
Testing of Control Programs in Distant
Education ?

Richard Šusta ∗ Pavel Burget ∗∗

∗ DCE-Prague: Department of Control Engineering, Faculty of
Electrical Engineering, Prague, Czech Republic, (Tel: +420

22435-7359; e-mail: richard@susta.cz)
∗∗ DCE-Prague, (Tel: +420 22435-7610; e-mail:

burgetpa@control.felk.cvut.cz)

Abstract: The paper deals with automatic testing of programmable logical controller (PLC)
programs in a distant education. Students control a physical model, which that has also its
virtual counterpart. While one user is connected to the physical model, others debug programs
with the aid of the virtual model. We discuss the structure of models, the organization of
education, and the testing process of student’s programs. Finally, we present a new theory of
δ-graphs used for conversion programs into a timed abstraction of PLC suitable for testing, as
the main contribution of this paper.

Keywords: Educational aids; Verification; Automatic testing; Programmable logic controllers;
PLCs; Timed automata.

1. INTRODUCTION

Laboratory experience is considered to be a critical com-
ponent of all technical coursework, which is especially
valid for a distant education in control engineering. Phys-
ical models of simplified technological processes represent
time-tested teaching aids. Undoubtedly, the students will
better understand theoretical parts, if they can practi-
cally apply their knowledge by creating their own control
programs. However, there are many difficulties associated
with providing of distant access to physical models without
direct supervision of teachers.

In the first place, selected physical models for distant
education must be fully ”student-proof”, i.e. practically
indestructible by unskillful beginners — some students
perform experiments that go against of common sense.
Additionally, the models should constitute meaningful
systems, at least distantly relative to real technologies.
Finally, we need only such processes, initial states of which
are always easily controllable, i.e., if a model begins in a
certain initial state, it will again return to that state after
undergoing some predefined control actions.

We can easily meet all conditions above by virtual models,
but physical models undoubtedly offer more gains in
terms of touches with reality and stronger motivation for
students.

Figure 1 depicts one of our physical models suitable
for distant education, which was described in detail in
[Burget et al.(2004.)]. Colored ping-pong balls are released
one by one from the upper storage bin. They are picked by
two way valve that alternately pushes out two horizontal
rods. When the lower rod is pushed out, the optical sensor

? This work is supported by euSophos 2C06010 project granted by
the Ministry of Education.

Web
camera

Sensor
of colors

Blower

2way valve:
Ball pick up

Air
jets

Light
gates

Sliding door

Ball storage bin
PLC

Conduit

Fig. 1. Physical model of sorting of colored balls

recognizes the color of a ball that has just felt down from
the bin. If the rods are switched again, i.e. the upper rod
is pushed out, the ball is released. It rolls down through
tree-like chutes, in which it is directed by air blows from
the air jets placed at forks. Its positions are indicated
by four light gates. The chutes are ended by the sliding
doors. When the doors are shifted, balls fall down into
the conduit. The blower moves them back into the upper
storage bin. Students should sort balls according to colors.
They write programs in a free demo version of WAGO-IO-
PRO development environment that allows creating simple
ladder diagrams suitable for training purposes.

Programs can be debugged by several ways, depicted in
Figure 2. D level means a direct connection to the model
from laboratory. A remote connection to the model with
the aid of the web server, marked as R level, represents

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 11648 10.3182/20080706-5-KR-1001.2283



S
im

u
la

ti
o

n
s

e
rv

e
r

W
E

B
S

e
rv

e
r

Power

P
h
y
s
ic

a
l m

o
d
e
l

PLC

Offline
programming

tool

User’s program

V
irtu

a
l c

o
u
n
te

rp
a
rt

Running
program

Visuali-
zations

of model

Verification
server

Camera

Model of
controlled by

user’s program

system

Database of student s results’

R

S

V

D

Fig. 2. Flow of user’s programs

a more flexible approach. Students upload program files
to the web server, which downloads them into the pro-
grammable logical controller (PLC) connected to the phys-
ical model, and they watch the behavior of the physical
model by a real-time web camera.

We utilize this solution successfully in our courses since
2002 year. Nowadays, we have 3 different models fully suit-
able for remote connections. The sorting model described
above is one of them. The remote approach on R level
has many advantages, but also a drawback — one cycle
of a model operation (i.e. rolling down of all balls through
chutes) always requires exclusive access. Therefore, multi-
ple students cannot efficiently share the model at a time.

We improved the situation by creating the simulation
server, see S level in Figure 2. Meanwhile one user utilizes
the physical model other students can debug their pro-
grams with the aid of its virtual counterpart, which has
nearly the same behavior as the corresponding physical
model. There are certainly some minor differences for spe-
cial cases of ball positions, but the virtual model emulates
the physical model exactly for all correct control programs.

After an initial login process, students download their web
client modules, if they do not have them yet. The modules
are sent directly to their computers from the simulation
server. The client module contains mainly visualization
support and graphical data of all static elements. If a
student uploads his/her control program to the simula-
tion server, he/she will receive only responses with data
describing both the movements of balls and the states of
main program variables. Therefore, huge data blocks are
downloaded only in the beginning, all following network
communication is minimized.

The simulation server offers even more functionality than
the physical model. Students can replay received data
streams several times. If they interrupt visualizations in
an interesting state, it is possible to step forward or
backward in time and to watch corresponding PLC inputs
and outputs.

The number of users of the model was increased but it has
also prolonged the validating phase. After students submit
their final programs to obtain credits, teachers must again
recheck their works with the aid of the virtual or physical
model, which entails long exhausting operations. Further-
more, it sometimes happens under unfavorable conditions
that erroneous programs successfully undergo teacher’s
brief check. The simulation server certainly finds out au-
tomatically if uploaded programs have terminated with
correct results, but single simulations do not naturally
reveal all errors.

We decided to add the verification server, see V level
in Figure 2, which tests submitted control programs. It
reveals more errors, therefore, its results can be also con-
sidered as more reliable information for assigning credits
to students. The testing process needs certainly a faster
modeling method than the calculation of exact balls move-
ments performed by the simulation server for graphical
visualizations.

1.1 Outline of Following Sections

As the main contribution of this paper, we describe the
testing method for V level in Figure 2, based on timed
abstractions. In the next section, we first define timed ab-
straction of PLC program, abbreviated as TAPLC, which
represents the main ground for simulations and tests. In
Section 3, we introduce TAPLCTrans method that trans-
forms PLC source code into TAPLC form. Then in Section
4, we describe our testing method based on TAPLC that is
used on V level in Figure 2. Finally, we look at our future
plans in the conclusion.

2. TIMED ABSTRACTION OF PLC PROGRAM

In this section, we first resume several properties of uti-
lized PLC controller that are important for the following
paragraphs. Finally, we define TAPLC.

PLC controller used in our model operates in classical
cyclic manner, which assures synchronizing I/O data with
the evaluations of its program. One PLC scan consists
of consequent performance of three following steps, see
Figure 3:

Input scan: Hardware inputs X are polled or sampled
respectively and their values are stored in inner PLC
memory called Input image;

Program scan: C program code is executed once. It
calculates new outputs and writes them into inner PLC
memory called Output image; and

Output scan: As soon as C program is terminated, the
values in output image are copied into corresponding
peripherals U .

PLC scans are generally irregular, because a new PLC scan
begins after finishing the previous one and the length of
the scan depends on evaluation time of its instructions.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11649



PLC

scan

I n p u t  s ca n

In p u t  s ca n

Ou tp u t  s ca n

Ou tp u t  s ca n

Pro g ra m  sca n

In
p

u
t 

 i
m

a
g

e
o

f 
 x

O
u

tp
u

t
im

a
g

e
  o

f  u

C - control

program
calculates

outputs

x ∈ X u U∈

sampling of I/O

P r o g r a
m

s
c

a
n

Fig. 3. PLC scan cycle

But PLC programs behave as event driven systems, thus,
we may suppose without loss of general character that PLC
scans are performed at regular time intervals τ , where τ
value should be much less than a permissible maximal PLC
time response to input signals.

PLC programs frequently use software timers updated
only during program scans. If we suppose regular PLC
scan, then a software timer with tp preset time will finish
its timing only after t = n ∗ τ time, where n is an integer
number satisfying n ∗ τ ≥ tp > (n − 1) ∗ τ . Therefore, it
is possible to replace software timers by appropriate scan
counters.

In following definitions, variables will be emphasized by
membership in V, the set of all variables.
Definition 1. A scan counter s(f, g,T) is an automaton
of Moore’s family with one (enabling flag) input f ∈ V,
one output gate g ∈ V, sets of states Q = {q0, q1, ...qT },
|Q| = T + 1, where T > 0 is a given integer constant. Q
has has always q0 as its initial state. Output g equals to 1
only in qn state, otherwise g = 0, and δ transition function
is defined by:

δ(qi, g) =

{
qi+1 : if f 6= 0 and i < n
qn : if f 6= 0 and i = n
q0 : otherwise

A scan counter can be easily implemented by incrementing
an accumulator according to f flag value.
Definition 2. Let S be a finite set of m scan counters,
S = {s1(f1, g1,T1), s2(f2, g2,T2), ...sm(fm, gm,Tm)}. We
define flag(S) and gate(S) sets by

flag(S)
df
= {fi ∈ si | si ∈ S, i = 1..|S|}

gate(S)
df
= {gi ∈ si | si ∈ S, i = 1..|S|}

We must also distinguish two initializations:

(1) All variables are always initialized to specified values
when a new C program is downloaded into PLC;

(2) For safety reasons PLC operating systems perform an
additional partial initialization called pre-scan before
beginning the first program scan of C. Some variables
belonging to outputs of selected non-retentive instruc-
tions are rewritten by their default values, usually by
zeros. The set of pre-scan initializations results from
C structure.

Software timers can also be retentive or non-retentive.
PLC instruction sets offer several timer types, e.g. pulse
timers, timers on delay, or timers off delay.

Ou tp u t sI n p u t s X U

M

OS

s1
g f

11

s2
g f

22

sm
g f

mm

gate( )S flag( )S

read only
data

S - scan
counters

Fig. 4. Timed abstraction of PLC

Hypothesis 3. Let C be a PLC program with a regular
program scan. If all its non-retentive software timers have
constant preset times, then C can be modified to function-
ally equivalent C′, in which all non-retentive timers are
replaced by scan counters.

The simple proof is performed by the constructions of
such replacements, but a proposition valid for all possible
PLC programs needs more detailed assumptions about
hypothetical timer instructions exceeding the limited size
of this paper. Thus, we have presented only the hypothesis.

For correctness of the following mathematical notations,
we need α(.) construction.
Definition 4. Let V ⊆ V be a finite ordered set of vari-
ables, then α(V ) creates an alphabet set containing n-
tuples of all possible combinations of the values that can
be assigned to variables in V , where n = |V |. If |V | = 0,
then α(V ) is defined as an empty set.

Now we can finally present the definition of a timed
abstraction of PLC program.
Definition 5. (TAPLC). Given a tuple

A
df
= 〈τ,Σ,Ω, S,Ω(0), δ(C)〉

where τ > 0 constant represents regular PLC scan time,
Σ ⊆ V and Ω ⊆ V are finite ordered disjunctive sets of
input and output variables, Σ∩Ω = ∅, S is a finite ordered
set of scan timers, Ω(0) describes all initial values of Ω
variables and their pre-scan initializations, if any. If δ(C)
mapping satisfies

δ(C) : α(Σ)× α(Ω)× α(gate(S)) → α(Ω)× α(flag(S))

then A is called an timed abstraction of a PLC program
(abbreviated as TAPLC).

In other words, TAPLC represents the results of program
scans performed in regular time intervals τ with the aid of
δ(C) mapping and scan counters S.

If we have a given PLC, then Ω of corresponding TAPLC
consists of U PLC outputs (see Figures 4 and 3) and M
internal PLC memory, i.e. Ω = U ∪M .

Σ set of TAPLC consists mainly of X inputs of PLC some-
times extended by read-only data from PLC operating
system, if they are applied. But their set is frequently

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11650



empty for the presented model, thus, Σ = X in many
cases. All timers instructions with constant preset times
are converted into scan timers in S set.

In each program scan, we first update all enabled scan
counters, then we evaluate δ(C). But if there were no
changes of Σ, Ω, and gate(S) values, we can skip δ(C)
evaluation and use last values of Ω, see algorithm on Page
6. In this way, TAPLC accelerates simulations of PLCs.

The second advantage of TAPLC concerns its close rela-
tion to a classical timed automaton [Alur and Dill(1994)].
Testing of such timed automaton is mostly performed by
its conversion into other models. TAPLC utilizes proper-
ties of PLCs to bypass the first step and to create directly
easily testable automaton, which moreover expresses bet-
ter PLC behavior.

TAPLC definition does not contain any construction algo-
rithm; it will be the main topic of the next section.

3. TAPLCTRANS ALGORITHM

In this section, we introduce TAPLCTrans algorithm con-
verting a subset of C programs into special oriented graphs.
Definition 6. (δ-node). An δ-node is a tuple d = 〈I,O, δ〉,
where I ∈ V and O ∈ V are finite disjunctive ordered sets
of d inputs and outputs, I ∩ O = ∅, and δ represents a
mapping δ : α(I) → α(Q).
If |I| = 0 and |O| = 1 then d is called a beginning δ-node.
If |I| = 1 and |O| = 0 then d is called an end δ-node,
otherwise d is called a middle δ-node.
If P is a given finite set of δ-nodes, then the sets of all
inputs and outputs are defined by:

in(P )
df
=

|P |⋃
i=1

Ii, out(P )
df
=

|P |⋃
i=1

Oi

where Ii, Oi ∈ di 〈Ii, Oi, δi〉 ∈ P .

TAPLCTrans functionality does not depend on types
of variables. Therefore, it assumes typeless variables for
simplicity and lets the distinguishing of numeric types to
operations in δ-nodes. For verification processes, numeric
ranges of variables can be easily reconstructed latter by
analysis of δ-nodes.
Definition 7. Let A = 〈τ,Σ,Ω, S,Ω(0), δ(C)〉 be a given
TAPLC. Ordered set Z = Σ ∪ Ω ∪ flag(S) ∪ gate(S) is
called a variable set of TAPLC.
Definition 8. Let Z be a given variable set of TAPLC and
Y ⊆ Z any its ordered subset. We will write beg(Y ) and
end(Y ) for such ordered sets of beginning and end δ-nodes
that satisfy Y = out(beg(Y )) and Y = in(end(Y )). We will
call beg(Y ) and end(Y ) beginning and end δ-node sets.

Notice that end δ-nodes also exist for inputs Σ ⊆ Z of
TAPLC, because they are stored in PLC input image
memory, thus, programmers may rewrite any input as
other variables; it is sometimes used for its readdressing.
Definition 9. (δ-graph). Let Z be a given variable set. δ-
graph is an acyclic oriented graph defined by

G = 〈Ξ, N, Θ, E, ε〉

tuple, where N is a finite set of middle δ-nodes, Ξ =
beg(Z) and Θ = end(Z) are ordered sets of beginning

and end δ-nodes, E is a finite set of oriented edges, and
ε is mapping that assigns to each edge e ∈ E exactly one
ordered pair, which consists of an output and an input,

ε : E → out(Ξ ∪N)× in(Θ ∪N)

such that any input in(Θ∪N) is used at most in one pair.
If ε mapping assigns exactly one edge to each end δ-node
di ∈ Θ, i = 1..|Θ|, then G is called complete δ-graph in Z,
otherwise G is called an incomplete δ-graph in Z.

Remarks to definition 9:

(1) Variable set: Notice that |Ξ| = |Θ| = |Z| for any δ-
graph. Moreover, a complete δ-graph always assumes
assigning of all variables in Z, because it is a necessary
condition for compositions. If we create an incomplete
δ-graph for some instructions that has assigned only
a subset of Z, then we easily complete such δ-graph
by adding primitive edges that will connect all unused
in(Θ) inputs with corresponding out(Ξ) outputs.

(2) Implementation: δ-graphs can be effectively imple-
mented as macro blocks of symbolic equations con-
nected by edge links, thus, e.g. a long logical operation
is represented either by one δ-node or by several δ-
nodes, as required. Primitive edges and unused be-
ginning/end δ-nodes are not stored. They are added
and also removed automatically, if they are required
by a manipulation algorithm.

Definition 10. Let G1 = 〈Ξ1, N1,Θ1, E1, ε1〉 and G2 =
〈Ξ2, N2,Θ2, E2, ε2〉 be two δ-graphs in Z. We define their
composition G = G1 ◦ G2 by the following:

G = 〈Ξ1, N1 ∪N2 ∪N12,Θ2, E1 ∪ E2, ε1 ∪ ε2〉

where N12 set of middle δ-nodes satisfies |N12| = |Z| and
also |Z| = |Θi| = |Ξi|, i = 1, 2, and it is defined as:

N12 =
{

di 〈in(θi), out(ξi), ε : in(θi) → out(ξi)〉
such that θi ∈ Θ1, ξi ∈ Ξ2, i = 1..|Z|

}
In other words, the composition connects two δ-graphs G1

and G2 by joining Θ1 end δ-nodes in G1 with corresponding
Ξ2 beginning δ-nodes in G2. The joined δ-nodes have
one input and one output and they contain δ mappings
corresponding to no-operation instructions, i.e. their single
inputs are assigned to their single outputs. Such no-
operation nodes can be certainly further removed by a
minimizing algorithm.
Proposition 11. The composition of δ-graphs in Z is an
associative operation.
Proposition 12. The composition of two complete δ-graphs
in Z is also complete δ-graph.

If δ-graphs are defined in the same Z, then we connect end
δ-nodes with corresponding beginning δ-nodes, therefore,
the order of ◦ compositions is irrelevant. The completeness
of result is given by ◦ members according to Definition
9. Propositions 11 and 12 does not hold for δ-graphs in
different Z1 and Z2 variable sets.
Proposition 13. Let r1 and r2 be instructions expressible
by G1 and G2 complete δ-graphs in Z. If r12 represents
composed instruction given by executing first r1 and then
r2, then G = G1 ◦ G2 is complete δ-graph of r12.

Notice the important assumption of the existence of com-
plete δ-graphs in Z for r1 and r2. Proposition 13 does

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11651



not hold for incomplete δ-graphs, in which some data
assignments can be absorbed. The proof also results from
the same assumption. If instructions have complete G1

and G2 δ-graphs, then they correspond to α(Z) → α(Z)
mappings, thus, their composition will be also a mapping:
α(Z) → α(Z).
Proposition 14. Let C be a program running in a regular
PLC scan. If complete δ-graphs in a given variable set Z
exist for all instructions executed during the scans, then C
can be converted into complete δ-graph in linear time in
the number of C instructions.

Propositions 14, 13, and 11 allow an effective conversion
in linear time in size of its source code, even if a program
has exponential execution time due to calling many sub-
routines. We use associativity of the composition. First,
we convert subroutines, then we just insert them. The
approach is the same as for a binary PLC and it was
described in [Šusta(2003)], pages from 73 to 96, where
are also conversions of PLC instructions to transfer sets,
predecessors of δ-graphs.

But Propositions 14 contains the assumption that com-
plete δ-graphs exist for all instructions in C. It rises an
important question, which operations have no direct δ-
graph representations. Generally speaking, δ-graphs con-
tain α(Z) → α(Z) mappings, thus, they do not exist
for operations with unpredictable results, e.g. instructions
with side-effects involving variables outside Z. Moreover
δ-graphs hardly represent operations having too many
possible inputs and outputs, e.g. indexes or pointers.

The instructions that perform backward jumps in pro-
grams constitute a specific problem, because they are not
directly convertible into δ-graphs. Program loops can be
only represented by unexpandable δ-nodes that include all
their operations. Fortunately, loops are considered as a
bad programming style in PLC programs for many rea-
sons, e.g. worse trouble shooting and longer PLC scan. In
our educational challenge, students are asked to replace
complex loops by other constructions.
Proposition 15. A given C program running in regular
PLC scan with τ period is convertible into a TAPLC form
if and only if C has a δ-graph representation.

The proof is performed on the basis of constructions and
this will be briefly outlined. From a given δ-graph, we can
surely construct a TAPLC. Scan counters are moved to
outside blocks, the remaining part of δ-graph becomes δ(C)
of TAPLC. On the contrary, if we have a TAPLC, then
we can express its δ(C) in all cases by Gp δ-graph that
contains one δ-node with δ(C) mapping. Scan counters are
evaluated before δ(C), thus we create their Gs δ-graph.
Finally, we compose Gs ◦ Gp into one δ-graph.

Remark: Many manipulation algorithms exist for δ-graphs.
For instance, it is sometimes possible to remove spare
operations, to join several nodes into one, or on the
contrary to expand a δ-node. The algorithms are omitted
to reduce the size of this paper.

3.1 Related works to δ-graphs

Presented δ-graphs are the improved version of elder trans-
fer sets defined only for PLC programs with binary data,

see [Šusta(2003)]. Even if transfer sets can be extended to
other data types, see [Šusta(2004)], the main disadvantage
of transfer sets concerns single outputs of their operations,
which complicate conversions of more complex programs.
The idea of δ-graphs combines classic PLC function block
diagrams, defined by IEC 1131–3 standard, with composi-
tional techniques for program analysis that were described
for instance in [Nielson et al.(1999)].

δ-graphs were developed mainly for programs running in
PLC scan cycles rarely containing program loops and
jumps. Such assumption nearly exclude an application of
δ-graphs in other programming environments. It will be
also a reason why we have not found any publications
directly related to δ-graphs, even after having surveyed
many papers in this area. Thus, δ-graphs might be our
original contribution.

4. TESTING OF TAPLC PROGRAM

Unlike the situation in industry, teaching models represent
an ideal situation for the application of verification meth-
ods. The models have usually known simple structure and
small number of inputs and outputs. Moreover, methods
laboriously developed by us will be further used for a
large number of beginner’s programs frequently containing
”textbook” errors. Besides, an automatic testing is nearly
unavoidable here, especially in a distant education, other-
wise qualified teachers would waste their time by watching
control actions of thousands user’s programs.

On the contrary, beginner’s programs have drawbacks that
often include many experimental parts, e.g. undeleted pre-
vious versions or auxiliary blocks with operations intended
only for debugging purposes.

The simulation represents our primary testing tool. User’s
programs are always converted into TAPLC and connected
to the virtual model of sorting balls. After the programs
have successfully sorted all ten balls, their in-depth tests
become meaningful — student’s programs have now ex-
pected functionality and we can make assumptions about
their internal structure.

Before any verification attempt we must first remove un-
used or debugging parts that have no influence on outputs
to simplify tests. Fortunately, δ-graphs allow deleting such
irrelevant blocks.

Let be given a G δ-graph. In accordance with the theory
of oriented graphs, we will call a path in G any sequence
of nodes and edges, p = n0e1n1...emnm, m ≥ 1, such that
ni, ei ∈ G and ei edge connects an output of ni−1 node with
an input of ni node. We will call n0 and nm as beginning
and end nodes of p path.
Definition 16. Let be given G = 〈Ξ, N, Θ, E, ε〉 a δ-graph
in Z variable set. The concatenation papb is called a scan
path in G, if pa and pb are two paths or scan paths in G
such that θi ∈ Θ is a end node of pa and ξi ∈ Ξ is a
beginning node of pb, and in(θi) = out(ξi) = v ∈ Z.

In other words, a scan path allows an exception in regular
alternating of an edge and a node in a path. In a scan
path, an end δ-node of G can be immediately followed by
the beginning δ-node of G that belongs to the same variable

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11652



v ∈ Z. By this way, scan paths describe how a value of the
variable can influence the following programs scans.

Using scan path, we define an irrelevant δ-node. The
definition also suggests construction algorithm for a set
of all such nodes.
Definition 17. Let be given G = 〈Ξ, N, Θ, E, ε〉 a δ-graph
in Z variable set. We say that a middle δ-node d ∈ N is
irrelevant with respect to some given subset H ⊆ Θ of end
nodes, if no scan path of G beginning in d contains any
h ∈ H.

Algorithm for irrelevant nodes:

(1) Initialization: We mark all end δ-nodes specified by a
given H subset.

(2) We mark all unmarked δ-nodes, outputs of which are
connected to inputs of already marked δ-nodes. If a
beginning δ-node in Ξ is marked, we also mark its
corresponding end δ-node in Θ.

(3) We repeat the previous step, until no δ-node is
possible to mark.

(4) All unmarked δ-nodes are irrelevant with respect to
H and can be deleted with their edges, because they
have no influence on H values.

Notice that the algorithm does not follow oriented edges
that begin in outputs of marked δ-nodes. It checks only
δ-nodes connected to inputs of already marked nodes to
find out all operations that have affected them. G δ-
graph contains a finite number of δ-nodes, therefore, the
algorithm is sure to terminate after a finite number of
steps. If G edges are implemented as bidirectional links, the
computational complexity of the algorithm will be O(n);
it depends linearly on the number of edges in C. If we
select H that contains δ-nodes of controlled PLC outputs
U , then a program is reduced by deleting auxiliary parts.

To verify a program, we should test its responses to
all possible sequences of 10 balls with 5 different colors:
10!/(2!)5 = 113400. But we do not need exact simulations
of ball movements. If a ball is released, it crosses light
gates in times given by probability distributions which can
be approximated by ranges of minimum and maximum
delays.

For the purposes of tests we replace the simulation of our
physical model by the second TAPLC AM having time
constants of its scan counters Sr

M specified by the ranges
of minimum and maximum values. We omit its simple
definition to reduce this paper.

Let us write AP for TAPLC of the tested program. Then,
the connection of program and model TAPLCs is described
by two equations:

AP = 〈τ,ΣP = X, ΩP = U ∪MP , SP ,ΩP (0), δ(CP )〉
AM = 〈τ,ΣM = U,ΩM = X ∪MM , Sr

M ,ΩM (0), δ(CM )〉

The testing algorithm can be roughly described as a
classical search of an automaton state space, which was
improved by advancing simulation time, if both TAPLC
are only waiting for scan counters.

Outline of our testing algorithm:

(1) Initialization: Initialize AP and AM and store the
values of their variable sets (see Definition 7).

(2) Test loop: Update scan counters SP .
(3) If any input of AP has changed, evaluate δ(CP ).
(4) Update range scan counters Sr

M .
(5) If any input of AM has changed, evaluate δ(CM ).
(6) Check sorting: Terminate with a sort error, if AM

announces a failure in sorting.
(7) Check waiting for scan counters: If there are any

changes in the values of AP and AM variable sets,
then store new values and go to step 2.

(8) Find out an enabled range/scan counter with mini-
mum remaining time. Fork the process to more test
paths, if a scan counter finishes between range values
of some range scan counter. Terminate with a dead-
lock error, if no counter is enabled.

(9) Advancing simulation time: Let k be a remaining
count of the selected counter. Add k − 1 to all
range/scan counters and then go to step 2.

After releasing a ball, our test algorithm also stores AP

states in an associative memory. If a state was already
stored here, we can skip rechecking of previously tested
path. If an error was found, it is approximated by the
graphical simulation with the aid of the virtual model and
data stored during testing.

The testing algorithm selects ball combinations in a ran-
dom order and it terminates after a predefined time, thus,
it does not always check all and any possible input se-
quences. Even if a partial test does not reveal all errors,
it finds out more mistakes than any brief teacher’s checks.
Its improvement is a matter for our future research.

5. CONCLUSION AND FUTURE PLANS

At time of writing this paper our physical model was
reconstructed to a robuster version with rod chutes that
are not sensitive to dust as plate chutes. The new model
sorts 14 balls with 7 different colors. Its virtual counterpart
is much easier, because the chutes are now narrower and
the balls rolls down on nearly deterministic paths. Testing
of user’s control programs will take more time, but all
methods described in this paper are also valid for the
improved model.

REFERENCES

[Alur and Dill(1994)] Rajeev Alur and David L. Dill. A
theory of timed automata. Theoretical Computer Sci-
ence, 126(2):183–235, 1994.

[Burget et al.(2004.)] P. Burget, O Doleǰs, Z. Hanzálek,
and B. Kirchmann. Remote programming of control
systems. In 2nd IFAC Workshop on Internet Based
Control Education 2004 [CD-ROM],. Grenoble: Labo-
ratoire d’Automatique de Grenoble, 2004.

[Nielson et al.(1999)] Flemming Nielson, Hanne Riis Niel-
son, and Chris Hankin. Principles of Program Analysis.
Springer-Verlag, 1999. ISBN 3–540–65410–0.

[Šusta(2004)] Richard Šusta. Low cost simulation of PLC
programs. In 7th IFAC Symposium on Cost Oriented
Automation COA 2004, Gatineau (Québec) Canada,
pages 219–224. Université du Québec en Outaouais,
2004.

[Šusta(2003)] Richard Šusta. Verification of PLC Pro-
grams. PhD thesis, CTU-FEE Prague, May 2003. avail.
at http://dce.felk.cvut.cz/susta/.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11653


