
Pistikopoulos et al. [2002] have proposed novel solution algo-
rithms, based on multi–parametric programming theory Fiacco
[1983], Pistikopoulos et al. [2007a], which open the possibility
to address general classes of multilevel programming problems.
In an optimisation problem where the objective is to minimise
(or maximise) a cost criterion subject to constraints and which
includes a number of parameters varying between specified
lower and upper bounds, multi–parametric programming is a
method to obtain i) the objective function and the optimisation
variables as functions of the parameters and ii) the region in the
parameter space where these functions are valid (Fiacco [1983],
Dua et al. [2002], Pistikopoulos et al. [2002]). Multi–parametric
programming has found many applications in model–based pre-
dictive control (Bemporad et al. [2002], Pistikopoulos et al.
[2002, 2007b]) where the on–line optimisation problem in-
volved is solved off–line by multi–parametric programming
and the control policy is obtained as a set of explicit functions of
the state measurements. The control action is then implemented
on–line by function evaluations, reducing the complexity of the
implementation of the controller and improving the computa-
tional speed.

Our approach is to recast each optimisation subproblem as a
multi–parametric programming problem, and hence obtain an
analytical solution for the rational reaction set for each of the
subproblems. Each of the control policies at each level of the
three–level hierarchical control problem are then obtained as
explicit functions of the states of the system/systems involved
in each level and the policies on the higher levels, with the
policy of the highest level obtained as an explicit function of
the initial states only. In the decentralised control problem, the
policy for each secondary controller is obtained as a function
of the overall system and the policy of the central controller.
The policy of the central controller is an explicit function of the
initial state of the system. The policies at each level then of both
problems can then be obtained as simple function evaluations.
In the knowledge of the authors there is currently no relevant
work on treating multilevel hierarchical control problem with
multi–parametric programming, despite the vast research on
these problems.

The paper is organised as follows. Section II discusses the
methodology for solving three–level hierarchical multilevel
control problems by multi–parametric programming techniques.
The two–level decentralised control problem (leader–follower
problem) is described and solved again by multi–parametric
programming in Section III. An example is presented in Section

IV that illustrates the two methodologies and the complexity
analysis and on–line multilevel optimisation issues are also
discussed. The paper finally concludes with the necessary con-
clusions.

2. THREE LEVEL HIERARCHICAL CONTROL

Consider the following three–level hierarchical control problem

J1 = min
U,U2,U1

V1(xt ,x
1
t ,x

2
t ,ut ,u

1
t ,u

2
t ) (1a)

s.t. xt+1 = Axt +But +Dzt (1b)

g(xt ,x
1
t ,x

2
t ,ut ,u

1
t ,u

2
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J2 = min
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2
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1
t ,u

2
t ) ≤ 0 (1i)

xt ∈ R
n, x1

t ∈ R
n1 , x2

t ∈ R
n2 , t = 1, . . . ,N (1j)

u ∈ R
m, u1 ∈ R

m1 , u2 ∈ R
m2 , t = 1, . . . ,N −1 (1k)

where V1,V2,V3 are all strictly convex quadratic functions of
xt , x1

t , x2
t and the control sequences (control policies) U =

{u0, . . . ,uN−1} ∈ R
mN , U1 = {u1

0, . . . ,u
1
N−1} ∈ R

m1N and U2 =

{u2
0, . . . ,u

2
N−1} ∈ R

m2N . The matrices A, A1, A2, B, B1, B2, D,
D1 and D2 are of appropriate dimensions while g,g1,g2 are
vectors of linear functions of xt , x1

t , x2
t , U , U1 and U2 defin-

ing a set of linear inequality constraints in (1c), (1f) and (1i).
Finally, the vectors z = [(x1)T (x2)T ]T , z2 = [xT (x1)T ]T and

z1 = [xT (x2)T ]T represent the interconnection between the lin-
ear discrete–time dynamic system in the different hierarchical
levels of problem (1). Problem (1) is a multilevel optimization
problem of the form shown in Figure 1 where in each level a
different dynamic system, objective and set of constraints are
considered.

A special subcase of problem (1) is the multilevel hierarchi-
cal control of sequentially interconnected dynamical systems

(Singh et al. [1975], Stanković and Šiljak [1989]) where z1 = 0,

z2 = x and* z = [x1T
x2T

]T i.e. the dynamical system at each
level of (1) is independent of the ones in the higher levels
(it does not depent on the states and inputs of the dynamic
systems in the higher levels). In this case the constraints of the
problem at each level are also independent of the states and
inputs of the higher levels. The structure of the problem for
sequentially interconnected dynamic systems is thus simpler
than the one considered in (1). However, the more complex
multilevel optimisation problem (1) is examined here to cover
a more broad case of hierarchical control problems as those
arising for example in Delaleau and Stanković [2004]. Finally,
extension to smaller bi–level optimization problems (with no
third optimisation level in (1)) should be easy.

The objective is, given the initial states x0,x
1
0,x

2
0 of each linear

system, to obtain the optimal control policies U∗,U1∗,U2∗ for
the three–level hierarchical control problem (1). Substituting
the linear discrete–time model equations (1b), (1e) and (1h)
into (1a), (1d), (1g) and (1c), (1f), (1i) the following multilevel
optimisation problem is formulated
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J1 = min
U,U2,U1

V1(x0,x
1
0,x

2
0,U,U1,U2) (2a)

s.t. g(x0,x
1
0,x

2
0,U,U1,U2) ≤ 0 (2b)

J2 = min
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V2(x0,x
1
0,x

2
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s.t. g2(x0,x
1
0,x

2
0,U,U1,U2) ≤ 0 (2d)

J3 = min
U1

V3(x0,x
1
0,x

2
0,U,U1,U2) (2e)

s.t. g1(x0,x
1
0,x

2
0,U,U1,U2) ≤ 0 (2f)

where the objective functions V1,V2,V3 are strictly convex
quadratic and the constraints g,g1,g2 are linear functions of
x0,x

1
0,x

2
0 and U,U1,U2. The feasible and rational reaction sets

for the third and second levels are defined as

Ω3(x0,x
1
0,x

2
0,U,U2) = {U1 ∈ R

Nm1 | g1 ≤ 0} (3)

Φ3(x0,x
1
0,x

2
0,U,U2) = {U1 ∈ R

Nm1 |U1 ∈ argmin{V3 |

U1 ∈ Ω3}} (4)

Ω2(x0,x
1
0,x

2
0,U) = {(U1,U2) ∈ R

Nm1 ×R
Nm2 | g1 ≤ 0,

g2 ≤ 0} (5)

Φ2(x0,x
1
0,x

2
0,U) = {(U1,U2) ∈ R

Nm1 ×R
Nm2 |

U2 ∈ argmin{V2 |(U
1,U2) ∈ Ω2, U1 ∈ Φ3}} (6)

respectively, where (3), (5) are the feasible sets for the third and
second level, and (4) and (6) are the rational reaction sets of the
third and second level. Equations (4), (6) show the dependence
of the policies obtained on the upper level on the policies
obtained at the lower levels.

Each of the optimisation problems in each level can be recast
as multi–parametric programming problem (Pistikopoulos et al.
[2002], Dua et al. [2002], Faı́sca et al. [2007]) with x0,x

1
0,x

2
0

being the overall parameters of the system and U,U2,U1 being
the optimisation variables of the first, second and third optimi-
sation levels respectively. Problem (2) can then be recast as a
multi–parametric multilevel optimisation problem (Faı́sca et al.
[2007]). An algorithm for solving (2) can be obtained, follow-
ing the technique for solving bilevel programming problems in
Faı́sca et al. [2007]. The steps of this algorithm are described as
follows
Algorithm 1:

(1) Recast the third optimisation level as a multi–parametric
programming problem with U1 being the optimisation
variable and x0,x

1
0,x

2
0,U,U2 the parameters.

(2) Solve by a multi–parametric programming algorithm (Pis-
tikopoulos et al. [2002], Dua et al. [2002]) to obtain U1 as
a set of functions of the parameters x0,x

1
0,x

2
0,U,U2 and

the critical regions where these functions are valid i.e. the
parametric solution

U1 = K1
1ix0 +K1

2ix
1
0 +K1

3ix
2
0 +K1

4iU +K1
5iU

2 + c1
i

if A1
1ix0 +A1

2ix
1
0 +A1

3ix
2
0 +A1

4iU +A1
5iU

2 ≤ b1
i (7)

i = 1, . . . ,s1

Equation (7) for all i = 1, . . . ,s1 gives the rational reaction
set of the third level.

(3) Substitute the rational reaction set in the optimisation
problem in the second level of (2) and formulate s1 multi–
parametric programming problems in which U2 is the
optimisation variable and x0,x

1
0,x

2
0,U are the parameters.

(4) Solve the s1 multi–parametric programming problems
with a multi–parametric programming algorithm to obtain
the parametric solution of U2 as a function of x0,x

1
0,x

2
0,U

U2 = K2
1ix0 +K2

2ix
1
0 +K2

3ix
2
0 +K2

4iU + c2
i

if A2
1ix0 +A2

2ix
1
0 +A2

3ix
2
0 +A2

4iU ≤ b2
i (8)

i = 1, . . . ,s2

(5) Substitute the s2 functions and critical regions of the
previous step in the optimisation problem of the first
level and recast it as a parametric optimisation problem
where U is the optimisation variable and x0,x

1
0,x

2
0 are the

parameters to obtain the parametric solution

U = K1ix0 +K2ix
1
0 +K3ix

2
0 + ci

if A1ix0 +A2ix
1
0 +A3ix

2
0 +A4iU ≤ b2

i (9)

i = 1, . . . ,s

In Step 5 of Algorithm 1 the control policy U is obtained as
an explicit function of the initial states x0,x

1
0,x

2
0 of the linear

systems (1b), (1e), (1h). Thus, when the initial states x0,x
1
0,x

2
0

are given the optimal control policy U can be obtain by simple
function evaluations from (9). The optimal control policy U2

for the second optimisation level is obtained from (8) given
x0,x

1
0,x

2
0,U and finally U1 is obtained from (7). It can be noticed

that the control policy at each hierarchical level is a function of
the control policies of the higher levels. The rational reaction
set for each level is thus obtained analytically.

Remark 1. It is possible that in Steps 4 and 5 overlapping
regions might occur since quadratic objective functions are
considered. In that case one can employ the comparison method
described in Acevedo and Pistikopoulos [1997] to compare the
explicit solutions in the overlapping of the regions.

3. DECENTRALISED HIERARCHICAL CONTROL

Consider the decentralised control scheme of Figure (2) that
consist of a central controller (the leader) and m secondary
controllers (the followers) on the second level (Başar and Sel-
buz [1994]). The objective is the optimal control of the overall
linear discrete–time system

xt+1 = Axt +B0ut +
s

∑
i=1

Biu
i
t (10)

where xt ∈ R
n, ut ∈ R

m, ui
t ∈ R

mi , i = 1, . . . ,s are the states of
the system, the input to the system controlled by the leader and
the inputs to the system controlled by the followers respectively,
with respect to the following quadratic optimal control problem

J0 = min
U,U1,...,Us

V (xt ,U) (11a)

=min
U

xT
NQ0

NxN +
N−1

∑
t=0

[

xT
t Q0

t xt +uT
t R0

t ut +
s

∑
i=1

ui
tR

0i
t ui

t

]

s.t. xt+1 = Axt +B0ut +
s

∑
i=1

Biu
i
t (11b)

g(xt ,U,U i) ≤ 0 (11c)

Q0
t ≥ 0, R0

t > 0, R0i
t ≥ 0 (11d)

where U = {u0, . . . ,uN−1}, U i = {ui
0, . . . ,u

i
N−1}, i = 1, . . . ,s are

the control policies of the leader and i-th follower respectively,
g is a vector of linear functions corresponding to a set of linear
inequalities (11c). It is assumed that the secondary controllers
do not have access to the minimisation of (11a) but they select
the optimal policies U i based on the announced policy U of the
central controller. Only the central controller has access over
the complete set of optimisation variables.
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Each of the secondary controllers solves a local optimisation
subproblem

Ji =min
U i

Vi(xt ,U,U i,U j) (12a)

=min
U i

xT
NQi0

N xN +
N−1

∑
t=0

[

xT
t Qi0

t xt +uT
t Ri0

t ut +
s

∑
k=1

ui
tR

ik
t ui

t

]

s.t. xt+1 = Aixt +B0ut +
s

∑
j=1

B ju
j
t (12b)

gi(xt ,U,U i,U j) ≤ 0 (12c)

Qi0
t ≥ 0,Ri0

t ≥ 0, Rik
t ≥ 0, Rii

t > 0 (12d)

for the i–th secondary controller, i = 1, . . . ,s. Only the i-th
follower has access to the i-th minimisation problem (12) i.e.
the minimisation in (12) is only with respect to U i.

Remark 2. It is possible that each of the secondary controllers
could include its own local linear dynamic model. The problem
can then be formulated by including all linear dynamic models
altogether in (11)–(12) and by adding extra quadratic terms in
the objective functions (11a) and (12a) to accommodate for the
new states introduced. The objectives and the constraints in (11)
and (12) are then all functions of all states and inputs

The multilevel optimisation problem based on the leader–
follower formulation of (11)–(12) has been treated for the case
where no constraints are present N.R. Sandell et al. [1978],
Başar and Selbuz [1994], while in Venkat et al. [2005] a similar
distributed control problem was treated with input constraints.
Here, the more general problem is treated where both state and
input constraints are present as is the case in most engineering
problems where any real actions is restricted by physical or
operational constraints. The problem is solved to obtain the
global optimum of the central controller and the best possible
optima for the local controllers.

Replacing (11b) in (11), (12) and considering we seek for the
optimal policies U∗, U i∗ then the problem reformulates in the
following multilevel optimisation problem

J0 = min
U,U1,...,Us

V (x0,U,U1, . . . ,U s) (13a)

s.t. g(x0,U,U1, . . . ,U s) ≤ 0 (13b)

. . .

{

Ji = min
U i

Vi(x0,x
i
0,U,U1, . . . ,U s)

s.t. gi(x0,U,U1, . . . ,U s) ≤ 0

}

. . . (13c)

where in the second level (13c) the secondary controller op-
timisation problems are considered altogether. Since V , Vi are
quadratic functions and g, gi are linear functions of x0, U , U i,
both optimisation problems in both levels are quadratic pro-
gramming problems with respect to the x0, U , U i. The feasible
and rational reaction set of each of the secondary controllers are
respectively

Ωi(x0,U,U1, . . . ,U i−1,U i+1, . . . ,U s) = {U i ∈ R
Nmi | gi ≤ 0}

(14)

Φi(x0,U,U1, . . . ,U i−1,U i+1, . . . ,U s) = {U i ∈ R
Nmi |

U i ∈ argmin{Vi |U
i ∈ Ωi}} (15)

One can notice that the central controller problem as well as
each of the secondary controller problems can be recast as
multi–parametric programming problems where x0 is the pa-
rameter and U , U i are the optimisation variable. More specif-
ically, each of the secondary controller problem are multi–
parametric programming problems where the control policy U i

for the i–th controller is the optimisation variable and x0 and
the control policies U , U j, j 6= i are the parameters.

Each secondary controller has access to the optimisation prob-
lem of the rest of the secondary controllers either via the state xt

or via the announced policy of the central controller. In that case
it is most natural to introduce an equilibrium concept between
the secondary controllers.

V (x0,U
∗,U1∗, . . . ,U s∗) ≤V (x0,U,U1∗, . . . ,U s∗) (16a)

V1(x0,U
∗,U1∗, . . . ,U s∗) ≤V1(x0,U

∗,U1,U2∗ . . . ,U s∗) (16b)

...

Vs(x0,U
∗,U1∗, . . . ,U s∗) ≤V1(x0,U

∗,U1∗, . . . ,U s−1∗,U s)
(16c)

similar to the Nash equilibrium concept. The equilibrium can
be computed by direct comparison as in Faı́sca et al. [2007],
Liu [1998].

As was shown previously each of the optimisation problems
(11) and (12) can be recast as multi–parametric programming
problems. Hence, one can solve the problem by employing
multi–parametric programming techniques (Dua et al. [2002],
Pistikopoulos et al. [2002]). This is given in detail in the follow-
ing algorithm which applies multi–parametric programming to
solve the leader – follower problem (11)–(12)
Algorithm 2:

(1) Recast each of the secondary controller subproblems (12)
as a parametric optimisation problem where U i is the opti-
misation variable and x0, U , U j, j 6= i are the parameters.

(2) Solve each of the multi–parametric problems using a
multi–parametric programming algorithm and obtain the
multi–parametric solution of each of the controllers as

U i = Ki
ℓx0 +Ki

0ℓU + ∑
j 6=i

Ki
jℓU

j + ci
ℓ

if Li
ℓx0 +Li

0ℓU + ∑
j 6=i

Li
jℓU

j ≤ b
j

ℓ (17)

ℓ = 1, . . . , pi

where ℓ is the number of critical regions for the i–th multi–
parametric programming problem corresponding to the i–
th secondary controller. The set of pi linear functions of
U i in (17) defines the raitonal reaction set for the i–th
subproblem.

(3) Compute the equilibrium point (16).
(4) Substitute the the expressions of U i into the central con-

troller problem (11) and recast the problem as a multi–
parametric programming problem where U is the optimi-
sation variable and x0 is the parameter.

(5) Solve the resulting multi–parametric programming prob-
lem and obtain the parametric solution as an explicit func-
tions of x0

U = Kℓx0 + cℓ

if Lℓx0 ≤ bℓ (18)

ℓ = 1, . . . , p

Algorithm 2 obtains the central controller control policy as an
explicit function of the initial state x0 and the secondary control
policies as explicit functions of x0 and the central controllers
policy U i.e. obtains analytically the rational reaction set for the
i–th controller. Each time x0 is given then the central controller
can obtain its optimal policy by function evaluation from (18).
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The policy U is then announced to the secondary controllers
which obtain their policy based in x0 and U .

4. EXAMPLE

In this section the two multilevel optimisation methods for
hierarchical and decentralised control are illustrated by means
of an example. For this, the multiple person dynamic linear
quadratic optimisation problem presented in Nie et al. [2006] is
considered, which involves the coordination of three controllers
within a complex environment.

We assume first that the three controllers are structured as a
three level hierarchical control problem ((1), Section II). The
objectives (1a), (1d) and (1g) for each of the three levels in (1)
are given respectively by

J1 = min
u0 ,u1,u2

4x3 +3x1
3 +2x2

3 +
2

∑
t=0

{

(ut)
2 +

(

u1
t

)2
−

(

u2
t

)2
+2ut xt +(xt)

2
}

(19)

J2 = min
u2

0 ,u2
1,u2

2

2x3 +3x2
3 +

2

∑
t=0

{

2 ·ut u
2
t +

(

u1
t +1

)2
+

(

u2
t +1

)2
}

(20)

J3 = min
u1

0 ,u1
1,u1

2

x3 +2x1
3 −10x2

3 +
2

∑
t=0

{

−15ut +
(

u1
t −1

)2
−2u1

t u2
t +

(

u2
t

)2
}

(21)

the corresponding linear systems (1b), (1e) and (1h) are

xt+1 = xt +ut −2u1
t +u2

t , (22)

x2
t+1 = x2

t +2u2
t (23)

x1
t+1 = x1

t +2u1
t (24)

t = 0,1,2

respectively and the state and input constraints for each of the
systems and hence for each of the subproblems in (1) are

−20 ≤ ut ≤ 20, −10 ≤ xt ≤ 10 (25)

−30 ≤ u2
t ≤ 30, −10 ≤ x2

t ≤ 10 (26)

−30 ≤ u1
t ≤ 30, −10 ≤ x1

0 ≤ 10 (27)

where t = 0,1,2. By following the steps of Algorithm 1,
we obtain the explicit multi–parametric solution to the three
level hierarchical control problem which is given in Table 1.
The policy U = {u0,u1,u2} to the highest level of (1) for this
problem is given by four linear functions, each defined in a
different set of the space of x0. The policies of the two other
levels are given by a simple linear function of U . Given a value
for x0, let say x0 = 10 one can obtain the control policy U by
looking in which critical region x0 belongs i.e. critical region 4.
Then the policy is obtained by evaluating the expressions of U
in this region for the given value x0 = 10

u0 = −16.2732, u1 = 20, u2 = −20

These values of the policy are then used to obtain the policies
U2 and U1 of the lower levels from Table 1

u1
0 = −10.1366, u1

1 = −12, u1
2 = 8,

u2
0 = −10.1366, u2

1 = −12, u2
2 = 8.

The same problem of the three controller coordination is for-
mulated in the leader – follower structure (Figure 2, Section
III). The optimisation problem of the leader (central controller)
is formulated by considering (19) as the objective and (22) and
(25) the constraints. Similarly, (20), (23), (26) and (21), (24),
(27) form the optimisation problems of the two followers. One
should notice that in this problem each of the secondary con-
trollers also includes its own dynamics in the problem. Then, as
we discussed in Remark 1, the linear models of all three systems

Table 1. Solution to the hierarchical problem

Critical Region 1 Critical Region 2

u0 = 6.84615−0.76928x0 u0 = −0.333333−1.8519x0

u1 = −20 u1 = −1.33333+2.8148x0

u2 = 15.2308+0.15388x0 u2 = −2−2.4444x0

−10 ≤ x0 ≤−6.63161 −6.63161 ≤ x0 ≤ 7.36377

Critical Region 3 Critical Region 4

u0 = −1.53333−1.6889x0 u0 = −9−0.72732x0

u1 = 8.26667+1.5111x0 u1 = 20

u2 = −20 u2 = −20

7.36377 ≤ x0 ≤ 7.76466 7.76466 ≤ x0 ≤ 10

u1
0 = u2

0 = −2−0.5u0; u1
1 = u2

1 = −2−0.5u1; u1
2 = u2

2 = −2−0.5u2

Table 2. Solution to the decentralised problem

Critical Region 1

u0 = 1− x0; u1 = −8+ x0; u2 = 5− x0

v1
0 = v2

0 = −6+ x0; v1
1 = v2

1 = 3− x0

v1
2 = v2

2 = −10+ x0; −10 ≤ x0 ≤ 10

(22), (23), (24) have to be included in the three optimisation
problems (19), (20), (21) of the leader and the two followers
respectively. The objective functions in (19), (20), (21) have
already included terms corresponding to the states of each of
the systems (22), (23), (24). The problem is then solved as a
leader–follower multilevel optimisation problem by following
the steps Algorithm 2. The results are given in Table 2. The
policies of the central controller and the secondary controllers
are again obtained as linear functions of the initial condition
x0. The solution yields only one critical region in which each
of the policies of the central and the secondary controllers are
explicit linear functions of the initial state x0. For x0 = 10 the
control policies are u0 = −9, u1 = 2, u2 = −5, u1

0 = u2
0 = 4,

u1
1 = u2

1 = −7, u1
2 = u2

2 = 0.

4.1 Complexity analysis

In this section we briefly discuss a few complexity issues of
the two algorithms introduced in this work for the solution
of three–level hierarchical and decentralised control problems.
It is important to notice that in both Algorithms 1 and 2, the
number of critical regions depends on the size of the problem
that we encounter. With a significant increase in the number of
state and inputs of the systems and number of the constraints
involved in the two problems (1) and (11)–(12), it is possible
that the number of critical regions will also increase substan-
tially, thus increasing the computational cost. The methodology
described here involves convex objectives and linear systems
and constraints. The complexity of the problem increases once
nonlinear, nonconvex objectives, system dynamics and con-
straints are considered.

4.2 On–line multilevel optimisation

In many control applications it is rather possible that the hierar-
chical and decentralised control problems described by (1) and
(11)–(12) will have to be solved on–line to maintain a constant
level of control and supervision of the system under considera-
tion. In that case, the methodology described in Section II and
III moves the solution of the on–line multilevel optimisation
problems off–line and solve by employing multi–parametric
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programming techniques. The control policies, considered in
each of the subproblems of the multilevel problem, are im-
plemented on–line by performing function evaluations on the
explicit expressions given in the Step 2,4 and 5 of Algorithm 1
and the Steps 2,3 and 5 of Algorithm 2, each time the initial
states of the system are available. For example, if problem
(1) represents model–based predictive control of a sequentially
connected system where in each level a smaller subsystem of

the overall system is considered (Stanković and Šiljak [1989]),
then each time the control policies U , U1, U2 are obtained only
u0, u1

0 and u2
0 have to be applied to the system.

5. CONCLUSIONS

In this work the three–level hierarchical control and multilevel
decentralised control problems were treated. Two algorithms
were developed that solve the problems by recasting each opti-
misation problem in each level as a multi–parametric program-
ming problem. It was shown that the control policies at each
level and the rational reaction sets can be obtained analytically
as a set of explicit functions. There is currently non known work
relevant to the solution of multi–level optimisation problem,
such as the ones in Sections II and III, in the knowledge of
the authors, despite the vast research in the area of multilevel
optimisation and hierarchical control. This work attempts, pos-
sibly for the first time, to address the issue and motivate further
developments on the problems of hierarchical control and mul-
tilevel optimisation.
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T. Başar and H. Selbuz. Closed–loop stackelberg strategies with
applications in the optimal control of multilevel systems.
IEEE Trans. Autom. Contr., 24(2):166–179, 1994.

A. Bemporad, M. Morari, V. Dua, and E.N. Pistikopoulos. The
explicit linear quadratic regulator for constrained systems.
Automatica, 38:3–20, 2002.

P.A. Clark. Embedded Optimization Problems in Chemical
Process Design. PhD thesis, Dep. of Chem. Eng., Carnegie–
Mellon University, USA, 1983.

G. Cohen. On an algorithm of decentralised optimal control. J.
Math. Anal. Appl., 59:249–259, 1977.

E. Delaleau and A.M. Stanković. Flatness–based hierarchical
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