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Abstract: We consider a non relativistic charged particle in a 1D infinite square potential well. This
quantum system is subjected to a control, which is a uniform (in space) time depending electric field. It
is represented by a complex probability amplitude, solution of a Schrödinger equation on a 1D bounded
domain, with Dirichlet boundary conditions. We prove the almost global approximate stabilization of
the eigenstates by explicit feedback laws.
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1. INTRODUCTION

As in Rouchon [2002], Beauchard [2005], Beauchard and
Coron [2006], we consider a non-relativist charged particle in
a one dimensional space, with a potential V (x), in a uniform
electric field t �→ u(t) ∈ R. Under dipolar momentum approx-
imation assumption, and after appropriate changes of scales,
the evolution of the particle’s wave function is given by the
following Schrödinger equation

i
∂Ψ

∂ t
(t,x) = −∂ 2Ψ

∂x2
(t,x)+ (V(x)−u(t)x)Ψ(t,x).

We study the case of an infinite square potential well: V (x) =
0 for x ∈ I = (−1/2,1/2) and V (x) = +∞ for x outside I.
Therefore our system is

i
∂Ψ

∂ t
(t,x) = −1

2

∂ 2Ψ

∂x2
(t,x)−u(t)xΨ(t,x), x ∈ I (1)

Ψ(0,x) = Ψ0(x), (2)

Ψ(t,±1/2) = 0. (3)

It is a nonlinear control system, denoted by (Σ), in which, u, the
electric field, is a scalar control and Ψ(t,x) : R+ × I → C, the
particle’s wavefunction, is the state of the system. Furthermore,
the self-adjointness of the operators in the evolution equation
implies the conservation of the L2-norm: Ψ(t) ∈ S = {ϕ ∈
L2(I;C); ‖ϕ‖L2 = 1}.

For σ ∈ R, we introduce the operator Aσ defined by

D(Aσ ) = (H2 ∩H1
0 )(I;C), Aσ ϕ = −1

2

∂ 2ϕ

dx2
−σxϕ .

It is well known that there exists an orthonormal basis
(φk,σ )k∈N∗ of L2(I,C) of eigenvectors of Aσ :

φk,σ ∈ H2 ∩H1
0 (I,C), Aσ φk,σ = λk,σ φk,σ

where (λk,σ )k∈N∗ is a non decreasing sequence of real numbers.

For k ∈ N∗ and σ ∈ R, we define Ck,σ = {φk,σ eiθ ;θ ∈ [0,2π)}.
Note that, a change of the global phase does not change the
physical state of the system.

In order to simplify the notations, we will write φk, λk, Ck

instead of φk,0, λk,0, Ck,0. We have
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λk =
k2π2

2
, φk =

{√
2cos(kπx), when k is odd,√
2sin(kπx), when k is even.

(4)

When k ∈ N, σ ∈ R, Ψ0 = φk,σ and u ≡ σ , the solution of (1)-

(2)-(3) is given by Ψk,σ (t,x) = φk,σ (x)e−iλk,σ t .

Finally, for s,σ ∈ R, we define

Hs
(σ)(I,C) = D(A

s/2
σ ),

equipped with the norm

‖ϕ‖Hs
(σ)

=

(
∞

∑
k=1

λ s
k,σ |〈ϕ ,φk,σ 〉|2

)1/2

.

The goal of this paper is the study of the stabilization of
the system (Σ) around Ck,σ . More precisely, for k ∈ N∗ and
σ ∈ R small, we state feedback laws u = uk,σ(Ψ) for which the
solution of (1)-(2)-(3) with u(t) = uk,σ (Ψ(t)) is such that

limsup
t→+∞

distL2(I,C)(Ψ(t),Ck,σ )

is arbitrarily small. We consider the convergence toward the
circle Ck,σ because the wave function Ψ is defined up to a phase
factor. For simplicity sakes, we will only work with the ground
state Ψ1,σ . However, the whole arguments remain valid for the
general case.

Note that, even though the feedback stabilization of a quantum
system necessitates more complicated models taking into ac-
count the measurement backaction on the system (see e.g. Han-
del et al. [2005], Mirrahimi and Handel [2007]), the kind of
strategy considered in this paper can be helpful for the open-
loop control of closed quantum systems. Indeed, one can ap-
ply the stabilization techniques for the Schrödinger equation
in simulation and retrieve the control signal that will be then
applied in open-loop on the real physical system. As it will be
detailed below, in the bibliographic overview, such kind of strat-
egy has been widely used in the context of finite dimensional
quantum systems.

Before going through the statement of the main result and the
technicalities of a proof, let us give a brief bibliography on the
context.
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The controllability of a finite dimensional quantum system,

ι d
dt

Ψ = (H0 + u(t) H1)Ψ where Ψ ∈ CN and H0 and H1 are
N × N Hermitian matrices with coefficients in C has been
very well explored Ramakrishna et al. [1995], Albertini and
D’Alessandro [2003]. However, this does not guarantee the
simplicity of the trajectory generation. Very often the chemists
formulate the task of the open-loop control as a cost functional
to be minimized. Optimal control techniques (see e.g., Shi
et al. [1988]) and iterative stochastic techniques (e.g, genetic
algorithms Li et al. [2002]) are then two classes of approaches
which are most commonly used for this task.

When some non-degeneracy assumptions concerning the lin-
earized system are satisfied, Mirrahimi et al. [2005a] provides
another method based on Lyapunov techniques for generating
trajectories. The relevance of such a method for the control of
chemical models has been studied in Mirrahimi et al. [2005b].
As mentioned above, the closed-loop system is simulated and
the retrieved control signal is applied in open-loop. Such kind
of strategy has already been applied widely in this frame-
work Chen et al. [1995], Sugawara [2003].

The situation is much more difficult when we consider an
infinite dimensional configuration and less results are avail-
able. However, the controllability of the system (1)-(2)-(3) is
now well understood. In Turinici [2000], the author states
some non-controllability results for general Schrödinger sys-
tems. However, this negative result is due to the choice of
the functional spaces that does not allow the controllability.
Indeed, if we consider different functional spaces, one can get
positive controllability results. In Beauchard [2005], the local
controllability of the system (1)-(2)-(3) around the ground state
Ψ1,σ , for σ small is proved. The main tools in this aim are the
Nash-Moser implicit function theorem, the return method and
the quantum adiabatic theory. Furthermore, in Beauchard and
Coron [2006], the steady-state controllability of this nonlinear
system is proved (i.e. the particle can be moved in finite time
from an eigenstate Ψk to another one Ψ j).

Concerning the trajectory generation problem for infinite di-
mensional systems still much less results are available. The
simplicity of the feedback law found by the Lyapunov tech-
niques in Mirrahimi et al. [2005a], Beauchard et al. [2007] sug-
gests the use of the same approach for infinite dimensional con-
figurations. However, an extension of the convergence analysis
to the PDE configuration is not at all a trivial problem. Indeed,
it requires the pre-compactness of the closed-loop trajectories,
a property that is difficult to prove in infinite dimension.

In Mirrahimi [2006], one of the authors proposes a Lyapunov-
based method to approximately stabilize a particle in a 3D finite
potential well under some restrictive assumptions. The author
assumes that the system is initialized in the finite dimensional
discrete part of the spectrum. Then, the idea consists in propos-
ing a Lyapunov function which encodes both the distance with
respect to the target state and the necessity of remaining in
the discrete part of the spectrum. In this way, he prevents the
possibility of the “mass lost phenomenon” at infinity. Finally,
applying some dispersive estimates of Strichartz type, he en-
sures the approximate stabilization of an arbitrary eigenstate in
the discrete part of the spectrum.

In this paper, we study the stabilization of the ground state Ψ 1,σ

for σ in a neighborhood of 0. Adapting the techniques proposed
in Mirrahimi [2006], we ensure the approximate stabilization

of the system around arbitrary eigenstates and under general
settings. The main idea consists in proposing a Lyapunov
function which encodes the distance with respect to the target
state and at the same time prevents the “mass lost phenomenon”
in high-energy eigenstates.

The case σ = 0 represent a degenerate case (the linearized
system is not controllable; to be compared with the finite
dimensional problem Mirrahimi et al. [2005a]). Choosing σ �=
0 sufficiently small, we can remove this degeneracy. Therefore,
the problem is a little bit simpler in this case and will be
considered first.

In the next section, we consider the non-degenerate case σ �=
0. We provide the design technique and we check out the
performance of the control law on a simulation. Next, we state
the main result and give the main steps of the proof without
going through the detailed technicalities. A more complete
version of the proof will be soon submitted as a journal paper.

In Section 3, we consider the case σ = 0. Applying an implicit
Lyapunov theory we will remove the degeneracy problem. The
performance of the implicit design will be checked out on a
simulation. The proof of the provided result is quite similar to
the finite dimensional case Beauchard et al. [2007] and can be
adapted accordingly.

Finally, in Conclusion, we will address the possibility of apply-
ing the provided techniques in order to get a global controlla-
bility result.

Acknowledgments : The authors thank J.-M. Coron, R. van
Handel and P. Rouchon for interesting discussions on this work.

2. STABILIZATION OF C1,σ WITH σ �= 0

2.1 Control design

In this section, we consider the non-degenerate case of σ �= 0
for σ sufficiently small. We assume the initial state Ψ0 to be
in L2 and therefore we may consider its expansion over the
orthonormal eigenbasis, {φk,σ}∞

k=1 of Aσ :

Ψ0 =
∞

∑
k=1

〈
φk,σ | Ψ0

〉
φk,σ .

Here 〈. | .〉 denotes the Hermitian product of L2(I,C). While
trying to stabilize the ground state φ1,σ , the first approach would
be to consider the simple Lyapunov function

Ṽ (Ψ) = 1−|〈Ψ | φ1,σ 〉 |2.
Just as in the finite the dimensional case Beauchard et al.
[2007], the feedback law

ũ(Ψ) = ℑ(〈xΨ | φ1,σ 〉〈φ1,σ | Ψ〉)
where ℑ denotes the imaginary part of a complex, ensures the
decrease of the Lyapunov function. However, trying to adapt
the convergence analysis, based on the use of the LaSalle
invariance principle, the pre-compactness of the trajectories in
L2 constitutes a major obstacle. Note that, in order to be able to
apply the LaSalle principle for an infinite dimensional system,
one certainly needs to prove such a pre-compactness result. In
the particular case of the infinite potential well, it even seems
that, one can not hope such a result. Indeed, phenomenons such
as the L2-mass lost in the high energy levels do not allow this
property to hold true.

Similarly to Mirrahimi [2006], the approach of this paper is to
avoid the population to go through the very high energy levels,
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while trying to stabilize the system around φ1,σ . We, therefore,
consider the Lyapunov function

Vε(Ψ) = 1− (1− ε)
N

∑
k=1

|
〈
Ψ | φk,σ

〉
|2 − ε| 〈Ψ | φ1,σ 〉 |2. (5)

Here, the cut-off dimension N is fixed so that the initial state
Ψ0 is approximately spanned by the first N eigenstates; i.e.

1−
N

∑
k=1

|
〈
Ψ | φk,σ

〉
|2

is sufficiently small (this will be detailed in the main theorem
below). Note that this is always possible (as Ψ0 is in L2)
and makes the Lyapunov function depend on the initial state.
However, as it will be detailed in the Remark 2, taking Ψ0

in a Sobolev space H s with s > 0, we can choose this cut-off
dimension as a function of the H s-norm.

Deriving the Lyapunov function V ε with respect to time and
inserting the dynamics (1) with the control u = σ + v, we have

dVε

dt
=−v(t)ℑ

(
(1− ε)

N

∑
k=1

〈
xΨ | φk,σ

〉〈
φk,σ | Ψ

〉
+ ε

〈
xΨ | φ1,σ

〉〈
φ1,σ | Ψ

〉
)

.

(6)

Thus, the feedback law

v = vε (Ψ)= cℑ

(
(1− ε)

N

∑
k=1

〈
xΨ | φk,σ

〉〈
φk,σ | Ψ

〉
+ ε

〈
xΨ | φ1,σ

〉〈
φ1,σ | Ψ

〉
)

(7)

with c > 0, trivially ensures the decrease of the Lyapunov
function Vε . We claim that, the solution of (1)-(2)-(3) with
the initial condition Ψ0 (approximately spanned by the first N
eigenstates) and the control u = σ + vε(Ψ) satisfies

limsup
t→+∞

distL2(Ψ(t),C1,σ ) ≤ ε. (8)

Before stating the main result and going through the proof, let
us check this on a simulation.

As mentioned above the constant σ needs to be small. In fact,
one should choose σ , such that the perturbation σx is small

compared to the the operator − 1
2

∂ 2

∂x2 . We choose it here to be

σ = 2e + 1. We consider the initial state Ψ0 to be spanned
by the 3 first eigenstates of Aσ . More precisely, we take:

Ψ0 = 1√
2
(φ1,σ + φ3,σ ). As it will be seen in Section 3, such an

initial state is particularly hard to stabilize in a near degenerate
situation. The Figure 1 illustrates the simulation of the closed-
loop system when u = σ + vε with c = 1e + 3 and ε = 5e− 2.
The simulations have been done applying a third order split-
operator method, where instead of computing exp(−i dt (A σ +
vε x)) at each time step, we compute

exp(−i dt Aσ/2)exp(−i dt vε x)exp(−i dt Aσ /2).

Moreover, we consider a Galerkin discretization over the first
20 modes of the system (it turns out, by considering higher
modal approximations, that 20 modes are completely sufficient
to get a trustable result).

2.2 Main result and convergence analysis

The main result of Section 2 is the following

Theorem 1. Let N ∈ N∗. There exists σ ♯ = σ ♯(N) > 0 such

that, for every σ ∈ (−σ ♯,σ ♯) − {0}, γ ∈ (0,1), ε > 0, and

Ψ0 ∈ S∩H2 ∩H1
0 verifying

∞

∑
k=N+1

|〈Ψ0,φk,σ |2 <
εγ2

1− ε
and |〈Ψ0,φ1,σ 〉| ≥ γ, (9)
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Fig. 1. The approximate stabilization of Ψ1,σ , where Ψ0 =
1√
2
(φ1,σ + φ3,σ ) and therefore the cut-off dimension is 3;

as it can be seen the closed-loop system reaches the .05-
neighborhood of φ1,σ in a time T = 150π corresponding
to about 200 periods of the longest natural period corre-
sponding to the ground to the first excited state.

the Cauchy problem (1)-(2)-(3) with u(t) = σ + v σ ,N,ε(Ψ(t)),
where vσ ,N,ε is given by (7), has a unique strong solution Ψ,
moreover, this solution satisfies

liminf
t→+∞

|〈Ψ(t),φ1,σ 〉|2 ≥ 1− ε. (10)

Remark 2. The cut-off constant N can be uniformly chosen
when the initial state lies in a bounded subset of H 1

0 . Indeed,
when the H s-norm (for some s > 0) of Ψ0 is less than some
constant Γ, one can easily find a cut-off constant N(s,Γ) only
depending on s and Γ, such that the first part of the assump-
tion (9) is satisfied.

Remark 3. The second part of the assumption (9) does not
play a crucial role in practice. Actually, even for an initial
state such that 〈Ψ0 | φ1,σ 〉 = 0, applying a resonant control
field including the transition frequencies between the other N
eigenstates and the ground state, one can always make sure to
have instantaneously a non-zero population in φ 1,σ .

Before going through the proof of the approximate stabiliza-
tion (10), we need to establish the well-posed ness of the closed-
loop system.

Lemma 4. Let σ ∈R, N ∈ N∗, ε > 0 and Ψ0 ∈ S. There exists a
unique weak solution Ψ of (1)-(2)-(3) with u = σ + v σ ,N,ε(Ψ),

i.e. Ψ ∈C0(R+,S)∩C1(R+,H−2
(0)

(I,C)), the equality (1) holds

in H−2
(0)

(I,C).

Proof of Lemma 4: Consider T > 0 such that

TNeNT < 1. (11)

In order to build solutions on [0,T ], we apply the Banach fixed
point theorem to the map

Θ : C0([0,T ],S) → C0([0,T ],S)
ξ �→ Ψ

where Ψ is the solution of (1)-(2)-(3) with u = σ +vσ ,N,ε(ξ (t)).

The map Θ is well defined and maps C0([0,T ],S) into itself.

Indeed, when ξ ∈C0([0,T ],S), then u : t �→ σ + vσ ,N,ε(ξ (t)) is
continuous and thus the existence of a unique weak solution Ψ
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is a classical consequence. Notice that the map Θ takes values

in C0([0,T ],S))∩C1([0,T ],H−2
(0)

).

Let us prove that Θ is a contraction of C0([0,T ],S). Let ξ j ∈
C0([0,T ],S), v j = vσ ,N,ε(ξ j), Ψ j = Θ(ξ j), for j = 1,2 and
∆ = Ψ1 −Ψ2. We have

∆(t) = i

∫ t

0
e−iAσ (t−s)[v1x∆(s)+ (v1 − v2)xΨ2(s)]ds.

We easily have ‖v j‖L∞(0,T ) ≤ N for j = 1,2 and ‖v1 −
v2‖L∞(0,T ) ≤ 2N‖ξ1 − ξ2‖C0([0,T ],L2) thus

‖∆(t)‖L2 ≤
∫ t

0
N‖∆(s)‖L2 + N‖ξ1 − ξ2‖C0([0,T ],L2)ds. (12)

Therefore, Gronwall Lemma provides

‖∆(t)‖C0([0,T ],L2) ≤ ‖ξ1 − ξ2‖C0([0,T ],L2)NTeNT ,

and (11) justifies that Θ is a contraction of the Banach
space C0([0,T ],S). Therefore, there exists a fixed point Ψ ∈
C0([0,T ],S) such that Θ(Ψ) = Ψ. Since Θ takes values in

C0([0,T ],S) ∩C1([0,T ],H−2
(0)

), necessarily Ψ belongs to this

space, thus, it is a weak solution of (1)-(2)-(3) on [0,T ].

We have introduced a time T > 0 and, for every Ψ0 ∈S, we have
built a weak solution Ψ ∈ C0([0,T ],S) of (1)-(2)-(3) on [0,T ].
Thus, for a given initial condition Ψ0 ∈ S, we can apply this
result on [0,T ], [T,2T ], [2T,3T ] etc. This proves the existence
and uniqueness of global weak solutions for the closed-loop
system. �

Applying Lemma 4, it is a classical consequence that, for an
initial state Ψ0 ∈ H2 ∩H1

0 the unique weak solution is actually
a strong solution (see e.g. Pazy [1983]).

In order to prove the approximate stabilization, we need to state
a few Lemmas. After some simple but tedious computations,
based on the Rayleigh-Schrödinger perturbation theory, we
have the following Lemma:

Lemma 5. Let N ∈ N∗. There exists σ ♯(N) > 0 such that, for

every σ ∈ (−σ ♯,σ ♯)−{0}, j2,k2 ∈N
∗, and j1,k1 ∈ {1, · · · ,N},

verifying j1 �= j2 and k1 �= k2,

•
〈
xφ j2,σ | φ1,σ

〉
�= 0;

• λk1,σ −λk2,σ = λ j1,σ −λ j2,σ implies ( j1, j2) = (k1,k2).

For a proof of the first part, we refer to Beauchard [2005]. The
second part of the of the Lemma can be proven considering the
second order expansion of the eigenvalues with respect to σ .
This necessitates simple but tedious computations and we leave
it to the reader.

Lemma 6. Let σ > 0, N ∈ N, ε > 0 and (Ψn
0)n∈N be a sequence

of S and Ψ∞
0 ∈ L2 with ‖Ψ∞

0 ‖L2 ≤ 1 be such that

lim
n→+∞

Ψn
0 = Ψ∞

0 strongly in H−1(I,C).

Let Ψn (resp. Ψ∞) be the weak solution of (1)-(2)-(3) with
u(t) = σ +vσ ,N,ε(Ψ

n(t)) (resp. with u(t) = σ +vσ ,N,ε(Ψ
∞(t))).

Then, for every τ > 0,

lim
n→+∞

Ψn(τ) = Ψ∞(τ) strongly in H−1(I,C).

Proof of Lemma 6: We introduce C > 0 such that,

‖xϕ‖H−1 ≤ C ‖ϕ‖H−1 , ∀ϕ ∈ H−1(I,C). (13)

Such a constant does exist. Indeed, for every ξ ∈ H 1
0 (I,C),

xξ ∈ H1
0 (I,C) and

‖xξ‖H1
0

=

(∫

I
|xξ ′ + ξ |2dx

)1/2

≤ ‖ξ ′‖L2(1+CP)

where CP is the Poincaré constant on I. Thus, for ϕ ∈
H−1(I,C), we have

‖xϕ‖H−1(I,C) = sup
{
〈xϕ ,ξ 〉;ξ ∈ H1

0 (I,C),‖ξ‖H1
0

= 1
}

≤ sup
{
‖ϕ‖H−1‖xξ‖H1

0
;ξ ∈ H1

0 (I,C),‖ξ‖H1
0

= 1
}

≤ (1+CP)‖ϕ‖H−1 .

In order to simplify the notations, in this proof, we write v(Ψ)
instead of vσ ,N,ε(Ψ). We have

(Ψn −Ψ∞)(t) = e−iAt(Ψn
0 −Ψ∞

0 )+ i

∫ t

0
e−iA(t−s)σx(Ψn −Ψ∞)(s)ds

+i

∫ t

0
e−iA(t−s)[v(Ψn(s))− v(Ψ∞(s))]xΨn(s)ds

+i

∫ t

0
e−iA(t−s)v(Ψ∞(s))x[Ψn(s)−Ψ∞(s)]ds.

Using (7), ‖Ψn(s)‖L2 = 1, ‖Ψ∞(s)‖L2 ≤ 1 and the fact that

φk,σ ,xφk,σ ∈ H1
0 (I,C) for k = 1, ...,N, we get

|v(Ψn(s))− v(Ψ∞(s))| ≤ 2NCCσ (N)‖(Ψn −Ψ∞)(s)‖H−1 ,
(14)

where Cσ (N) = sup{‖φk,σ‖H1
0 (I,C);k ∈ {1, ...,N}}. The semi-

group e−iAt preserves the H−1-norm thus, using |v(Ψ∞(s))| ≤N
and (14), we get

‖(Ψn −Ψ∞)(t)‖H−1 ≤ ‖Ψn
0 −Ψ∞

0 ‖H−1

+C

∫ t

0
[|σ |+2NCσ (N)+N]‖Ψn(s)−Ψ∞(s)‖H−1 ds.

We conclude thanks to the Gronwall Lemma. �

Proof of the approximate stabilization (10): Applying (6)
and (7), Vε defined in (5) is a non-increasing positive function.
There exists α ∈ [0,Vε(Ψ0)] such that Vε [Ψ(t)] → α when
t → +∞. Since Ψ0 ∈ S and (9) holds we have

Vε(Ψ0) = 1− (1− ε)
N

∑
k=1

|〈Ψ,φk,σ 〉|2 − ε|〈Ψ,φ1,σ 〉|2

< 1− (1− ε)

(
1− εγ2

1− ε

)
− εγ2 < ε,

thus α ∈ [0,ε).

Since ‖Ψ(t)‖L2 = 1 for t ≥ 0, there exists Ψ∞ ∈ L2(I,C), and
an increasing sequence of times {tn}∞

n=1 ր ∞, such that

Ψ(tn) → Ψ∞ weakly in L2(I,C) and strongly in H−1(I,C).

Let ξ be the solution of




i
∂ξ

∂ t
= Aσ ξ − vσ ,N,ε(ξ (t))xξ , x ∈ I , t ∈ (0,+∞),

ξ (t,±1/2) = 0,
ξ (0) = Ψ∞.

Thanks to the Lemma 6, for every τ > 0, Ψ(tn + τ) → ξ (τ)
strongly in H−1(I,C) when n → +∞. Thus Vε(Ψ(tn + τ)) →
Vε(ξ (τ)) when n → +∞, as Vε(.) is continuous for the L2-
weak topology. Therefore Vε(ξ (τ)) ≡ α . As Vε(ξ (t)) is a non-
increasing function of time and as Vσ ,N,ε(ξ (0)) = α , (6) and (7)
imply vσ ,N,ε (ξ (τ)) ≡ 0. Thus

ξ (τ) =
∞

∑
k=1

〈Ψ∞,φk,σ 〉φk,σ e−iλk,σ τ

where

ℑ

(
N

∑
k=1

∑
j∈N∗ , j �=k

ak〈Ψ∞,φ j,σ 〉〈xφ j,σ ,φk,σ 〉〈Ψ∞,φk,σ 〉ei(λk,σ−λ j,σ )τ

)
≡ 0 (15)

with a1 = 1 and ak = 1− ε for k > 1. Applying Lemma 5 and
the Ingham inequality (see e.g. Krabs [1992]), we get
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〈Ψ∞,φ j,σ 〉〈Ψ∞,φ1,σ 〉 = 0,∀ j ≥ 2. (16)

Let us prove that 〈Ψ∞,φ1,σ 〉 �= 0. Since ‖Ψ∞‖L2 ≤ 1, we easily
have

Vε(Ψ∞) ≥ ε − ε|〈Ψ∞,φ1,σ 〉|2.
Moreover, Vε(Ψ∞) = α < ε , thus ε > ε − ε|〈Ψ∞,φ1,σ |2. This
ensures 〈Ψ∞,φ1,σ 〉 �= 0. Therefore (16) justifies the existence
of β ∈ C with |β | ≤ 1 such that Ψ∞ = β φ1,σ . Then, ε > α =

Vε(Ψ∞) = 1−|β |2, thus |β |2 > 1− ε . Finally, we have

lim
n→+∞

|〈Ψ(tn),φ1,σ 〉|2 = |〈Ψ∞,φ1,σ 〉|2 = |β |2 > 1− ε.

This holds for every sequence (tn)n∈N thus (10) is proved. �

3. STABILIZATION OF C1

3.1 Control design

In this section, we consider the degenerate case of σ = 0. This
degeneracy (non-controllability of the linearized system around
φ1) comes from the fact that the result of Lemma 5 does not
hold true for σ = 0. This particularly makes the control task
much harder. In order to see this, let us reconsider the example

of Figure 1. Considering the initial state Ψ0 = 1√
2
(φ1 +φ3) and

calculating vε(Ψ) given by (7), one can easily see that for the
symmetry reasons vε(Ψ) ≡ 0. In fact, φ1 and φ3 have the same
parity and therefore 〈xφ1 | φ3〉 = 0.

In order to overcome this degeneracy, we apply an implicit
Lyapunov technique, also considered in Beauchard et al. [2007]
for the finite dimensional case.

In this aim, we consider the Lyapunov function

Vε (Ψ) = 1− (1− ε)
N

∑
k=1

|
〈
Ψ | φk,σ(Ψ)

〉
|2 − ε |

〈
Ψ | φ1,σ(Ψ)

〉
|2, (17)

where the function Ψ �→ σ(Ψ) is implicitly defined as below

σ(Ψ) = θ (Vε(Ψ)) , (18)

for a slowly varying real function θ . We claim that such a
function σ(Ψ) exists. When Ψ solves (Σ), we have

dVε

dt
= −v(Ψ)ℑ

(
(1− ε)

N

∑
k=1

〈
xΨ | φk,σ(Ψ)

〉〈
φk,σ(Ψ) | Ψ

〉

+ε
〈
xΨ | φ1,σ(Ψ)

〉〈
φ1,σ(Ψ) | Ψ

〉)

− dσ(Ψ)

dt
2ℜ

(
(1− ε)

N

∑
k=1

〈Ψ,φk,σ(Ψ)〉〈
dφk,σ(Ψ)

dσ
,Ψ〉

+ε〈Ψ,φ1,σ(Ψ)〉〈
dφ1,σ(Ψ)

dσ
,Ψ〉

)
.

where the notation
dφk,σ(Ψ)

dσ means the derivative of the map

σ �→ φk,σ taken at the point σ = σ(Ψ). By definition of σ(Ψ),
we have

dσ(Ψ)

dt
= θ ′(Vε(Ψ))

dVε

dt
.

Thus, the feedback law u(Ψ) := σ(Ψ)+ vε(Ψ) where

vε (Ψ) =

cℑ
(
(1−ε)

N

∑
k=1

〈
xΨ | φk,σ(Ψ)

〉〈
φk,σ(Ψ) | Ψ

〉
+ε

〈
xΨ | φ1,σ(Ψ)

〉〈
φ1,σ(Ψ) | Ψ

〉)

with c > 0 ensures

dVε

dt
= −2cµvε(Ψ)2.

Here

1

µ
= 1+2θ ′(V (Ψ))×

ℜ
(
(1− ε)

N

∑
k=1

〈Ψ,φk,σ(Ψ)〉〈
dφk,σ(Ψ)

dσ
,Ψ〉+ ε〈Ψ,φ1,σ(Ψ)〉〈

dφ1,σ(Ψ)

dσ
,Ψ〉

)

is a positive constant, when ‖θ ′‖L∞ is small enough. Thus
t �→ Vε(Ψ(t)) is not increasing.

We claim that, the solution of (1)-(2)-(3) with initial condition
Ψ0 and the control u = σ(Ψ)+ vε(Ψ) satisfies

limsup
t→+∞

distL2(Ψ(t),C1) ≤ ε.

Before stating the main result of this section, let us check this
claim on a simulation. We consider the exact same example
as in Figure 1. As stated at the beginning of the section, the

initial state Ψ0 = 1√
2
(φ1 + φ3) is particularly a hard state to

stabilize around φ1. In the simulations of Figure 2, we consider
the function θ (r) = ηr with η = 7e + 2. Furthermore, in the
feedback design vε , we consider c = 1e+3 and ε = 5e−2. The
numerical scheme is similar to the simulations of Figure 1. In
order to calculate the implicit part of the feedback design σ(Ψ),
we apply a fixed point algorithm.
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Fig. 2. The approximate stabilization of Ψ1, where Ψ0 =
1√
2
(φ1 + φ3) and therefore the cut-off dimension is 3; as

it can be seen, the closed-loop system reaches the .05-
neighborhood of φ1 in a time T = 1000π corresponding
to about 1300 periods of the longest natural period corre-
sponding to the ground to the first excited state.

3.2 Main result

First, let us state the existence of the implicit function σ(Ψ) that
will be used in the feedback law. When X is a normed space,
a ∈ X and r > 0, we use the notation BX(a,r) := {y ∈ X ;‖y−
a‖X < r}.

Lemma 7. Let N ∈ N∗, ε > 0, and θ ∈C∞(R+, [0,σ ∗]) be such
that

θ (0) = 0, θ (s) > 0,∀s > 0 ‖θ ′‖L∞ < c∗, (19)

for a sufficiently small c∗. There exists a unique σ ∈C∞(BL2 (0,2)

, [0,‖θ‖L∞ ]) such that

σ(ψ) = θ (Vε(ψ)),∀ψ ∈ BL2(0,2),

where Vε is defined by (17).
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The proof of Lemma 7 is completely similar to the one given
in Beauchard et al. [2007] and is left to the author.

Here is the main result of this section:

Theorem 8. Let N ∈ N∗, γ ∈ (0,1), ε > 0, θ ∈C∞(R+, [0,σ ∗])
verifying (19) and ‖θ‖L∞ sufficiently small. Let σ ∈C∞(BL2(0,2)
, [0,‖θ‖L∞ ]) be as in Lemma 7. For every Ψ0 ∈ S ∩ (H2 ∩
H1

0 )(I,C) with

∞

∑
k=N+1

|〈Ψ0,φk〉|2 <
εγ2

32(1− ε/2)
and |〈Ψ0,φ1〉| ≥ γ, (20)

the Cauchy problem (1)-(2)-(3) with u = σ(Ψ)+ v σ(Ψ),N,ε(Ψ)
has a unique strong solution ψ , moreover this solution satisfies

liminf
t→+∞

|〈Ψ(t),φ1〉|2 ≥ 1− ε. (21)

Remark 9. Similarly to the Remark 2, the cut-off dimension N
can be uniformly chosen as a function of the H 1

0 -norm of Ψ0.
Moreover, similarly to the Remark 3, the second part of the
assumption (20) is not restrictive in practice.

The proof of the Theorem 8 can be adapted following the
same steps as in Beauchard et al. [2007] and the proof of the
Theorem 1. It is therefore left to the reader. A complete version
of this paper including a detailed proof of this theorem will be
soon submitted as a journal paper.

4. CONCLUSION

In this paper, we considered the approximate stabilization of
an infinite dimensional quantum system given by (Σ) and cor-
responding to a non-relativistic charged particle in an infinite
potential well. Applying an implicit Lyapunov technique, we
were able to stabilize any ε-neighborhood of an eigenstate φ k

of the system. Note that, this neighborhood is defined in the
L2-norm.

In a previous article Beauchard [2005], one of the authors
proved the local controllability of the same system around the
ground state in an H 7 sense. If, we were able to adapt the
result of this paper to get an H 7-approximate stabilization of the
ground state, together with the result of Beauchard [2005], we
would be able to show the global controllability of the system
in this functional space. Such a statement is quite a strong
controllability result for this system. It, therefore, constitutes
an interesting direction to be explored.
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