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Abstract: The use of the dynamically substructured systems (DSS) approach for engineering testing 
environments is receiving significant global interest.  DSS enables a full-size, critical component to be 
physically tested within a laboratory environment, whilst the remaining part(s) of the entire system are 
modelled as a real-time numerical simulation.  This paper will present a generalised substructuring 
framework, using a practical example for illustration.  Correspondingly, a linear substructuring control 
(LSC) strategy is presented, together with a development of the adaptive minimal control synthesis (MCS) 
algorithm.  Comparative simulation results of the two DSS control strategies are also included.  

Keywords: Dynamic substructuring, Adaptive control, Minimal control synthesis algorithm, Advanced 
dynamic testing. 

 

1. INTRODUCTION 

Much attention is currently being given to the principle of 
dynamically substructured systems (DSS) by the worldwide 
dynamic testing community.  The essential principal of DSS 
is to decompose a complete, or emulated, system (∑E) into 
two or more substructures.  The substructures must then be 
synchronised, to behave in exactly the same manner as the 
emulated system.  Often, a critical, possibly nonlinear, 
substructure is tested physically and the remaining 
substructure is modelled numerically, both running in real-
time.  DSS can have the following advantages over more 
conventional testing schemes (Blakeborough et al., 2001): 1) 
the critical component is full-size, but physical testing of the 
entire system is avoided; 2) similitude and nonlinear 
problems when using scale models are avoided; 3) 
convergence and stability problems associated with purely 
numerical simulations are avoided. 
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(Stoten and Hyde, 2006) presented a first step in the 
development of a generalised substructuring framework, 
including the essential control and actuator elements, as 
shown in Fig.1.  Here, a substructured system can be 
represented by three blocks, {G, G1, G2}, where G1 is 
typically related to the numerical substructure (∑N), G is the 
interaction constraint associated with both the physical and 
numerical substructures and G2 is typically associated with 
the physical substructure (∑P).  Note that {G, G1, G2} are not 
limited to single-input, single-output (SISO) transfer 
functions.  They can also describe multi-input, multi-output 
(MIMO) systems, in state-space or transfer function matrix 
forms.  Generally, both ∑N and ∑P may be comprised of more 
than one substructure. 

In Fig.1, z1 is the numerical substructure output response to d, 
the external excitation and z2 is the measured response from 
the physical substructure.  These outputs must be in near-
perfect synchronisation if a DSS is to function satisfactorily, 

so that in Fig. 1, the substructuring error, e, is always driven 
to zero by the action of an outer-loop DSS controller. 

 

 

 

 

 

 

 

Fig.1. The substructuring framework, with a linear 
substructuring controller; (Stoten and Hyde, 2006) 

A successful DSS controller must be able to cope with 
unknown, time-varying and nonlinear dynamics in the 
physical substructure (Bonnet, et al., 2007).  The DSS control 
problem is compounded by the fact that the addition of 
actuators within ∑P, plus the associated actuator inner-loop 
controllers, (collectively known as the transfer system), will 
cause significant synchronisation errors.  Therefore, it is vital 
that a DSS controller must also compensate for such effects. 

Thus, the linear substructuring controller (LSC) and the 
adaptive minimal control synthesis with error feedback 
(MCSEF) algorithms have both been proposed as viable DSS 
controllers; (Stoten and Hyde, 2006).  As illustrated in Fig.1, 
LSC is a 2-degree-of-freedom (DOF) controller, where Ke is 
the feedback loop component and Kd is the forward loop 
compensator.  The gains {Ke, Kd} can be synthesised from a 
complete knowledge of the DSS dynamics.  However, it is 
known that the LSC policy may significantly deteriorate in 
the presence of nonlinearities and/or unknowns in the 
dynamics.  In such cases the adaptive MCSEF algorithm is 
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proposed for the control of DSS.  The MCSEF controller, 
which can be used in parallel with LSC, is of the same 
structure as Fig.1.  However, in MCSEF, {Ke, Kd} are 
directly and automatically synthesised as time-varying 
adaptive gains.  The DSS synchronisation error dynamics are 
then ensured to possess the property of global asymptotic 
stability.   

Hence the principle objectives of this paper are to present a 
more generalised DSS framework than presented in (Stoten 
and Hyde, 2006), together with the corresponding LSC and 
MCSEF control strategies for that framework.  In section 2, 
we will further explore the substructuring technique for more 
generalised systems than have hitherto been investigated.  
Section 3 will synthesise the LSC and MCSEF controllers, 
based upon the developments in section 2.  Comparative 
simulation studies in section 4 will investigate the 
performance of LSC and MCSEF under some demanding test 
conditions.  Finally, conclusions to the work are drawn 
together in section 5.  

2. A GENERALISED DSS FRAMEWORK 

This section investigates a generalised framework for DSS 
analysis and synthesis.  To better illustrate the concepts, we 
will describe a 2-wheeled, ‘quasi-motorcycle’ (QM) DSS, 
currently being developed and built at the University of 
Bristol.  Without loss of generality, this example is used in 
section 3 to illustrate show how DSS controllers are 
synthesised.  The example is also used in section 4 to show, 
by way of simulation, the effectiveness of the proposed DSS 
controllers. 
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2.1 Substructuring of the QM system 

The emulated QM is shown in Fig.2.  It is decomposed into 
three substructures: the front wheel/tyre (∑1), the rear 
wheel/tyre (∑2) and the vehicle rigid body, with front and 
rear suspension struts (∑3).  The two wheels are excited by 
external road disturbances, d1 and d2.  The vehicle body can 
then have an asymmetric mass distribution, so that the centre 
of mass is offset from the geometric centre.  Relevant 
parameters are listed in the Appendix, Table 2.  In many DSS 
there is a certain arbitrariness over the selection of the 
synchronised variables and the interaction constraints.  For 
example, in the QM DSS, the forces ({f31, f1}, {f32, f2}) and 
the displacements ({y31, y1}, {y32, y2}) can either be selected 
as synchronised variables or interaction constraints. 

 

 

 

 

 

 

 

Fig.2. Substructuring of the QM system 

In this paper, the original substructuring framework is 
generalised according to the mode(s) of operation (MO) 
within the physical substructure(s).  In particular, we 
conceive two main categories of MO: (a) inertial forces are 
imparted on the test component (eg. using a shaking table) 
and/or (b) reaction forces are imparted onto the test 
component (eg. using a reaction frame).  When the DSS 
contains only one ∑P with one MO, we say it has a single-
mode (SiM).  Two or more the same type of MO constitute a 
multi-mode (MuM) DSS.  If the DSS has different MOs, then 
it is called a mixed-mode (MiM) system.  To complete the set, 
a DSS which has entirely numerical substructures is said to 
be a numerical-mode (NuM) system and one which has 
entirely physical substructures is said to be a physical-mode 
(PhM) system.   

Table 1 indicates how the five substructuring modes can be 
applied to the QM system.  In the table, N and P denote the 
numerical and physical substructures, respectively.  If either 
∑1 or ∑2 is a physical substructure, the imparted forces are of 
the reaction type, whereas if ∑3 is a physical substructure, the 
forces are of the inertial type.  The table also indicates that 
the SiM can be categorised as SiM1 or SiM2, since the single 
MO can either be in ∑3 or in either of ∑1 or ∑2.  For example, 
the QM SiM1 configuration is shown schematically in Fig.3.   

Table 1.  Substructured MO for the QM 

 SiM1 SiM2 MuM MiM NuM PhM
∑1 N P P P N P 
∑2 N N P N N P 
∑3 P N N P N P 

2.2 Synthesis of SiM1 for the QM 

At the University of Bristol, we are investigating all of the 
MO shown in Table 1.  However, for the sake of brevity in 
this paper (and without loss of generalisation), we now 
concentrate solely on SiM1.  From the outset of the SiM1 
design, we choose to synchronise displacements and use 
forces as interaction constraints.  The main reason for this 
choice is that force measurements tend to be relatively noisy, 
so that displacement control is the preferred option.  However, 
there are situations when force control results in a more well-
conditioned controller synthesis procedure.  Displacement 
versus force control issues will be addressed in a subsequent 
work. 

With reference to Fig. 3, the forces, {fa31, fa32}, are measured 
by the two actuator load cells and are fed back to the 
numerical substructures as interaction constraints.  
Simultaneously, {∑N1, ∑N2} generates two numerical 
displacement outputs, {y1, y2}, in response to the road 
disturbances, {d1, d2}, and the above constraint forces.  The 
actuator displacements, {ya31, ya32}, are controlled via the 
action of the DSS outer-loop signals, {u31, u32}.  Then, the 
control objective is to synchronise {y1, y2} with {ya31, ya32} 
and thereby minimise the substructuring displacement errors, 
{ey1, ey2}.  Note that Fig. 3 does not explicitly show the inner-
loop controls within the actuator systems.  These are usually 
of a basic (PID) nature, supplied as part of a proprietary 
package, usually having fixed parameters.  In this work we 
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assume that each inner-loop controller/actuator set is 
combined into one dynamic subsystem. 
assume that each inner-loop controller/actuator set is 
combined into one dynamic subsystem. 
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Fig. 3. The first Single-Mode substructured system Fig. 3. The first Single-Mode substructured system 

  

Therefore, from Fig. 3, the transformed response of ∑N1 is: Therefore, from Fig. 3, the transformed response of ∑N1 is: 
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Where the force fa31 is determined from the equations of 
motion of the rigid body in heave and pitch, together with the 
corresponding linearised trigonometric relationships in the 
kinematic equations (ie assuming the body angle is small): 
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Note that the linearised relationships are used in section 3 for 
the synthesis of the LSC controller.  However, the full 
nonlinear dynamics are used in the comparative simulations 
of section 4. 

Similarly, for ∑N2: 
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where P1, P2 and P3 are equivalent masses associated with the 
vehicle body dynamics: 
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A simple first-order transfer function was obtained for each 
inner-loop controller/actuator set, via a process of system 
identification: 
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Substitution of (6) and (7) into (2) and (4) yields the 
interaction force dynamics in terms of u31 and u32.  In the 
following, the interaction forces are then substituted into (1) 
and (3), generating z1 (= [y1   y2]T): 
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where G1 is a 2×2 diagonal transfer function matrix and G is 
a 2×2 transfer function matrix with interaction dynamics. 
Similarly, z2 (= [ya31   ya32]T) is determined from (6) and (7) as: 
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where G2 is also a 2×2 diagonal transfer function matrix.  
Equations (8) and (9) therefore generalise the previous work 
of (Stoten and Hyde, 2006) into the MIMO domain.   

3. SYNTHESIS OF SUBSTRUCTURING CONTROLLERS 

3.1 The linear substructuring controller (LSC) 

In most of the following we omit the Laplace variable, s, for 
the sake of brevity.  From (8) and (9), the error transfer 
function, given by e = z1 - z2, can be written as: 
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 (10) 

where Gu = G + G2 and G1 = Gd..  The MIMO linear 
substructuring controller, based on the notation of Fig.1, is 
then proposed as: 
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Substituting (11) into (10), the error can be written as: 

[ ] [1
u e d u de I G K G G K d−= + −  (12) 

We see that (12) implies a 2-DOF control solution, with the 
first part of the solution, which ensures e →0, being given by: 
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assuming that Gu is non-minimum phase and non-singular.  
Then, closed-loop stability is guaranteed if Ke is determined 
by selecting the roots of the following decoupled closed-loop 
characteristic equations in the left-hand s-plane:  
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and also assigning the off-diagonal entries of Ke as: 
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For example, Fig. 4 respectively shows: (a) the Bode plot for 
Kd11(jω), as determined by (13); (b) the roots’ loci of the 
characteristic equation in (14), when Ke11 is a simple gain; 
(c) the Bode plot for Ke21(jω) as determined by (17).  In the 
above roots’ loci design, to achieve critical damping of the 
non-dominant pair at s = – 173 + 0j, the value of gain is 
determined as Ke11 ≈ 35. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.  (a) Bode plot for Kd11(jω); (b) Roots’ loci for Ke11 
design; (c) Bode plot for Ke21(jω) 

 

3.2 The minimal control synthesis with error feedback 
(MCSEF) algorithm 

The MCSEF algorithm is a derivative of the original MCS 
algorithm of (Stoten, 1989).  MCS is an adaptive, model-
referenced control strategy, which requires no a priori 
information on the plant dynamic parameters.  Direct on-line 
computation of the adaptive, time-varying gains effectively 
enables the controller to accommodate parameter variations 
and uncertainties.  Normally, the MCS algorithm comprises a 
parallel reference model, so that the state error between the 
model and the plant is ensured to be globally asymptotically 
stable.  MCSEF was developed specifically for substructuring 
control, (Stoten and Hyde, 2006), in order to mirror the 
structure of the LSC algorithm; see Fig.5.  Notwithstanding 
the fact that the parallel reference model has been removed, 
the numerical substructure can now be considered as an 
ersatz replacement for it. 

 

 

 

 

 

Fig. 5  MCSEF within a substructured environment 
Bode Diagram
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The hyperstability proof of the global asymptotic stability of 
MCSEF, within the given substructuring environment is 
based, is detailed in (Stoten and Hyde, 2006) and will not be 
repeated here.  However, we do present the main controller 
equations in order to give some indication of the simplicity of 
the formulation.  Thus, the control signal and adaptive gains 
are generated according to (18)-(20): 
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where {α, β} are fixed scalar adaptive weights, which are 
selected empirically (eg. Stoten, 1992).  The term xe is the 
synchronisation state error and ye is the output error, 
generated directly from xe, in order to ensure strictly positive 
real dynamics for the hyperstability proof (Popov, 1973; 
Landau, 1979). 

4.  COMPARATIVE SIMULATION STUDIES 

We now compare the relative performances of SiM1 under 
both LSC and LSC+MCSEF control. 

4.1 Simulations with parameters set to nominal values 

Swept sinusoidal excitations in the range 0.1-5.0Hz, duration 
20s and amplitude 0.01m, are imposed on {∑N1, ∑N2} to 
simulate road perturbations.  In addition, a 1.0s pure delay is 
imposed between the application of the disturbances on the 
front and rear wheels.  Initially, the parameters of the 
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nonlinear dynamics of {∑P3} are known perfectly, so that the 
LSC achieves excellent synchronisation between {∑N1, ∑N2} 
and {∑P3}; see Fig. 6, which also includes the emulated 
responses, labelled emu yi.  In particular, the synchronisation 
errors, {ey1, ey2}, are in the range of ±0.2mm.  Fig. 7 shows 
the effect of additional MCSEF action, where the adaptive 
weights, {α, β}, are set empirically to {1000, 100}.  Only the 
front wheel/tyre responses are shown for the sake of brevity.  
Since the system parameters are well-known, the amount of 
adaptive action required is relatively small. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. LSC: nominal DSS parameter values 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 MCSEF+LSC: nominal DSS parameter values 

4.2 Simulations with parameter variations 

In DSS implementations, the most significant cause for 
concern relates to unknown and changing actuator dynamics.  
Hence, we introduce a factor of 10 change in each of the 
actuator inner-loop parameters, {a31, b31} and {a32, b32}, 
reducing them from 8.3 to 0.83.  Fig. 8 shows the large 
substructuring errors, of the order ± 4mm, resulting from the 
use of LSC on its own.  However, on introducing MCSEF, 
the resulting errors are now reduced by the adaptive effort, to 
values in the range ± 1mm; see Fig. 9. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 LSC: DSS parameter values changed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 MCSEF+LSC: DSS parameter values changed 
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5. CONCLUSIONS 

The main conclusions to be drawn from this work are as 
follows: 

• A generalised framework for dynamically substructured 
systems (DSS) has been established. 

• We have shown that the DSS framework can be used to 
synthesise a linear substructuring controller (LSC), 
providing a basis for achieving the exacting levels of 
substructure synchronisation that are required.  However, 
LSC performance degrades as parameter uncertainty 
increases. 

• An extension of the adaptive minimal control synthesis 
(MCS) algorithm, which incorporates error feedback (EF), 
has been synthesised for the DSS problem.  The new 
algorithm, MCSEF, can be viewed as an adaptive version 
of LSC. 

• LSC and MCSEF can be used in parallel with one another 
for DSS control. 

• Simulations showed that the addition of an MCSEF 
component enabled excellent synchronisation of DSS 
substructures, despite the presence of significant 
parameter uncertainties in the actuator dynamics. 

Future work in this field will centre on the further 
development of the generalised dynamic framework of DSS 
and the corresponding synthesis and analysis of new LSC- 
and MCSEF-based controllers.  In addition, as the 
construction of the quasi-motorcycle rig draws near to 
completion, experimental verification of the new DSS 
concepts will feature heavily in our future work. 

Finally, the issue of whether to use displacement 
synchronisation (with force as an interaction constraint), or 
force synchronisation (with displacement as an interaction 
constraint), or a combination of these, has not yet been 
resolved.  Preliminary results show that different modes of 
operation yield different levels of conditioning of the 
controllers, depending on the synchronisation variables that 
are used.  Thus, another objective of our future research will 
be to solve this problem and thereby generate best-
conditioned control strategies. 
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APPENDIX   NOTATION FOR THE QUASI-
MOTORCYCLE SUBSTRUCTURED SYSTEM 

Table 2.  Notations and Parameters 

Parameter Description Values 
 

Vehicle rigid body 
m3 
J3 
L3 
L31, L32 

mass 
moment of inertia 
length 
lengths from front and rear 
end to the centre of mass 

160kg 
60kgm2 

2m 
0.8m, 1.2m

 
Front and rear suspension struts 

k31, k32 
c31, c32 

suspension spring stiffness  
suspension damping 

8000N/m 
1120N/m s

 
Front and rear wheels/tyres 

m1, m2 
k1, k2 
c1, c2 

overall mass 
tyre radial stiffness 
tyre radial damping 

15kg 
7000N/m 
454N/m s 

 
Nominal actuator parameters 

a31, a32 
b31, b32 

actuator denominator 
actuator numerator 

8.3s-1 

8.3m/V s 
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